Sparsity — tutorial 1

Measuring sparsity

Problem 4. Let G be an n-vertex graph with $K_t \not\preccurlyeq G$. Prove that G has at most $2^t \cdot n$ edges.

The solution of the above exercise has been added to the lecture notes.

Problem 10. Suppose \mathcal{C} is a class of bounded expansion. Prove that for every $r \in \mathbb{N}$ there exists a constant c_r such that the following holds. For every graph $G \in \mathcal{C}$ and every subset A of its vertices, there exists a vertex subset $B \supseteq A$ such that $|B| \leq c_r |A|$ and for every vertex $u \in V(G) - B$, at most c_r vertices of B can be reached from u by a path of length at most r whose internal vertices do not belong to B.

Solution. We first introduce some convenient notation. For any graph H, any set $X \subseteq V(H)$ and any $u \in V(H) - X$, the set of vertices of X which can be reached from u by a path of length at most r whose internal vertices do not belong to X will be called the r-projection of u onto X in H, and denoted by $M_r^H(u,X)$. Thus, we need to prove that there is some superset $B \supseteq A$ whose size is bounded linearly in |A|, and such that r-projections onto B have bounded sizes.

Let us fix the constant $\xi = [2\nabla_{r-1}(\mathcal{C})]$. We consider the following iterative procedure.

- 1. Start with H = G and Y = A. We will maintain the invariant that $Y \subseteq V(H)$.
- 2. As long as there exists a vertex $u \in V(H) Y$ with $|M_r^H(u, Y)| \ge \xi$ do the following:
 - Select an arbitrary subset $Z_u \subseteq M_r^H(u, Y)$ of size exactly ξ .
 - For each $w \in Z_u$, select a path P_w that starts at u, ends at w, has length at most r, and all its internal vertices are in V(H) Y.
 - Modify H by contracting $\bigcup_{w \in Z_u} (V(P_w) \{w\})$ onto u, and add the obtained vertex to Y.

Observe that in a round of the procedure above we always make a contraction of a connected subgraph of H-Y of radius at most r-1. Also, the resulting vertex falls into Y and hence does not participate in future contractions. Thus, at each point H is an (r-1)-shallow minor of G. For any moment of the procedure and any $u \in V(H)$, by $\tau(u)$ we denote the subset of original vertices of G that were contracted onto u during earlier rounds. Note that either $\tau(u) = \{u\}$ when u is an original vertex of G, or $\tau(u)$ is a set of cardinality at most $1 + (r-1)\xi$.

We claim that the presented procedure stops after at most |A| rounds. Suppose otherwise, that we successfully constructed the graph H and subset Y after |A| + 1 rounds. Examine graph H[Y]. This graph has 2|A| + 1 vertices: |A| original vertices of A and |A| + 1 vertices that were added during the procedure. Whenever a vertex u is added to Y after contraction, then it introduces at least ξ new edges to H[Y]: these are edges that connect the contracted vertex with the vertices of Z_u . Hence, H[Y] has at least $\xi(|A| + 1)$ edges, which means that

$$\frac{|E(H[Y])|}{|V(H[Y])|} \ge \frac{\xi(|A|+1)}{2|A|+1} > \nabla_{r-1}(\mathcal{C}).$$

This is a contradiction with the fact that H is an (r-1)-shallow minor of G.

Therefore, the procedure stops after at most |A| rounds producing (H,Y), where $|M_r^H(u,Y)| < \xi$ for each $u \in V(H) - Y$. Define $B = \tau(Y) = \bigcup_{u \in Y} \tau(u)$. Obviously, we have $A \subseteq B$. Since $|\tau(u)| = 1$ for each original vertex $u \in A$ and $|\tau(u)| \le 1 + (r-1)\xi$ for each u that was added during the procedure, we have $|B| \le ((r-1)\xi + 2) \cdot |A|$. We are left with proving that r-projections are small.

By construction, we have V(H)-Y=V(G)-B. Take any $u\in V(H)-Y$ and observe that $M_r^G(u,B)\subseteq \tau(M_r^H(u,Y))$. Since $|M_r^H(u,Y)|<\xi$ for each $u\in V(H)-Y$ and $|\tau(u)|\leqslant 1+(r-1)\xi$ for each $u\in V(H)$, we have $|M_r^G(u,B)|\leqslant \xi(1+(r-1)\xi)$. Hence, we may conclude by defining $c_r=\xi((r-1)\xi+2)$.