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In this last lecture we will explore basics of the sparsity theory in infinite graphs. We will
also show how to obtain results for finite graphs from results for infinite graphs via a set-theoretic
construction of ultraproducts, which enables easy translation between finite and infinite.

1 Ultrafilter and ultraproducts

Ultrafilters. Throghout this lecture we denote ω = N = {0, 1, 2, . . .}.

Definition 1. An ultrafilter on ω is any family U of subsets of ω satisfying the following conditions:

(a) ∅ /∈ U ;

(b) if X ⊆ Y ⊆ ω and X ∈ U , then also Y ∈ U ;

(c) if X,Y ∈ U then X ∩ Y ∈ U ; and

(d) for each X ⊆ ω, either X or ω −X belongs to U .

One may view an ultrafilter U on ω also as a {0, 1}-measure on ω. Each subset of ω is considered
either large (belongs to U) or small (does not belong to U). Then the conditions are natural: empty
set is small, a superset of a large set is also large, the intersection of two large sets is large as well,
and for each set, either this set or its complement is large. Observe that converse conditions for
small sets hold: a subset of a small set is small and the union of two small sets is small.

It is very easy to give a trivial example of an ultrafilter U on ω: take any number i ∈ ω and
declare a set X ⊆ ω large if i ∈ X. Such ultrafilters are called principal and will not be interesting
for us. Conversely, an ultrafilter is non-principal if every singleton set does not belong to it (is
small). Note that this entails that every finite set is small.

Lemma 1. There exists a non-principal ultrafilter on ω.

Proof. Consider the set of all non-principal filters on ω, that is, families of subsets of ω which satisfy
conditions (a)–(c) and contain all co-finite sets, i.e., sets that lack only finitely many elements
from ω. Note that this set is nonempty, because just the family of co-finite sets is a filter. Also,
observe that by conditions (a) and (c), a non-principal filter does not contain any finite set.

Order non-principal filters by inclusion and observe that for any inclusion chain of non-principal
filters, their union is also a non-principal filter. By Zorn’s lemma, among non-principal filters there
exists an inclusion-wise maximal one, say U .

We now prove that U is an ultrafilter. Take any X ⊆ ω and for the sake of contradiction suppose
neither X nor ω −X belongs to U . At most one of X and ω −X is finite; suppose w.l.o.g. that X
is infinite. Consider a family W of subsets of ω obtained by taking all sets of the form X ∩ Y for
Y ∈ U and their supersets. Clearly U ⊆ W and X ∈ W, so in fact U ( W. We check that W is
a non-principal filter, which contradicts the maximality of U . Closure under taking supersets and
under taking intersections (conditions (b) and (c)) is obvious. We are left with condition (a), so
suppose U contains some set Y that is disjoint with X. Then ω −X is a superset of Y , so by (b)
we have ω −X ∈ U , a contradiction.
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From now on we fix some non-principal ultrafilter U on ω and whenever we say large or small,
we measure it with respect to U .

Ultraproducts. Now, using the fixed ultrafilter U we define limits of sequences of graphs. Sup-
pose G0, G1, G2, . . . is a sequence of graphs, and for convenience denote Vn = V (Gn). Consider the
set
∏

n∈ω Vn, that is, the set of all sequences of vertices where the nth vertex is taken from the nth
graph. Consider the following relation ∼ on

∏
n∈ω Vn:

(u0, u1, u2, . . .) ∼ (v0, v1, v2, . . .) if and only if {n : un = vn} ∈ U .

In other words, two sequences of vertices are ∼-equivalent if and only if the set of indices on which
they differ is small with respect to U . Note that ∼ is an equivalence relation: if (u0, u1, u2, . . .)
differs from (v0, v1, v2, . . .) on a small set of indices, and (v0, v1, v2, . . .) differs from (w0, w1, w2, . . .)
on a small set of indices, then (u0, u1, u2, . . .) differs from (w0, w1, w2, . . .) on a small set of indices,
because the union of two small sets is small. Define∏

U
Vn :=

∏
n∈ω

Vn

/
∼ .

