Sparsity — tutorial 1

Measuring sparsity

Problem 4. Let G be an n-vertex graph with K; £ G. Prove that G has at most 2¢ - n edges.
The solution of the above exercise has been added to the lecture notes.

Problem 10. Suppose C is a class of bounded expansion. Prove that for every r € N there exists a
constant ¢, such that the following holds. For every graph G € C and every subset A of its vertices,
there exists a vertex subset B O A such that |B| < ¢;|A| and for every vertex u € V(G) — B, at
most ¢, vertices of B can be reached from u by a path of length at most » whose internal vertices
do not belong to B.

Solution. We first introduce some convenient notation. For any graph H, any set X C V(H) and
any u € V(H) — X, the set of vertices of X which can be reached from u by a path of length at
most r whose internal vertices do not belong to X will be called the r-projection of u onto X in
H, and denoted by MH (u, X). Thus, we need to prove that there is some superset B O A whose
size is bounded linearly in |A|, and such that r-projections onto B have bounded sizes.

Let us fix the constant £ = [2V,_1(C)]. We consider the following iterative procedure.

1. Start with H = G and Y = A. We will maintain the invariant that Y C V(H).
2. As long as there exists a vertex u € V(H) — Y with |MH (u,Y)| > € do the following:

e Select an arbitrary subset Z, C M (u,Y) of size exactly €.

e For each w € Z,, select a path P, that starts at u, ends at w, has length at most r, and
all its internal vertices are in V(H) — Y.

e Modify H by contracting U,cz,(V(Py) — {w}) onto u, and add the obtained vertex
to Y.

Observe that in a round of the procedure above we always make a contraction of a connected
subgraph of H — Y of radius at most » — 1. Also, the resulting vertex falls into Y and hence does
not participate in future contractions. Thus, at each point H is an (r — 1)-shallow minor of G. For
any moment of the procedure and any u € V(H), by 7(u) we denote the subset of original vertices
of G that were contracted onto u during earlier rounds. Note that either 7(u) = {u} when v is an
original vertex of G, or 7(u) is a set of cardinality at most 1+ (r — 1)¢&.

We claim that the presented procedure stops after at most |A| rounds. Suppose otherwise, that
we successfully constructed the graph H and subset Y after |A| + 1 rounds. Examine graph H[Y].
This graph has 2|A| 4+ 1 vertices: |A| original vertices of A and |A| 4 1 vertices that were added
during the procedure. Whenever a vertex u is added to Y after contraction, then it introduces at
least € new edges to H[Y]: these are edges that connect the contracted vertex with the vertices
of Z,. Hence, H[Y] has at least {(]A| + 1) edges, which means that
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This is a contradiction with the fact that H is an (r — 1)-shallow minor of G.



Therefore, the procedure stops after at most |A| rounds producing (H,Y), where | M7 (u,Y)| < &
for each v € V(H)—Y. Define B = 7(Y') = U,ey 7(u). Obviously, we have A C B. Since |7(u)| =1
for each original vertex u € A and |7(u)] < 1+ (r — 1)§ for each u that was added during the
procedure, we have |B| < ((r —1)§ +2) - |A|. We are left with proving that r-projections are small.

By construction, we have V(H) =Y = V(G) — B. Take any u € V(H) — Y and observe that
ME (u, B) C (M (u,Y)). Since |MH (u,Y)| < £ for each u € V(H) — Y and |7(u)] < 14 (r —1)¢
for each u € V(H), we have |M%(u, B)| < £(1 4 (r — 1)¢). Hence, we may conclude by defining
e = E((r — DE+2). O



