
Sparsity — tutorial 6
Tree-depth, tree-width and low tree-depth colorings

Problem 1. Prove that a class C of graphs has bounded tree-depth if and only if there is a number k such
that no graph G ∈ C contains a path of length k.

Proof. First observe that if H ⊆ G, then td(H) ≤ td(G) (we can use the same decomposition for H as for
G).

We now prove that The tree-depth of an n-vertex path is equal to dlog2(n+ 1)e.
It suffices to prove that whenever 2k ≤ n ≤ 2k+1 − 1, the tree-depth of Pn is equal to k + 1. We

proceed by induction on k. For k = 0 the claim holds trivially. Let Pn be the path on n vertices, where
2k ≤ n ≤ 2k+1 − 1.

We first show that td(Pn) ≤ k+ 1. Let u be a middle vertex on Pn, that is, one whose removal splits Pn

into two subpaths on at most bn/2c < 2k vertices each. By induction assumption, for each of these subpaths
we can find a tree-depth decomposition of height at most k, and these can be combined into a tree-depth
decomposition of Pn of height k + 1 by taking their union and adding u as the root.

We now show that td(Pn) ≥ k + 1. Take any tree-depth decomposition T of Pn; T is a rooted tree since
Pn is connected. Let u be the root of T . Then each of the two subpaths of Pn − u is placed entirely in one
subtree rooted at a child of u in T . Since n ≥ 2k, one of these subpaths has at least 2k−1 vertices, so by the
induction assumption its tree-depth is at least k. Then the corresponding subtree of T rooted at a child of
u has height at least k, implying that T has height at least k + 1.

Now, if C contains graphs with arbitrary long paths as subgraphs, the class of all paths P cannot have
larger tree-depth. However, as we showed, the tree-depth of this class is unbounded.

On the other hand, if C has a bound on the path lengths, then we will find a bound on tree-depth, as the
next exercise will show.

Problem 2. Let G be an n-vertex graph with m edges. Show that we can compute in time O(n + m) a
tree-depth decomposition of depth at most 2td(G).

Proof. We show that every rooted forest F obtained by running a depth-first search in each connected
component of G satisfies G ⊆ clos(F) and height(F) < 2td(G).

Let F be such a rooted forest. It is straightforward to see that G ⊆ clos(F). Indeed, if there was an
edge uv ∈ E(G) such that u and v were not bound by the ancestor-descendant relation in F , then provided
u was visited earlier by the DFS than v, the edge uv would be used by the DFS to access v from u, so v
should have been a descendant of u. To see that height(F) ≤ 2td(G), observe that if d := height(F), then G
contains a path on d vertices. By what we showed in exercise 1 we infer that the tree-depth of this path,
and consequently also the tree-depth of G, is at least dlog2(d+ 1)e. Since td(G) ≥ dlog2(d+ 1)e > log2 d, it
follows that d < 2td(G).

Definition 1. A tree-decomposition of a graph G is a pair T := (T, (Bt)t∈V (T)) consisting of a tree T and
a family (Bt)t∈V (T) of sets Bt ⊆ V (G), such that

1. for all v ∈ V (G) the set
B−1(v) := {t ∈ V (T) : v ∈ Bt}

is non-empty and induces a subtree of T and

2. for every edge e ∈ E(G) there is t ∈ V (T) with e ⊆ Bt.

The width of T is max{|Bt| − 1 : t ∈ V (T)}. The tree-width of G, denoted tw(G), is defined as the minimal
width of any tree-decomposition of G.

Problem 3. Let G be an n-vertex graph. Prove that coln(G) = tw(G) + 1.

1

Proof. First, fix an order σ of V (G), say the vertices are enumerated as v1, . . . , vn, such that coln(G, σ) =
coln(G). For notational simplicity, let G′ be the graph obtained by adding a vertex v0 to G which is adjacent
to all vertices of G. We define a tree-decomposition of G′ as follows (the decomposition of G is obtained by
removing v0 from every bag).

