Sparsity — tutorial 15

To the infinite

Problem 1. Describe the following ultraproducts:

- For a fixed graph H, describe $\prod_{\mathcal{U}} H$.
- Describe $\prod_{\mathcal{U}} K_n$.

Conclude that $\mathcal{C} \subseteq \mathcal{C}^*$ for every class \mathcal{C} .

Problem 2. Prove that if C is somewhere dense, then $K_{2^{\omega}} \in C^* \nabla \omega$.

Problem 3. Prove that if \mathcal{C} has bounded degree, then \mathcal{C}^* also has bounded degree. Prove that if \mathcal{C} has bounded treedepth, then \mathcal{C}^* also has bounded treedepth.

Problem 4. Prove that if C is topologically nowhere dense, then C^* is limit topologically nowhere dense.

Problem 5. Prove the infinite Ramsey's theorem: If G is a graph on infinitely many vertices, then G contains either an infinite clique or an infinite independent set.

Problem 6. Infer the finite Ramsey's theorem from the infinite one using the method of ultraproducts.

Problem 7. Suppose H is a bipartite graph with sides of the bipartition A and B. Suppose further that A is infinite and every vertex in B has a finite degree. Prove that one of the following conditions holds:

- A contains an infinite subset of vertices that pairwise have no common neighbors; or
- H admits K_{ω} as a 1-shallow minor.

Definition 1. Class C is *limit uniformly quasi-wide* if for every $r \in \omega$, every graph $G \in C$, and infinite subset of vertices $A \subseteq V(G)$, there exists a finite set $S \subseteq V(G)$ and an infinite set $B \subseteq A - S$ that is r-independent in G - S.

Problem 8. Prove that every class of graphs is limit nowhere dense class if and only if it is limit uniformly quasi-wide.