ALGOMANET Sparsity

Tutorial 3: Low treedepth colorings

January 22nd, 2020

- **Problem 1.** Prove that if $H \leq G$, then $td(H) \leq td(G)$.
- **Problem 2.** Prove that a graph of treedepth at most d is (d-1)-degenerate.
- **Problem 3.** Give an algorithm that computes the treedepth of an *n*-vertex graph in time $2^n \cdot \text{poly}(n)$.
- **Problem 4.** Prove that for any graph G, $td(G) = wcol_{\infty}(G)$.
- **Problem 5.** Prove that a tree on n vertices has treedepth at most $\log_2 n$. Infer that an n-vertex graph of treewidth t has treedepth at most $(t+1) \cdot \log n$.
- **Problem 6.** Prove that a planar graph on n vertices has treedepth $\mathcal{O}(\sqrt{n})$.
- You may use the following balanced separator statement for planar graphs: in every n-vertex planar graph G there exists a subset of vertices X of size $\mathcal{O}(\sqrt{n})$ such that every connected component of G-X has at most n/2 vertices.
- **Problem 7.** Prove that if \mathcal{C} is a graph class such that for every $p \in \mathbb{N}$ there exists M(p) such that every graph $G \in \mathcal{C}$ admits a treedepth-p coloring with M(p) colors, then \mathcal{C} has bounded expansion.
- **Problem 8.** Prove that if a graph admits a treedepth-p coloring with M colors, then it also admits a p-centered coloring with $M \cdot p^{\binom{M}{< p}}$ colors.
- **Problem 9.** Prove that given an n-vertex graph G together with its elimination forest of depth at most d, one can verify whether G is 3-colorable in time $3^d \cdot \operatorname{poly}(n)$ and space $\operatorname{poly}(n)$.
- **Problem 10.** Prove that given a p-vertex graph H and an n-vertex graph G together with its elimination forest of depth at most d, one can verify whether H is a subgraph of G in time $d^{\mathcal{O}(p)} \cdot n$.
- **Definition 1.** For a graph G and $d \in \mathbb{N}$, we define a graph $G^{=d}$ as follows: the vertex set of $G^{=d}$ is the same as that of G, while two vertices u, v are adjacent in $G^{=d}$ if and only if they are at distance *exactly* d in G.
- **Problem 11.** Prove that every graph G of treedepth at most d admits a coloring using at most $2^d 1$ colors with the following property: for any pair of vertices u and v, if the distance between u and v in G is finite and odd, then u and v receive different colors.
- **Problem 12.** Prove that if \mathcal{C} is a class of bounded expansion and $d \in \mathbb{N}$ is odd, then there is a number M such that for every graph $G \in \mathcal{C}$, the graph $G^{=d}$ admits a proper coloring with at most M colors.