We define a tree T with vertex set x0, x1, . . . , xn. For 0 ≤ i ≤ n, we denote the bag Bxi
by Bi. The root

of T is x0 with B0 = {v0}.
For i ≥ 1, denote by Gi the component of G′− (v0, . . . , vi−1) which contains the vertex vi. By induction,

we continue build the tree T as follows. If i is minimal such that Gi is a component of G′ − (v0, . . . , vi−1)
(and not already a component of G′− (v0, . . . , vi−2) or G′−v0 if i = 1), we attach xi as a child of xi−1. This
clearly defines a tree T .

For i ≥ 1, we define Bi := SReachn[G, σ, vi].
Let us show that this decomposition satisfies the properties of a tree-decomposition. Its width is as

desired be definition of SReachn[G, σ, vi].
The second property is easy to verify: every edge vivj can be found in the bag Bj .
It remains to verify that for all i, the set B−1(vi) induces a subtree of T , that is, it is connected in T

(It is non-empty as vi ∈ SReachn[G, σ, vi] = Bi). By definition, vi is contained in exactly those Bj with
vi ∈ SReachn[G, σ, vj]. For x, y ∈ V (T), denote by x ∧ y the least common ancestor of x and y in T .

Assume towards a contradiction that B−1(vi) is not connected in T . We distinguish two cases. First
case, there are j1, j2, j3 such that xj1 <T xj2 <T xj3 in the partial tree order <T and vi ∈ Bj1 , Bj3 and
vi 6∈ Bj2 . We claim that this is not possible. vj3 is in the component of G′ − (v0, . . . , vj2) and there is a
path P between vj3 and v1 which uses internal vertices larger than vj3 , which hence are also in the same
component of G′ − (v0, . . . , vj2) as vj3 . As this component was created at the time when xj2 was put into
the tree, there is a path Q between vj2 and vj3 such that all internal vertices are larger than vj2 . Then the
walk which is the concatenation of Q and P contains a path which has all internal vertices larger than vj2
and which ends at vj1 . Hence, also v1 in Bj2 , contradicting our assumption.

Second case, there are j1, j2 which are incomparable in the partial tree order with vi ∈ Bj1 , Bj2 and
vi 6∈ Bj for j = j1 ∧ j2. This case reduces to the first case by observing we must have xi <T xj <T xj1 .

This contradiction shows that B−1(vi) is connected in T , which finishes the proof.

Now conversely assume that we are given a tree-decomposition with bags of size at most k. We first prove
that every bag of the decomposition (in fact, the intersection of any two neighboring bags) is a separator in
G. Formally, let X,Y ⊆ V (G). A set S ⊆ V (G) separates X and Y , if every path from a vertex in X to a
vertex in Y contains a vertex from S. We prove that if e = xy ∈ E(T), then Bx ∩ By is a separator of G,
more precisely, if T1, T2 are the components of T−e, then Bs∩Bt separates the sets B(T1) =

⋃
x′∈V (T1)

B(x′)

and B(T2) =
⋃

y′∈V (T2)
B(y′).

As B−1(w) is connected in T for each w ∈ V (G), if w ∈ B(T1) and w ∈ B(T2), then w ∈ Bx ∩By. Now,
let P = v1, . . . , v` be a path in G − (Bx ∩ By), without loss of generality v1 ∈ B(T1). Assume towards a
contradiction that there is i, 1 ≤ i < `, such that vi ∈ B(T1) and vi+1 ∈ B(T2). As {vi, vi+1} ∈ E(G), there
is a bag Br with vi, vi+1 ∈ Br. Without loss of generality we have r ∈ T1. But then we have vi+1 ∈ B(T1)
and vi+1 ∈ B(T2) and hence, as observed above, vi+1 ∈ Bx ∩ By, contradicting our assumption that P is a
path in G− (Bx ∩By).

We now construct an order from the decomposition with the desired strong reachability properties. We
assign any vertex of T to be the root of T . With any vertex v ∈ V (G) associate the vertex T (v) = x ∈ V (T)
such that such that x is minimal in the tree order with v ∈ Bx. We now define a partial order on V (G) such
that v < w if T (v) < T (w), or if T (v) = T (w), we break ties arbitrarily. Now let σ be any linearization of
this partial order. We claim that |SReachn[G, σ, v]| ≤ k for all v ∈ V (G).

