Sparsity — tutorial 3

Measuring sparsity

Fact 1. If G is a graph and $r, c \in \mathbb{N}$, then

$$\nabla_r(G \bullet K_c) \leq 2c^2(r+1)^2 \nabla_r(G) + c.$$

Problem 1. Prove that if a class C is nowhere dense, then for every constant $c \in \mathbb{N}$ the class $C \bullet K_c$ is also nowhere dense.

Problem 2. Suppose \mathcal{C} is a class of bounded expansion. Prove that for every $r \in \mathbb{N}$ there exists a constant c_r such that the following holds. For every graph $G \in \mathcal{C}$ and every its vertex subset $A \subseteq V(G)$, there exists a vertex subset $B \supseteq A$ with the following properties:

- $|B| \leq c_r |A|$, and
- for every pair of vertices $u, v \in A$, if $\operatorname{dist}_G(u, v) \leq r$ then $\operatorname{dist}_{G[B]}(u, v) = \operatorname{dist}_G(u, v)$.

Problem 3. Prove that a d-degenerate n-vertex graph has at most $2^d \cdot n$ cliques.

Problem 4. Suppose G is a graph and $A \subseteq V(G)$ some subset of its vertices. Define the following equivalence relation \sim_A on the vertices of V(G) - A:

$$u \sim_A v$$
 if and only $N[u] \cap A = N[v] \cap A$.

Prove that

- in V(G) A, the number of vertices with at least $2\nabla_0(G)$ neighbors in A is at most |A|; and
- \sim_A has at most $(4^{\nabla_1(G)} + \nabla_1(G)) \cdot |A|$ equivalence classes.

Problem 5. Let G be a graph.

- Suppose that G has 2m edges. Show that there exists a bipartite subgraph $H \subseteq G$ of G with m edges.
- Suppose G has $n > 10^9$ vertices. Use the probabilistic method to prove that there exists a subgraph $H \subseteq G$ of G with m/4 edges and vertex partition $V(H) = A \cup B$ such that $||A| n/2| \le n/100$.
- Assume G has 2n vertices and 2m edges. Show that there exists a bipartite subgraph $H \subseteq G$ of G with m edges and vertex partition $V(H) = A \cup B$ such that |A| = |B|.