Sparsity — tutorial 3

Measuring sparsity

Problem 2. Suppose C is a class of bounded expansion. Prove that for every r € N there exists a constant
¢ such that the following holds. For every graph G € C and every its vertex subset A C V(G), there exists
a vertex subset B O A with the following properties:

e |B| < ¢|4], and
e for every pair of vertices u,v € A, if distg(u,v) < r then distgp)(u,v) = distg(u,v).

Solution. We will use the following two facts; the first one was proved in the first tutorial, the second one
was given in the second.

Fact 1 (Closure lemma). Suppose C is a class of bounded expansion. Then for every r € N there exists a
constant d,. such that the following holds. For every graph G € C and every subset A of its vertices, there
exists a vertex subset B D A such that |B| < d,.|A| and for every vertex u € V(G) — B, at most d, vertices
of B can be reached from u by a path of length at most » whose internal vertices do not belong to B.

Fact 2 (Stability under lexproduct). If G is a graph and r, ¢ € N, then

V. (Ge K, <22(r+1)2V,.(G) +c.

We now present a solution to Problem 1. First, we apply Lemma 1 to the set A, yielding a set A’ with
the asserted properties: |A’| < d,|A| and for every vertex u € V(G) — A’, at most d,. vertices of A’ can be
reached from u by a path of length at most r whose internal vertices do not belong to A’. Next, for each
pair of distinct vertices u,v € A’, select an arbitrary path P, ., that connects u and v, and whose internal
vertices do not belong to A’, and which is the shortest among the paths satisfying these properties; in case
there is no such path, put P, , = 0. Then define B to be A’ plus the vertex sets of all paths P, , that have
length at most r.

We first claim that B has indeed the required property of preserving distances up to r. More precisely,
take any distinct u,v € A with distg(u,v) < r. Let R be a shortest path between u and v in G, and let
ai,as,...,aq be consecutive vertices of A’ visited on R, where u = a; and v = a,4. Foreachi =1,2,...,¢—1,
let R; be the segment of R between a; and a;11. Then the existence of R; certifies that some path of length at
most |R;| between a; and a;41 was added when constructing B from A’, and hence distgp)(ai, air1) < |Rql.
Consequently, by the triangle inequality we infer that
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distgp (u,0) < Y distap) (@i, ait1) < > |Ri| = |R| = dista(u, v).
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However, the opposite inequality distgp)(u,v) > distg(u,v) follows directly from the fact that G[B] is an
induced subgraph of G. Hence indeed distg(u, v) = distgp(u,v).

We are left with showing that |B| < ¢,|A| for some constant ¢,. First, we have |A’| < d,.|A]|, so we only
need to upper bound the ratio ‘lf,“. Let H be a graph on vertex set A’, where wv € E(A’) if and only if
P, exists and has length at most r, and hence its vertex set was added in the costruction of B. Clearly
|B| < |A'| + (r = 1) - |E(H)|, so it suffices to prove an upper bound on |E(H)|.

Take any w € B — A’, and consider for how many pairs {u, v} it can hold that w € P, . If {u,v} is such
a pair, then in particular both v and v can be reached from w by a path of length at most r that internally
avoids A’. However, we know that the number of such vertices is at most d,., so the number of such pairs
{u,v} is at most 7 = (déf). Consequently, we observe that graph H is an (r — 1)-shallow minor (actually




even an [(r — 1)/2]-shallow topological minor) of G e K,: when each vertex w € B — A’ is replaced with
T copies, then we can realize all the paths P, , in G e K, so that they are internally vertex-disjoint. Now
we know by Fact 1 that V,._1(G e K.) is bounded by a function of V,_;(G) and 7. Both V,_1(G) and 7
are bounded by constants, namely by V,_1(C) and (d'”) respectively, and hence so does V,_1(G e K). As
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|[E(H)| < Vo1 (Ge K,) - |A], Bl < |A'|+ (r —1)|E(H)|, and |A'| < ¢.|A|, we are done. O



