Sparsity — tutorial 6
Tree-depth, tree-width and low tree-depth colorings

Problem 1. Prove that a class C of graphs has bounded tree-depth if and only if there is a number k& such
that no graph G € C contains a path of length k.

Proof. First observe that if H C G, then td(H) < td(G) (we can use the same decomposition for H as for
Q).

We now prove that The tree-depth of an n-vertex path is equal to [logy(n + 1)].

It suffices to prove that whenever 2¥ < n < 2F*1 — 1 the tree-depth of P, is equal to k + 1. We
proceed by induction on k. For k = 0 the claim holds trivially. Let P, be the path on n vertices, where
2k <p <2kl 1,

We first show that td(P,) < k+ 1. Let u be a middle vertex on P, that is, one whose removal splits P,
into two subpaths on at most |n/2] < 2* vertices each. By induction assumption, for each of these subpaths
we can find a tree-depth decomposition of height at most k, and these can be combined into a tree-depth
decomposition of P, of height k£ + 1 by taking their union and adding u as the root.

We now show that td(P,) > k + 1. Take any tree-depth decomposition T of P,; T is a rooted tree since
P, is connected. Let u be the root of T. Then each of the two subpaths of P, — u is placed entirely in one
subtree rooted at a child of u in 7. Since n > 2%, one of these subpaths has at least 2~ vertices, so by the
induction assumption its tree-depth is at least k. Then the corresponding subtree of 1" rooted at a child of
u has height at least k, implying that 7" has height at least k + 1.

Now, if C contains graphs with arbitrary long paths as subgraphs, the class of all paths P cannot have
larger tree-depth. However, as we showed, the tree-depth of this class is unbounded.

On the other hand, if C has a bound on the path lengths, then we will find a bound on tree-depth, as the
next exercise will show. O

Problem 2. Let G be an n-vertex graph with m edges. Show that we can compute in time O(n +m) a
tree-depth decomposition of depth at most 2t4(%).

Proof. We show that every rooted forest F' obtained by running a depth-first search in each connected
component of G satisfies G’ C clos(F) and height(F) < 2t4(%),

Let F be such a rooted forest. It is straightforward to see that G C clos(F'). Indeed, if there was an
edge uv € E(G) such that u and v were not bound by the ancestor-descendant relation in F', then provided
u was visited earlier by the DFS than v, the edge uv would be used by the DFS to access v from u, so v
should have been a descendant of u. To see that height(F) < 2t4(%) observe that if d := height(F), then G
contains a path on d vertices. By what we showed in exercise 1 we infer that the tree-depth of this path,
and consequently also the tree-depth of G, is at least [logy(d + 1)]. Since td(G) > [logy(d + 1)] > log, d, it
follows that d < 2%(&). O

Definition 1. A tree-decomposition of a graph G is a pair T := (T, (B¢):ev (1)) consisting of a tree 7" and
a family (By)icv (1) of sets B; C V(G), such that

1. for all v € V(G) the set
B '(v):={teV(T) : v B}

is non-empty and induces a subtree of T" and
2. for every edge e € E(G) there is t € V(T) with e C B;.

The width of T is max{|B;|—1 : t € V(T)}. The tree-width of G, denoted tw(G), is defined as the minimal
width of any tree-decomposition of G.

Problem 3. Let G be an n-vertex graph. Prove that col,,(G) = tw(G) + 1.

Proof. First, fix an order o of V(G), say the vertices are enumerated as vy, ..., v,, such that col,(G, o) =
col,(G). For notational simplicity, let G’ be the graph obtained by adding a vertex vy to G which is adjacent
to all vertices of G. We define a tree-decomposition of G’ as follows (the decomposition of G is obtained by
removing vy from every bag).

We define a tree T' with vertex set xg,x1,...,2Z,. For 0 <i < n, we denote the bag B, by B;. The root
of T is &y with By = {vp}.

