
Sparsity — tutorial 3
Measuring sparsity

Problem 2. Suppose C is a class of bounded expansion. Prove that for every r ∈ N there exists a constant
cr such that the following holds. For every graph G ∈ C and every its vertex subset A ⊆ V (G), there exists
a vertex subset B ⊇ A with the following properties:

• |B| ¬ cr|A|, and

• for every pair of vertices u, v ∈ A, if distG(u, v) ¬ r then distG[B](u, v) = distG(u, v).

Solution. We will use the following two facts; the first one was proved in the first tutorial, the second one
was given in the second.

Fact 1 (Closure lemma). Suppose C is a class of bounded expansion. Then for every r ∈ N there exists a
constant dr such that the following holds. For every graph G ∈ C and every subset A of its vertices, there
exists a vertex subset B ⊇ A such that |B| ¬ dr|A| and for every vertex u ∈ V (G)−B, at most dr vertices
of B can be reached from u by a path of length at most r whose internal vertices do not belong to B.

Fact 2 (Stability under lexproduct). If G is a graph and r, c ∈ N, then

∇r(G •Kc) ¬ 2c2(r + 1)2∇r(G) + c.

We now present a solution to Problem 1. First, we apply Lemma 1 to the set A, yielding a set A′ with
the asserted properties: |A′| ¬ dr|A| and for every vertex u ∈ V (G) − A′, at most dr vertices of A′ can be
reached from u by a path of length at most r whose internal vertices do not belong to A′. Next, for each
pair of distinct vertices u, v ∈ A′, select an arbitrary path Pu,v that connects u and v, and whose internal
vertices do not belong to A′, and which is the shortest among the paths satisfying these properties; in case
there is no such path, put Pu,v = ∅. Then define B to be A′ plus the vertex sets of all paths Pu,v that have
length at most r.

We first claim that B has indeed the required property of preserving distances up to r. More precisely,
take any distinct u, v ∈ A with distG(u, v) ¬ r. Let R be a shortest path between u and v in G, and let
a1, a2, . . . , aq be consecutive vertices of A′ visited on R, where u = a1 and v = aq. For each i = 1, 2, . . . , q−1,
let Ri be the segment of R between ai and ai+1. Then the existence of Ri certifies that some path of length at
most |Ri| between ai and ai+1 was added when constructing B from A′, and hence distG[B](ai, ai+1) ¬ |Ri|.
Consequently, by the triangle inequality we infer that

distG[B](u, v) ¬
q−1∑
i=1

distG[B](ai, ai+1) ¬
q−1∑
i=1

|Ri| = |R| = distG(u, v).

However, the opposite inequality distG[B](u, v) ­ distG(u, v) follows directly from the fact that G[B] is an
induced subgraph of G. Hence indeed distG(u, v) = distG[B](u, v).

We are left with showing that |B| ¬ cr|A| for some constant cr. First, we have |A′| ¬ dr|A|, so we only
need to upper bound the ratio |B|

|A′| . Let H be a graph on vertex set A′, where uv ∈ E(A′) if and only if
Pu,v exists and has length at most r, and hence its vertex set was added in the costruction of B. Clearly
|B| ¬ |A′|+ (r − 1) · |E(H)|, so it suffices to prove an upper bound on |E(H)|.

Take any w ∈ B −A′, and consider for how many pairs {u, v} it can hold that w ∈ Pu,v. If {u, v} is such
a pair, then in particular both u and v can be reached from w by a path of length at most r that internally
avoids A′. However, we know that the number of such vertices is at most dr, so the number of such pairs
{u, v} is at most τ =

(
dr
2

)
. Consequently, we observe that graph H is an (r − 1)-shallow minor (actually
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even an d(r − 1)/2e-shallow topological minor) of G • Kτ : when each vertex w ∈ B − A′ is replaced with
τ copies, then we can realize all the paths Pu,v in G • Kτ so that they are internally vertex-disjoint. Now
we know by Fact 1 that ∇r−1(G •Kτ ) is bounded by a function of ∇r−1(G) and τ . Both ∇r−1(G) and τ
are bounded by constants, namely by ∇r−1(C) and

(
dr
2

)
respectively, and hence so does ∇r−1(G •Kτ ). As

|E(H)| ¬ ∇r−1(G •Kτ ) · |A′|, |B| ¬ |A′|+ (r − 1)|E(H)|, and |A′| ¬ cr|A|, we are done. �
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