
Sparsity — tutorial 8
Uniform quasi-wideness

Definition 1. A class of graph C is called uniformly wide if there is a function N : N × N → N such that
for all m, r ∈ N , G ∈ C and A ⊆ V (G) with |A| ­ N(m, r) there exists B ⊆ A with |B| ­ m such that B is
r-independent.

Problem 1. Prove that a class C of graphs is uniformly wide if and only if C is a class of bounded degree,
i.e., there is a number d such that the maximum degree ∆(G) of every G ∈ C is bounded by d.

Problem 2. Prove that every class of bounded expansion is uniformly quasi-wide.

Definition 2. Let F be a family of subsets of some universe U . A chain in F is a family H ⊆ F such that
for all X,Y ∈ H, we have either X ⊆ Y or Y ⊆ X. The depth of F is the cardinality of the longest chain
in F . The intersection closure of F is the family of all sets of the form X1 ∩X2 ∩ . . . ∩Xn for some n ∈ N
and X1, X2, . . . , Xn ∈ F . For n = 0 we assume by convention that the intersection of an empty sequence of
sets is equal to U , thus the intersection closure always contains the universe U .

Definition 3. Let G be an undirected graph and r ∈ N. The r-neighborhood depth of G, denoted depthr(G),
is the depth of the intersection closure of the family {Nr[u] : u ∈ V (G)}. We say that a graph class C has
bounded neighborhood depth if there is a function f : N→ N such that for all G ∈ C we have depthr(G) ¬ f(r).

Problem 3. Let G be a graph and r ∈ N. Show that depthr(G) is the largest number ` ∈ N for which there
exist vertices d1, . . . , d`−1 and v1, . . . , v`−1 in G such that for all 1 ¬ j < i < `, di does not r-dominate vi,
and di r-dominates vj (see Figure 1).

Rysunek 1: The case ` = 6 in Lemma 3. Solid edges indicate distance at most r, dashed edges indicate
distance at least r + 1, a lack of an edge allows both possibilities.

Problem 4. Prove that every nowhere dense graph class has bounded neighborhood depth.

Definition 4. For vertices u and v, we say that u r-dominates v if their mutual distance is at most r. More
generally, a set of vertices A r-dominates another set of vertices B if every vertex in B is r-dominated by
some vertex of A.

Problem 5. Consider the following algorithm for the distance-r dominating set problem. The algorithm
maintains two sets: D,S ⊂ V (G). Initially, both are empty, and at each moment, D will have at most k
elements. The algorithm proceeds in rounds, each consisting of two steps: first the S-step and then the
D-step.
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S-step: Check whether D r-dominates V (G). If so, terminate and output D as an r-dominating
set of size at most k. Otherwise, pick any vertex u which is not r-dominated by D and add it
to S.

D-step: Check whether some set of at most k vertices r-dominates S. If so, set D to be any
such set and proceed to the next round. Otherwise, terminate and conclude that there is no
r-dominating set of size at most k.

Let C be a nowhere dense class and let r ∈ N. Prove that for every k ∈ N there is a constant L ∈ N,
depending only on k, r, C and computable from k for fixed r and C, such that the algorithm terminates after
at most L rounds when applied to any G ∈ C and k.
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