
Sparsity — tutorial 7
Tree-width DPs, low tree-depth colorings, neighborhood complexity

Definition 1. A tree-decomposition of a graph G is a pair T := (T, β) consisting of a tree T and a function
β : V (T ) → 2V (G) such that (i) for all v ∈ V (G) the set {t ∈ V (T ) : v ∈ β(t)} is non-empty and induces a
connected subtree of T ; and (i) for every edge e ∈ E(G) there is t ∈ V (T ) with e ⊆ β(t). The width of T
is max{|β(t)| − 1 : t ∈ V (T )}. The tree-width of G, denoted tw(G), is defined as the minimal width of any
tree-decomposition of G.

Problem 1. Let C be a class of graphs of tree-width at most k. Prove that it can be tested in linear time
whether G ∈ C is 3-colorable.

Problem 2. Let C be a class of graphs of tree-width at most k and let H be graph. Prove that for every
n-vertex graph G ∈ C it can be tested in time f(|H|, k) · n whether G contains a subgraph isomorphic to H.

Problem 3. Prove that if a graph admits a p-tree-depth coloring with M colors, then it also admits a
p-centered coloring with M · p(

M
<p) colors.

Definition 2. Fix r ∈ N, a graph G, and a vertex subset A ⊆ V (G). Let u ∈ V (G)−A and a ∈ A. A path P
connecting u and a is called A-avoiding if all its vertices apart from a do not belong to A. The r-projection
profile of a vertex u ∈ V (G) − A on A is the function µr[u,A] : A → {1, . . . , r,∞} defined as follows: for
a ∈ A, the value µr[u,A](a) is the length of a shortest A-avoiding path connecting u and a, or ∞ if this
length is larger than r. A function f : A → {1, . . . , r,∞} is realized as an r-projection profile on A if there
exists u ∈ V (G)−A such that f = µr[u,A]. The r-projection of u on A is the set of vertices a ∈ A reachable
from u by an A-avoiding path of length at most r, i.e., it is the set (µr[u,A])−1({1, . . . , r}).

Problem 4. Prove that for every r ∈ N, graph G, subset of its vertices A ⊆ V (G), and u, v ∈ V (G)−A, if
u and v have the same r-projection profile on A then they also have the same r-neighborhood profile on A.

Problem 5. Prove that for every r ∈ N and class C of bounded expansion there exists a constant c, depending
only on C and r, such that for every G ∈ C and nonempty A ⊆ V (G), the number of different functions from
A to {1, . . . , r,∞} realized as r-projection profiles on A is at most c · |A|.

In the following exercises we will work out a different proof of the linear bound on the number of different
r-neighborhoods in classes of bounded expansion. For this, fix r ∈ N, class C, graph G ∈ C, and A ⊆ V (G).

Problem 6. Reduce the problem to the case where the graph can be partitioned into layersA = V0, V1, . . . , Vr,
edges in G are only between consecutive layers, and we need to count only the number of different r-
neighborhoods of the form Nr

G[u] ∩A for u ∈ Vr.

From now on we focus on the case described in the previous problem. Denote B := Vr, and let us fix
some 2r-centered coloring λ of G, say with palette Γ of size M . Consider any path P of length r from u ∈ B
to v ∈ A; such paths will be called straight paths. The signature of a straight path P is the sequence of colors
that consecutive vertices of P receive under λ. A signature σ ∈ Γr is realized at a vertex u ∈ B if there is a
straight path with signature σ starting at u.

Problem 7. Reduce to the case where all vertices in B realize exactly the same set of signatures.

From now on we adopt this assumption. For u ∈ B and signature σ ∈ Γr, by Πσ(u) we denote the set of
those vertices v ∈ A for which there is a straight path from u to v with signature σ.

Problem 8. Prove that for all u1, u2 ∈ B and σ ∈ Γr, sets Πσ(u1) and Πσ(u2) are either equal or disjoint.

Problem 9. Prove that for all u1, u2, u3 ∈ B and σ1, σ2 ∈ Γr, it cannot be the case that

Πσ1(u1) = Πσ1(u2) 6= Πσ1(u3) and Πσ2(u1) 6= Πσ2(u2) = Πσ2(u3).

Problem 10. Conclude that the number of different r-neighborhoods is linear in the size of A.
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