Let v ∈ V (G) and let w ∈ SReachn[G, σ, v]. As w is not larger than v with respect to σ, we have
T (w) ≤ T (v) = x. Now by definition of σ and as Bx (in particular) is a separator it follows that w ∈ Bx.
Hence col(G, σ) ≤ k.

2

Problem 4. Let G be an n-vertex graph. Prove that tw(G) ≤ td(G) ≤ (tw(G) + 1) · log n.

Proof. Without loss of generality we may assume that G is connected. For the first inequality, let F be a
tree-depth decomposition of G (which is a tree, as we assume that G is connected). Let L be the set of leaves
of F . Let ρ be an embedding of F in R2 so that we have an order on L. We define a tree-decomposition
of G as follows. The tree T is a path containing the leaves L from left to right in the embedding. Now let
Bx = {y : y ≤F x}. Then |Bx| ≤ td(G) as desired. Clearly, every edge is contained in some bag and every
vertex is contained in some bag. Furthermore, B−1(v) is connected for every v ∈ V (G), as v is contained in
exactly those Bx such that x is a leaf of the subtree rooted at v. By our ordering of the leaves on a line in
R2 this is a connected subpath.

We have proved in the previous exercise that each bag of a tree-decomposition is a separator of G. This
implies that there exists a bag Bt such that each component of G−Bt contains at most bn/2c vertices. Put
the vertices of Bt as the smallest vertices in the tree-depth decomposition and continue recursively on the
components of G−Bt.

Problem 5. Let C be a class of graphs of tree-width at most k. Prove that it can be tested in linear time
whether G ∈ C is 3-colorable.

Proof. Let G ∈ C be given. According to a theorem of Bodlaender, we can compute a tree-decomposition of
width k of G in time f(k) ·n. We choose an arbitrary node r ∈ V (T) as root and consider the decomposition
to be a rooted tree-decomposition. If t ∈ V (T) is not the root and e is the edge {t, t′} on the path from the
root r to t, then we denote by Tt the component of T − e that does not contain r.

The algorithm computes, starting from the leaves, for all t ∈ V (T) the following information.

Col(t): The set of all valid 3-colourings of G[Bt].

ExCol(t): The set of all colourings from Col(t), which can be extended to a valid 3-colouring of G
[
B(Tt)

]
.

Obviously, G is 3-colourable if, and only if, ExCol(r) 6= ∅.
The data structures Col(t) and ExCol(t) can be computed as follows. Let t ∈ V (T). Col(t) contains all

valid 3-colourings of G[Bt], i.e. all functions Bt → {1, 2, 3}, which are proper colourings of G[Bt]. There are
at most 3k+1 such functions and for each of these we can decide in time O((k + 1) · k) whether they form a
proper colouring. The running time to compute Col(t) for a fixed bag B(t) therefore is O(3k+1 · (k + 1)k).

If t is a leaf of T , then ExCol(t) = Col(t). Otherwise, let t1, . . . , tm be the successors of t in Tt. Suppose
ExCol(ti) has already been computed. We compute ExCol(t) as follows. For each colouring c ∈ Col(t) we
test whether for every 1 ≤ i ≤ m there is a colouring ci ∈ ExCol(ti) such that c(v) = ci(v) for all v ∈ Bt∩Bti .
In this case we add c to ExCol(t).

Clearly, after the above computation, every colouring in ExCol(t) can be extended to a colouring of
G
[
B(Tt)

]
. Furthermore, the restriction cBt

of every proper 3-colouring c of B(Tt) to Bt is a proper colouring
appearing in ExCol(t).

The time needed to compute ExCol(t) is bounded by 3k+1 · 3k+1 ·m · k.
In total, the algorithm requires for each edge in E(T) time O(32(k+1) · k). We may assume that the

decomposition has only |V (G)| nodes and therefore a total running time of 2p(k) · n for a polynomial p and
n := |V (G)|.

Problem 6. Let C be a class of graphs of tree-width at most k and let H be graph. Prove that for every
n-vertex graph G ∈ C it can be tested in time f(|H|, k) · n whether G contains a subgraph isomorphic to H.

Proof. We can analogously interprete the subgraph relation as a coloring and in the above dynamic pro-
gramming save with each coloring which vertices still have to be found.

3