In other words,
∏
U Vn comprises equivalence classes of ∼. We think of elements of

∏
U Vn as of

sequences of vertices from consecutive graphs Gn, defined up to perturbation on a small set. For
u ∈

∏
n∈ω Vn, let [u] ∈

∏
U Vn be its equivalence class in ∼.

The set
∏
U Vn will be the vertex set of the ultraproduct

∏
U Gn; it remains to define the adjacency

relation. Take any two sequences u = (u0, u1, u2, . . .) and v = (v0, v1, v2, . . .), representing two
vertices [u], [v] ∈

∏
U Vn. We make vertices [u] and [v] adjacent in

∏
U Gn if and only if the

following condition holds:
{n : unvn ∈ E(Gn)} ∈ U .

In other words, the edge between un and vn should be present in Gn for a large set of indices n. Note
that this definition does not depend on the choice of representatives u and v, as representatives
differ from each other only on small sets.

 Loś’ theorem. We now give a basic theorem for translation of properties from a sequence of
graphs to their ultraproduct.

Theorem 2 ( Loś’ Theorem). Let ϕ(x1, . . . , xk) be a first-order formula over graphs and G0, G1, G2, . . .
be graphs. Suppose u1, . . . ,uk ∈

∏
n∈ω Vn. Then the following conditions are equivalent:

• ϕ([u1], . . . , [uk]) holds in
∏
U Gn; and

• the set of indices n for which ϕ(u1n, . . . , u
k
n) holds in Gn is large with respect to U .

Proof. We proceed by induction on the structure of the formula. When ϕ is an atom E(x, y),
where E is the binary predicate denoting adjacency, then the claim follows immediately from the
definition of the ultraproduct.

Suppose ϕ(x1, . . . , xk) = ψ1(x
1, . . . , xk) ∧ ψ2(x

1, . . . , xk). For t = 1, 2, let It be the set of those
indices n for which ψt(u

1
n, . . . , u

k
n) holds in Gn. By induction hypothesis, ψt([u

1], . . . , [uk]) holds
in
∏
U Gn if and only if It is large. Observe that the set of indices i for which ϕ(u1n, . . . , u

k
n) holds
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in Gn is exactly I1 ∩ I2. Now if ϕ([u1], . . . , [uk]) holds, then I1, I2 are both large and consequently
I1 ∩ I2 is large as well. However, if ϕ([u1], . . . , [uk]) does not hold, then either I1 or I2 is small, and
I1 ∩ I2 is small as well. The case when ϕ(x1, . . . , xk) = ¬ψ(x1, . . . , xk) is analogous.

Finally, suppose ϕ(x1, . . . , xk) = ∃y ψ(x1, . . . , xk, y). If ϕ([u1], . . . , [uk]) holds, then there is
[w] ∈

∏
U Vn such that ψ([u1], . . . , [uk], [w]) holds. By induction hypothesis, ψ(u1n, . . . , u

k
n, wn) holds

for a large set of indices n, implying that so does ϕ(u1n, . . . , u
k
n) — vertices wn serve as witnesses

for existential quantification. Conversely, if ϕ(u1n, . . . , u
k
n) holds for a large set of indices I, then

for indices n ∈ I we may find wn ∈ Vn such that ψ(u1n, . . . , u
k
n, wn). Setting w = (w0, w1, w2, . . .),

where wn is set in any way for n /∈ I, by induction hypothesis we infer that ψ([u1], . . . , [uk], [w])
holds in

∏
U Gn, and hence ϕ([u1], . . . , [uk]) holds as well.

2 Sparsity for infinite graphs

Observe that notions of depth-r minors and depth-r topological minors work equally well for (pos-
sibly) infinite graphs. Recall that for a class C and r ∈ ω, by COr we denote the set of all depth-r
minors of graphs from C. Let us define

COω :=
⋃
r∈ω
COr.

In other words, COω comprises graphs that can be observed as depth-r minors of graphs from C
for some fixed finite depth r. Replacing depth-r minors with depth-r topological minors, we define
COtr and COtω in the same way.

