
Sparsity — tutorial 2
Measuring sparsity

Definition 1. For graphs G,H, their lexicographic product G • H is defined as the graph on the vertex
set V (G) × V (H) where (u, v) and (u′, v′) are adjacent if either u 6= u′ and uu′ ∈ E(G), or u = u′ and
vv′ ∈ E(H). The c-blowup of a graph G is the graph G •Kc.

Problem 1. Prove that if G is a graph and r, c ∈ N, then

∇̃r(G •Kc) ≤ 2rc3 · ∇̃r(G) + c2.

Infer that there for each r there is a polynomial Pr(·, ·) such that

∇r(G •Kc) ≤ Pr(c,∇r(G)).

Conclude that if a class C has bounded expansion, then for every constant c ∈ N the class C • Kc =
{G •Kc : G ∈ C} also has bounded expansion.

Solution. We prove only the first statement, the remaining ones follow from the fact that grads and
topological grads are polynomially bounded by one another.

Let G′ := G • Kc. Vertices of G′ are of the form (u, i), where u ∈ V (G) and i ∈ {1, . . . , c}; two such
vertices (u, i) and (v, j) are adjacent in G′ iff u = v or uv ∈ E(G). For a fixed u ∈ V (G), the set of vertices
{(u, i) : i ∈ {1, . . . , c}} will be called the fiber of u.

Since we need to bound ∇̃r(G′) from above, let φ be a depth-r topological minor of some graph H in G′.
Say that H has n vertices and m edges; we need to bound m by a linear function of n. The strategy is to
turn H into some depth-r topological minor of G while losing only a constant multiplicative factor on the
density; then we may used the assumed upper bound on ∇̃r(G).

For every vertex u ∈ V (H), the vertex φ(u) ∈ V (G′) will be called the nail of u; thus, edges of H are
mapped by φ to internally vertex-disjoint paths of length at most 2r + 1 connecting corresponding nails.
There are n nails in G, hence they are located in at most n fibers.

Call an edge uv ∈ E(H) self-problematic if both nails φ(u) and φ(v) are in the same fiber. Observe that
each fiber with a nail contains nails of the endpoints of at most

(
c
2

)
≤ c2 self-problematic edges of H, hence

the number of self-problematic edges in H is at most c2n. Construct a subgraph H1 of H by removing all
self-problematic edges; then we may construct a depth-r topological minor model φ1 of H1 in G by just
dropping the images of self-problematic edges in φ. It follows that H1 has at least m−

(
c
2

)
n edges.

Call an edge uv ∈ E(H1) other-problematic if some internal vertex of φ(uv) belongs to a fiber in which
there is a nail. Observe that each fiber with a nail gives rise to at most c − 1 other-problematic edges,
hence the number of other-problematic edges in H1 is at most (c − 1)n. Construct a subgraph H2 of H1

by removing all other-problematic edges; again, we may construct a depth-r topological minor model φ2
of H2 in G by just dropping the images of other-problematic edges in φ1. It follows that H2 has at least
m− cn−

(
c
2

)
n ≥ m− c2n edges.

Next, we shall say that two edges e, e′ ∈ E(H2) are in conflict if φ(e) and φ(e′) use vertices from the
same fiber. Observe that each edge of e ∈ E(H1) is in conflict with at most (2r − 1)(c − 1) < 2rc, since,
by the previous steps, only the at most 2r − 1 internal vertices of φ(e) can give rise to conflicts with other
edges, each with at most c− 1 other. Draw a conflict graph on the E(H2), where two edges are adjacent iff
they are in conflict. This graph has maximum degree smaller than 2rc, so it admits a proper coloring with
2rc colors. By taking the largest color class in this coloring, we find a subset of edges F ⊆ E(H2) of size at

least |E(H2)|/2rc ≥ m−c2n
2rc such that the edges of F are pairwise not in conflict. Construct a subgraph H3

of H2 by removing all the edges apart from those from F ; again, dropping the removed edges in φ2 yields a

depth-r topological minor model φ3 of H3 in G. It follows that H3 has at least m−c2n
2rc edges.

