Sparsity — tutorial 3

Measuring sparsity

Problem 2. Suppose \mathcal{C} is a class of bounded expansion. Prove that for every $r \in \mathbb{N}$ there exists a constant c_r such that the following holds. For every graph $G \in \mathcal{C}$ and every its vertex subset $A \subseteq V(G)$, there exists a vertex subset $B \supseteq A$ with the following properties:

- $|B| \leq c_r |A|$, and
- for every pair of vertices $u, v \in A$, if $\operatorname{dist}_G(u, v) \leq r$ then $\operatorname{dist}_{G[B]}(u, v) = \operatorname{dist}_G(u, v)$.

Solution. We will use the following two facts; the first one was proved in the first tutorial, the second one was given in the second.

Fact 1 (Closure lemma). Suppose \mathcal{C} is a class of bounded expansion. Then for every $r \in \mathbb{N}$ there exists a constant d_r such that the following holds. For every graph $G \in \mathcal{C}$ and every subset A of its vertices, there exists a vertex subset $B \supseteq A$ such that $|B| \leqslant d_r |A|$ and for every vertex $u \in V(G) - B$, at most d_r vertices of B can be reached from u by a path of length at most r whose internal vertices do not belong to B.

Fact 2 (Stability under lexproduct). If G is a graph and $r, c \in \mathbb{N}$, then

$$\nabla_r(G \bullet K_c) \leq 2c^2(r+1)^2 \nabla_r(G) + c.$$

We now present a solution to Problem 1. First, we apply Lemma 1 to the set A, yielding a set A' with the asserted properties: $|A'| \leq d_r |A|$ and for every vertex $u \in V(G) - A'$, at most d_r vertices of A' can be reached from u by a path of length at most r whose internal vertices do not belong to A'. Next, for each pair of distinct vertices $u, v \in A'$, select an arbitrary path $P_{u,v}$ that connects u and v, and whose internal vertices do not belong to A', and which is the shortest among the paths satisfying these properties; in case there is no such path, put $P_{u,v} = \emptyset$. Then define B to be A' plus the vertex sets of all paths $P_{u,v}$ that have length at most r.

We first claim that B has indeed the required property of preserving distances up to r. More precisely, take any distinct $u, v \in A$ with $\operatorname{dist}_G(u, v) \leqslant r$. Let R be a shortest path between u and v in G, and let a_1, a_2, \ldots, a_q be consecutive vertices of A' visited on R, where $u = a_1$ and $v = a_q$. For each $i = 1, 2, \ldots, q-1$, let R_i be the segment of R between a_i and a_{i+1} . Then the existence of R_i certifies that some path of length at most $|R_i|$ between a_i and a_{i+1} was added when constructing B from A', and hence $\operatorname{dist}_{G[B]}(a_i, a_{i+1}) \leqslant |R_i|$. Consequently, by the triangle inequality we infer that

$$\operatorname{dist}_{G[B]}(u,v) \leqslant \sum_{i=1}^{q-1} \operatorname{dist}_{G[B]}(a_i, a_{i+1}) \leqslant \sum_{i=1}^{q-1} |R_i| = |R| = \operatorname{dist}_G(u, v).$$

However, the opposite inequality $\operatorname{dist}_{G[B]}(u,v) \ge \operatorname{dist}_{G}(u,v)$ follows directly from the fact that G[B] is an induced subgraph of G. Hence indeed $\operatorname{dist}_{G}(u,v) = \operatorname{dist}_{G[B]}(u,v)$.

We are left with showing that $|B| \leq c_r |A|$ for some constant c_r . First, we have $|A'| \leq d_r |A|$, so we only need to upper bound the ratio $\frac{|B|}{|A'|}$. Let H be a graph on vertex set A', where $uv \in E(A')$ if and only if $P_{u,v}$ exists and has length at most r, and hence its vertex set was added in the costruction of B. Clearly $|B| \leq |A'| + (r-1) \cdot |E(H)|$, so it suffices to prove an upper bound on |E(H)|.

Take any $w \in B - A'$, and consider for how many pairs $\{u, v\}$ it can hold that $w \in P_{u,v}$. If $\{u, v\}$ is such a pair, then in particular both u and v can be reached from w by a path of length at most r that internally avoids A'. However, we know that the number of such vertices is at most d_r , so the number of such pairs $\{u, v\}$ is at most $\tau = \binom{d_r}{2}$. Consequently, we observe that graph H is an (r-1)-shallow minor (actually

even an $\lceil (r-1)/2 \rceil$ -shallow topological minor) of $G \bullet K_{\tau}$: when each vertex $w \in B-A'$ is replaced with τ copies, then we can realize all the paths $P_{u,v}$ in $G \bullet K_{\tau}$ so that they are internally vertex-disjoint. Now we know by Fact 1 that $\nabla_{r-1}(G \bullet K_{\tau})$ is bounded by a function of $\nabla_{r-1}(G)$ and τ . Both $\nabla_{r-1}(G)$ and τ are bounded by constants, namely by $\nabla_{r-1}(\mathcal{C})$ and $\binom{d_r}{2}$ respectively, and hence so does $\nabla_{r-1}(G \bullet K_{\tau})$. As $|E(H)| \leqslant \nabla_{r-1}(G \bullet K_{\tau}) \cdot |A'|, |B| \leqslant |A'| + (r-1)|E(H)|, \text{ and } |A'| \leqslant c_r|A|, \text{ we are done.}$