For i > 1, denote by G; the component of G’ — (vy, ..., v;—1) which contains the vertex v;. By induction,
we continue build the tree T as follows. If 4 is minimal such that G; is a component of G’ — (vg,...,v;—1)
(and not already a component of G’ — (vp, . ..,v;_2) or G’ —wvg if i = 1), we attach x; as a child of z;_;. This

clearly defines a tree T

For i > 1, we define B; := SReach,[G, g, v;].

Let us show that this decomposition satisfies the properties of a tree-decomposition. Its width is as
desired be definition of SReach,[G, o, v;].

The second property is easy to verify: every edge v;v; can be found in the bag B;.

It remains to verify that for all 4, the set B~!(v;) induces a subtree of T, that is, it is connected in T'
(It is non-empty as v; € SReach,[G,0,v;] = B;). By definition, v; is contained in exactly those B; with
v; € SReach, [G,0,v;]. For z,y € V(T), denote by = Ay the least common ancestor of z and y in 7.

Assume towards a contradiction that B~1(v;) is not connected in 7. We distinguish two cases. First
case, there are ji,jo, j3 such that xz;, <7 x;, <r x;, in the partial tree order <7 and v; € Bj,, Bj; and
v; & Bj,. We claim that this is not possible. vj, is in the component of G’ — (vo,...,v;,) and there is a
path P between v;, and vy which uses internal vertices larger than v,,, which hence are also in the same
component of G’ — (v, ...,vj,) as v;,. As this component was created at the time when z;, was put into
the tree, there is a path @) between v;, and v;, such that all internal vertices are larger than v;,. Then the
walk which is the concatenation of @) and P contains a path which has all internal vertices larger than v;,
and which ends at v;,. Hence, also vy in Bj,, contradicting our assumption.

Second case, there are ji,j» which are incomparable in the partial tree order with v; € Bj,, Bj, and
v; € By for j = j1 A jo. This case reduces to the first case by observing we must have z; <p x; <7 xj,.

This contradiction shows that B~!(v;) is connected in T, which finishes the proof.

Now conversely assume that we are given a tree-decomposition with bags of size at most k. We first prove
that every bag of the decomposition (in fact, the intersection of any two neighboring bags) is a separator in
G. Formally, let X, Y C V(G). A set S C V(G) separates X and Y, if every path from a vertex in X to a
vertex in Y contains a vertex from S. We prove that if e = zy € E(T), then B, N By is a separator of G,
more precisely, if T, T are the components of T'—e, then B, N B; separates the sets B(T}) = U:I:’EV(Tl) B(z')
and B(T2) = U, cv(r,) BW)-

As B71(w) is connected in T for each w € V(G), if w € B(T1) and w € B(T3), then w € B, N B,. Now,
let P = vy,...,v¢ be a path in G — (B, N By), without loss of generality v1 € B(T1). Assume towards a
contradiction that there is 4, 1 < i < ¢, such that v; € B(T1) and v;41 € B(T2). As {v;,viy1} € E(G), there
is a bag B, with v;,v;4y1 € B,. Without loss of generality we have r € T;. But then we have v;11 € B(T1)
and v;11 € B(T») and hence, as observed above, v;11 € B, N By, contradicting our assumption that P is a
path in G — (B, N By).

We now construct an order from the decomposition with the desired strong reachability properties. We
assign any vertex of T' to be the root of T. With any vertex v € V(G) associate the vertex T'(v) =z € V(T
such that such that x is minimal in the tree order with v € B,. We now define a partial order on V(G) such
that v < w if T(v) < T(w), or if T(v) = T(w), we break ties arbitrarily. Now let o be any linearization of
this partial order. We claim that |SReach,[G, o,v]| < k for all v € V(G).