Note that if C consists only of finite graphs, then COω is simply the closure of C under taking
minors. However, when C contains infinite graphs then this is not necessarily the case. This is
because it may be that some infinite graph H is a minor of a graph G ∈ C, but all minor models
do not have uniformly bounded radius; in this case H is not included in COω.

Let Kω be the complete graph on ω vertices.

Definition 2. A class of (possibly infinite) graphs C is limit nowhere dense if Kω /∈ COω. Similarly,
C is limit topologically nowhere dense if Kω /∈ COtω.

Note that in the above definition there are no annoying radii, parameters, or functions. This is
the main advantage of going to the infinite setting.

We would now like to connect nowhere denseness for classes of finite graphs and limit nowhere
denseness for infinite graphs. To this end we use ultraproducts.

Definition 3. Let C be a class of finite graphs. Then define the limit class C? as follows:

C? :=

{∏
U
Gn : G0, G1, G2, . . . ∈ C

}
.

In other words, C? comprises all ultraproducts of sequences of graphs from C.

Lemma 3. A class of finite graphs C is nowhere dense if and only if C? is limit nowhere dense.

Proof. Suppose first C is nowhere dense. Observe that for all t, r ∈ ω there is a first-order sentence
ϕt,r that, when applied to a graph G, verifies whether Kt is a depth-r minor of G. Indeed, a depth-r
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minor model of Kt can be assumed to use at most rt2 vertices, hence the question whether Kt is
a depth-r minor of G boils down to asking whether G admits one of a finite list of subgraphs on
at most rt2 vertices; then ϕt,r makes a disjunction over these subgraphs. From  Loś’ Theorem we
infer that if Kt /∈ COr, then also Kt /∈ C?Or. This implies that if C is nowhere dense, then for every
r ∈ ω there is a finite bound on the sizes of cliques that can be found as depth-r minors of graphs
from C?. In particular, Kω /∈ C?Oω.

Suppose now C is somewhere dense. This means that there is r ∈ ω and a sequence of graphs
G0, G1, G2, . . . from C such that Kn is a depth-r minor of Gn, for all n ∈ ω. For each n ∈ ω, fix a
depth-r minor model φn of Kn in Gn. We may assume that each branch set φn(i) is a tree of depth
at most r rooted at a vertex cin, formed by the union of n− 1 paths connecting cin with connection
points to other branch sets. Let

cin = ui,j,0n , ui,j,1n , . . . , ui,j,rn

be the vertices on the path within φn(i) connecting cin with the connection point to φn(j), where
we put ui,j,tn = ui,j,t+1

n for some t in case this path is shorter than r.
Now, for each i, j ∈ ω with i 6= j and t ∈ {0, 1, . . . , r} consider the sequence

ui,j,t := (ui,j,tn )n∈ω.

where we put arbitrary vertices as ui,j,tn when n < i or n < j. Similarly define the sequence

ci := (cin)n∈ω.

Observe that the following assertions hold whenever i, j, i′, j′ 6 n:

• ui,j,0n = cin;

• ui,j,tn is either equal or adjacent to ui,j,t+1
n , for all t ∈ {0, 1 . . . , r − 1};

• ui,j,rn is adjacent to uj,i,rn ; and

• ui,j,tn is different from ui
′,j′,t′
n whenever i 6= i′.

All the above properties are expressible in first-order logic, and for fixed i, j, i′, j′ they do not hold
only for a finite number of indices n — which is a small set w.r.t. U . Hence, by  Loś’ Theorem
we infer that they also hold for vertices ui,j,t and ci in

∏
U Gn. It now immediately follows that

vertices ui,j,t and ci for i, j ∈ ω, i 6= j, form a depth-r minor model of Kω in
∏
U Gn.

Recall that a class C of finite graphs is topologically nowhere dense if for every r ∈ ω there
exists a number t(r) such that no graph from C admits Kt(r) as a depth-r topological minor. A
very similar reasoning yields the following.

Lemma 4. A class of finite graphs C is topologically nowhere dense if and only if C? is limit
topologically nowhere dense.

