Sparsity — tutorial 1

Measuring sparsity

Problem 1. Prove that a graph is 1-degenerate if and only if it is a forest.

Problem 2. Prove that every d-degenerate graph is (d+1)-colorable.

Problem 3. Prove that every planar graph is 5-degenerate.

Problem 4. Let G be an n-vertex graph with $K_t \not\preccurlyeq G$. Prove that G has at most $2^t \cdot n$ edges.

Problem 5. Prove that for a graph class \mathcal{C} , the following conditions are equivalent:

- There is a constant $c \in \mathbb{N}$ such that $\nabla_r(\mathcal{C}) \leqslant c$ for all $r \in \mathbb{N}$.
- There is a graph H such that H is not a minor of any graph from C.

Problem 6. Prove that every graph on 2^{a+b} vertices contains either a clique of size a or an independent set of size b. Conclude that there is a function N(p,k) such that every complete graph on N(p,k) vertices with edges colored with p colors contains a monochromatic clique on k vertices.

Problem 7. Prove that the following statements for a graph class \mathcal{C} are equivalent:

- The class \mathcal{C} is somewhere dense.
- There is $r \in \mathbb{N}$ such that for every $n \in \mathbb{N}$, the r-subdivision of K_n is a subgraph of some graph from C.

Problem 8. Prove that if G is an n-vertex graph of degeneracy d, then for every $c \in \mathbb{N}$ the graph G contains at most n/c vertices of degree at least 2cd.

Problem 9. Prove that if G is a graph of degeneracy d and A is a subset of its vertices, then there exists a vertex subset $B \supseteq A$ such that $|B| \le 2|A|$ and every vertex of V(G) - B has at most 2d neighbors in B.

Problem 10. Suppose \mathcal{C} is a class of bounded expansion. Prove that for every $r \in \mathbb{N}$ there exists a constant c_r such that the following holds. For every graph $G \in \mathcal{C}$ and every subset A of its vertices, there exists a vertex subset $B \supseteq A$ such that $|B| \leqslant c_r |A|$ and for every vertex $u \in V(G) - B$, at most c_r vertices of B can be reached from u by a path of length at most r whose internal vertices do not belong to B.