Sparsity — tutorial 7

Tree-width DPs, low tree-depth colorings, neighborhood complexity

Definition 1. A tree-decomposition of a graph G is a pair $\mathcal{T} := (T, \beta)$ consisting of a tree T and a function $\beta \colon V(T) \to 2^{V(G)}$ such that (i) for all $v \in V(G)$ the set $\{t \in V(T) \colon v \in \beta(t)\}$ is non-empty and induces a connected subtree of T; and (i) for every edge $e \in E(G)$ there is $t \in V(T)$ with $e \subseteq \beta(t)$. The width of T is $\max\{|\beta(t)|-1: t \in V(T)\}$. The tree-width of G, denoted $\operatorname{tw}(G)$, is defined as the minimal width of any tree-decomposition of G.

Problem 1. Let C be a class of graphs of tree-width at most k. Prove that it can be tested in linear time whether $G \in C$ is 3-colorable.

Problem 2. Let \mathcal{C} be a class of graphs of tree-width at most k and let H be graph. Prove that for every n-vertex graph $G \in \mathcal{C}$ it can be tested in time $f(|H|, k) \cdot n$ whether G contains a subgraph isomorphic to H.

Problem 3. Prove that if a graph admits a *p*-tree-depth coloring with M colors, then it also admits a *p*-centered coloring with $M \cdot p^{\binom{M}{< p}}$ colors.

Definition 2. Fix $r \in \mathbb{N}$, a graph G, and a vertex subset $A \subseteq V(G)$. Let $u \in V(G) - A$ and $a \in A$. A path P connecting u and a is called A-avoiding if all its vertices apart from a do not belong to A. The r-projection profile of a vertex $u \in V(G) - A$ on A is the function $\mu_r[u, A] \colon A \to \{1, \dots, r, \infty\}$ defined as follows: for $a \in A$, the value $\mu_r[u, A](a)$ is the length of a shortest A-avoiding path connecting u and a, or ∞ if this length is larger than r. A function $f \colon A \to \{1, \dots, r, \infty\}$ is realized as an r-projection profile on A if there exists $u \in V(G) - A$ such that $f = \mu_r[u, A]$. The r-projection of u on A is the set of vertices $a \in A$ reachable from u by an A-avoiding path of length at most r, i.e., it is the set $(\mu_r[u, A])^{-1}(\{1, \dots, r\})$.

Problem 4. Prove that for every $r \in \mathbb{N}$, graph G, subset of its vertices $A \subseteq V(G)$, and $u, v \in V(G) - A$, if u and v have the same r-projection profile on A then they also have the same r-neighborhood profile on A.

Problem 5. Prove that for every $r \in \mathbb{N}$ and class \mathcal{C} of bounded expansion there exists a constant c, depending only on \mathcal{C} and r, such that for every $G \in \mathcal{C}$ and nonempty $A \subseteq V(G)$, the number of different functions from A to $\{1, \ldots, r, \infty\}$ realized as r-projection profiles on A is at most $c \cdot |A|$.

In the following exercises we will work out a different proof of the linear bound on the number of different r-neighborhoods in classes of bounded expansion. For this, fix $r \in \mathbb{N}$, class \mathcal{C} , graph $G \in \mathcal{C}$, and $A \subseteq V(G)$.

Problem 6. Reduce the problem to the case where the graph can be partitioned into layers $A = V_0, V_1, \ldots, V_r$, edges in G are only between consecutive layers, and we need to count only the number of different r-neighborhoods of the form $N_G^r[u] \cap A$ for $u \in V_r$.

From now on we focus on the case described in the previous problem. Denote $B := V_r$, and let us fix some 2r-centered coloring λ of G, say with palette Γ of size M. Consider any path P of length r from $u \in B$ to $v \in A$; such paths will be called *straight paths*. The *signature* of a straight path P is the sequence of colors that consecutive vertices of P receive under λ . A signature $\sigma \in \Gamma^r$ is *realized* at a vertex $u \in B$ if there is a straight path with signature σ starting at u.

Problem 7. Reduce to the case where all vertices in B realize exactly the same set of signatures.

From now on we adopt this assumption. For $u \in B$ and signature $\sigma \in \Gamma^r$, by $\Pi^{\sigma}(u)$ we denote the set of those vertices $v \in A$ for which there is a straight path from u to v with signature σ .

Problem 8. Prove that for all $u_1, u_2 \in B$ and $\sigma \in \Gamma^r$, sets $\Pi^{\sigma}(u_1)$ and $\Pi^{\sigma}(u_2)$ are either equal or disjoint.

Problem 9. Prove that for all $u_1, u_2, u_3 \in B$ and $\sigma_1, \sigma_2 \in \Gamma^r$, it cannot be the case that

$$\Pi^{\sigma_1}(u_1) = \Pi^{\sigma_1}(u_2) \neq \Pi^{\sigma_1}(u_3)$$
 and $\Pi^{\sigma_2}(u_1) \neq \Pi^{\sigma_2}(u_2) = \Pi^{\sigma_2}(u_3)$.

Problem 10. Conclude that the number of different r-neighborhoods is linear in the size of A.