In the first lectures we have proved that nowhere denseness is equivalent to topological nowhere
denseness. We will now reprove this fact by going to the infinite setting By Lemmas 3 and 4, it
suffices to prove the following statement; note that it does not involve any ultraproducts, it is a
statement purely about classes of infinite graphs.

Lemma 5. A graph class C is limit nowhere dense if and only if it is limit topologically nowhere dense.
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Proof. The left-to-right implication is obvious: a depth-r topological minor is also a depth-r minor.
For the second implication, suppose C is not limit nowhere dense. This means that for some

r ∈ ω there is a depth-r minor model φ of Kω in some graph G ∈ C. Thus, for each i ∈ ω, the
branch set φ(i) is a subgraph of G of radius at most r, and subgraphs φ(i) are pairwise disjoint
and pairwise adjacent. For each j 6= i there is some vertex uj,i in φ(j) that is adjacent to a vertex
ui,j in φ(i). Let φ(i) be φ(i) augmented by adding uj,i together with the edge uj,iui,j , for all j 6= i.
By removing unnecessary vertices and edges, we may assume that each φ(i) is a tree of depth at
most r + 1 rooted at a vertex ci, whose leaves are exactly vertices uj,i for j 6= i.

Since φ(i) is a rooted tree of finite depth and infinitely many leaves, we may find a vertex `i in
φ(i) that has infinitely many children. For each child w of `i in φ(i), arbitrarily select j ∈ ω such
that the leaf uj,i is a descendant of w. Call all indices j defined in this way buddies of i. Thus,
every index i has infinitely many buddies j 6= i.

We now define a depth-(3r + 1) topological minor of Kω in G by induction. Start with the
empty model, and during the induction maintain the following invariant: after the nth step we
have defined a depth-(3r + 1) topological minor model ψn of Kn whose every principal vertex is
equal to `i for some i ∈ ω. In the inductive step we extend ψn−1 to ψn as follows. Note that ψn−1
involves only a finite number of vertices, so there exist some m ∈ ω such that φ(m) is disjoint with
the model ψn−1. We start defining ψn from ψn−1 by mapping n to `m.

Now, for consecutive j = 1, . . . , n we show how to find a suitable path for the image of the edge
jn. Let k be such that ψ(j) = `k. Observe that m has infinitely many buddies and j has infinitely
many buddies, and only finitely many branch sets of φ intersect the model ψn so far. Hence we
may find a buddy x of j and a buddy y of n such that φ(x) and φ(y) do not intersect the model
ψn. Define path Pjn as follows: starting from `m go to um,x within φ(m), then proceed to ux,m,
then travel within φ(x) to ux,y, then proceed to uy,x, then travel within φ(y) to uy,k, then proceed
to uk,y, and finally go from uk,y to `k within φ(k). This path has length at most 6r + 3, which is
allowed in a depth-(3r + 1) topological minor model. Since we picked buddies whose branch sets
were disjoint with the current model, it is easy to see that the path Pjn is internally disjoint with
all the other paths present in the current model. Hence we may set ψ(jn) to be Pjn and proceed
to the next index j.

Thus, we have inductively defined a depth-(3r+ 1) topological minor model of Kω in G, which
means that C is not limit topologically nowhere dense.

As we argued, the combination of Lemmas 3, 4, and 5 gives an indirect way of obtaining
equivalence of nowhere denseness and topological nowhere denseness for classes of finite graphs.
Taking apart the quite straightforward translation using  Loś’ theorem, the proof relies on essen-
tially the same combinatorial idea but is conceptually somewhat easier. Namely, instead of using
multiple numerical parameters that need to be weighted against each other in the proof, we re-
place every intuitive occurrence of “large” with formal “infinite” and every intuitive occurrence of
“small” with “finite”. The same methodology can be used to rework the proofs of other statements
concerning nowhere dense classes, for example the equivalence of nowhere denseness and uniform
quasi-wideness, or the equivalence of nowhere denseness and the existence of a winning strategy for
Splitter in the Splitter game.
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