Let v € V(G) and let w € SReach,[G,0,v]. As w is not larger than v with respect to o, we have
T(w) < T(v) = 2. Now by definition of o and as B, (in particular) is a separator it follows that w € B,.
Hence col(G, o) < k. O

Problem 4. Let G be an n-vertex graph. Prove that tw(G) < td(G) < (tw(G) + 1) - logn.

Proof. Without loss of generality we may assume that G is connected. For the first inequality, let F' be a
tree-depth decomposition of G' (which is a tree, as we assume that G is connected). Let L be the set of leaves
of F. Let p be an embedding of F in R? so that we have an order on L. We define a tree-decomposition
of G as follows. The tree T is a path containing the leaves L from left to right in the embedding. Now let
B, ={y:y <pg z}. Then |B,| < td(G) as desired. Clearly, every edge is contained in some bag and every
vertex is contained in some bag. Furthermore, B~!(v) is connected for every v € V(G), as v is contained in
exactly those B, such that x is a leaf of the subtree rooted at v. By our ordering of the leaves on a line in
R? this is a connected subpath.

We have proved in the previous exercise that each bag of a tree-decomposition is a separator of G. This
implies that there exists a bag B; such that each component of G — B, contains at most |n/2] vertices. Put
the vertices of B; as the smallest vertices in the tree-depth decomposition and continue recursively on the
components of G — B;. O

Problem 5. Let C be a class of graphs of tree-width at most k. Prove that it can be tested in linear time
whether G € C is 3-colorable.

Proof. Let G € C be given. According to a theorem of Bodlaender, we can compute a tree-decomposition of
width & of G in time f(k)-n. We choose an arbitrary node r € V(T) as root and consider the decomposition
to be a rooted tree-decomposition. If ¢t € V(T') is not the root and e is the edge {¢,%'} on the path from the
root r to t, then we denote by T; the component of T — e that does not contain 7.

The algorithm computes, starting from the leaves, for all ¢t € V(T) the following information.

Col(t): The set of all valid 3-colourings of G[B,].
EzCol(t): The set of all colourings from Col(t), which can be extended to a valid 3-colouring of G [B(T})].

Obviously, G is 3-colourable if, and only if, EzCol(r) # 0.

The data structures Col(t) and EzCol(t) can be computed as follows. Let t € V(T'). Col(t) contains all
valid 3-colourings of G[By], i.e. all functions By — {1,2, 3}, which are proper colourings of G[B;]. There are
at most 381 such functions and for each of these we can decide in time O((k + 1) - k) whether they form a
proper colouring. The running time to compute Col(t) for a fixed bag B(t) therefore is O(3*+! . (k + 1)k).

If ¢ is a leaf of T, then EzCol(t) = Col(t). Otherwise, let ¢, ...,y be the successors of ¢t in T;. Suppose
EzCol(t;) has already been computed. We compute EzCol(t) as follows. For each colouring ¢ € Col(t) we
test whether for every 1 < i < m there is a colouring ¢; € ExCol(t;) such that c(v) = ¢;(v) for all v € BN By,.
In this case we add ¢ to EzCol(t).

Clearly, after the above computation, every colouring in EzCol(t) can be extended to a colouring of
G [B(Tt)] . Furthermore, the restriction cp, of every proper 3-colouring c of B(T}) to B; is a proper colouring
appearing in EzCol(t).

The time needed to compute EzCol(t) is bounded by 3%+1.3%+1.m . k.

In total, the algorithm requires for each edge in E(T) time O(3%(**1 . k). We may assume that the
decomposition has only |V (G)| nodes and therefore a total running time of 2P(®) . n for a polynomial p and
n = |V(G)]. O

Problem 6. Let C be a class of graphs of tree-width at most k& and let H be graph. Prove that for every
n-vertex graph G € C it can be tested in time f(|H|, k) - n whether G contains a subgraph isomorphic to H.

Proof. We can analogously interprete the subgraph relation as a coloring and in the above dynamic pro-
gramming save with each coloring which vertices still have to be found. O