We now construct a graph H4 that is a depth-r minor of G. First, for every fiber, say of a vertex
w ∈ V (G), that contains a nail of φ3, we add w to the vertex set of H4; thus H4 has at most n vertices.
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Next, for every edge uv of H3, say with φ(u) belonging to the fiber of wu ∈ V (G) and φ(v) belonging to the
fiber of wv ∈ V (G), we add the edge wuwv to the edge set of H4. Observe that thus, one edge wuwv can be
added to H4 at most c2 times, once per each pair of vertices from cartesian product of the fiber of wu and the

fiber of wv. Of course, in H4 we keep only one copy of this edges, thus H4 has at least |E(H3)|/c2 ≥ m−c2n
2rc3

edges.
Finally, observe that if we map every edge wuwv added to H4 to the natural projection of the path

φ(uv) onto G (for every edge wuwv ∈ E(H4) we arbitrarily fix one edge uv ∈ E(H3) which gave rise to
wuwv), then we obtain a depth-r topological minor model of H4 in G. This is because these projections
are pairwise internally vertex-disjoint and do not pass through vertices whose fibers contained nails of φ3,

by all the previous steps. Since H4 is a depth-r topological minor of G, we have |E(H4)|
|V (H4)| ≤ ∇̃r(G). Since

|E(H4)| ≥ m−c2n
2rc3 and |V (H4)| ≤ n, we have

∇̃r(G) ≥ m− c2n
2rc3 · n

=
1

2rc3
m

n
− c2

2rc3
.

This implies that m
n ≤ 2rc3∇̃r(G) + c2 and concludes the proof. �

Fact 1. If G is a graph and r, c ∈ N, then

∇r(G •Kc) ≤ 2c2(r + 1)2∇r(G) + c.

Proof. Let G′ := G •Kc. Vertices of G′ are of the form (u, i), where u ∈ V (G) and i ∈ {1, . . . , c}; two such
vertices (u, i) and (v, j) are adjacent in G′ iff u = v or uv ∈ E(G). For a fixed u ∈ V (G), the set of vertices
{(u, i) : i ∈ {1, . . . , c}} will be called the fiber of u.

Take any depth-r minor H of G, and let φ be a depth-r minor model of H in G′. Say that H has m edges
and n vertices; we need to give an upper bound on m

n . For every vertex u ∈ V (H), we select any vertex
γ(u) ∈ V (φ(u)) that is at distance at most r from every vertex of φ(u) within this branch set. Moreover, for
every edge uv ∈ E(H), we fix any path Puv in G′ that has length at most 2r + 1 that connects γ(u) with
γ(v).

Call an edge uv ∈ E(H) self-problematic if the fiber to which γ(v) belongs also contains some vertex of
φ(u), or vice versa: the fiber to which γ(u) belongs also contains some vertex of φ(v). Observe that every
vertex u of H gives rise to at most c− 1 self-problematic edges: these are those edges uv ∈ E(H), for which
φ(v) contains a vertex of the fiber of γ(u), and there can be at most c− 1 such neighbors v. Therefore, the
number of self-problematic edges in H is at most cn.

Next, we construct a depth-r minor H ′ of G by a random process as follows. First, let σ be a permutation
of V (G) chosen uniformly at random. We define the vertex set of H ′ to comprise all vertices u ∈ V (H)
that satisfy the following condition: if Fu is the fiber of γ(u) in G′, then among vertices {v : φ(v) ∩ Fu 6= ∅}
the vertex u is the earliest with respect to σ. Next, we define the edge set of H ′ to comprise all non-self-
problematic edges uv ∈ E(H) that satisfy the following condition: there is no vertex w ∈ V (H) − {u, v}
that is earlier than both u and v in σ and φ(w) contains a vertex of some fiber used also by a vertex of Puv.
Observe that we may construct a depth-r minor model φ′ of H ′ in G as follows: for every u ∈ V (H ′), we
construct φ′(u) by taking γ(u) and adding for every edge of the form uv ∈ E(H ′), the prefix of the path Puv

contained in Pu. It is easy to see that this is indeed a minor model: no vertex of G is used in more than one
branch set, because only the vertex that is earlier in σ is allowed to use it.

We are left with estimating the density of H ′. Observe that for every edge uv ∈ E(H), there are at
most (2r + 2)(c − 1) ≤ 2c(r + 1) other vertices w ∈ V (H) whose branch sets φ(w) contain a vertex that
is in the same fiber as a vertex of Puv. The probability that u and v are before all these vertices u is at
least 2

(2c(r+1))2 = 1
2c2(r+1)2 . This means that a non-problematic edge remains in H ′ with probability at least

1
2c2(r+1)2 , so by linearity of expectation, the expected number of edges in H ′ is at least 1

2c2(r+1)2 times the

number of non-problematic edges in H. Therefore, for some run of the experiment we have that H ′ contains
at least

m− cn
2c2(r + 1)2
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edges. Since H ′ is a depth-r minor of G, we have that this number divided n is not larger than ∇r(G), which
implies

m

n
≤ 2c2(r + 1)2∇r(G) + c.

This concludes the proof.
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