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1 Introduction

In this chapter we are going to study important restrictions of classes of bounded expansion, namely
classes of polynomial expansion. These are classes C for which there exists a polynomial p(x) such
that ∇r(C) 6 p(r) for all r ∈ N. The degree of p(r) is the order of the class.

Let ωr(C) denote the size of the largest clique that can be found as a depth-r minor of a graph
from C. We defined nowhere dense classes by bounding ωr(C) for all r ∈ N, while bounded expansion
classes were defined by bounding ∇r(C) for all r ∈ N. Recall that this led to two different notions:
there are classes that are nowhere dense but have unbounded expansion. Quite surprisingly, in
the setting of polynomial expansion we can equivalently work with ωr(C) instead of ∇r(C). More
precisely, we will prove that there exists a polynomial p(x) such that ∇r(C) 6 p(r) for all r ∈ N if
and only if there exists a polynomial q(x) such that ωr(C) 6 q(r) for all r ∈ N, in which case we
say that C has polynomial ω-expansion.

Recall again that in the setting of bounded expansion and nowhere denseness we could equiva-
lently work with shallow minors and shallow topological minors, as∇r(C) and ∇̃r(C) are functionally
equivalent. However, the upper bound on ∇r(C) in terms of ∇̃r(C) had r in the exponent, so this
equivalence does not carry over to the setting of polynomial expansion. Indeed, consider the fol-
lowing example. For any fixed integer d > 3 the class Cd of all graphs of maximum degree d satisfies
∇̃r(Cd) 6 d for all r ∈ N, while it is not hard to prove (say using expanders as examples) that
∇r(Cd) grows exponentially with r.

One of the very useful properties of graph classes with polynomial expansion is the existence
of small (sublinear in the graph size) separators. If the class under consideration is closed under
taking induced subgraphs we can repeatedly apply the separator theorem to devise efficient divide
and conquer algorithms. We have already seen this principle in action when we studied bounded
treewidth graphs, which admit balanced separators of constant size We are going to use the sepa-
rator properties to devise a polynomial-time approximation scheme (PTAS) for the r-Dominating
Set problem on such classes.

2 Polynomial expansion and strongly sublinear separators

A separation in a graph G is a pair (A,B) of subsets of V (G) such that A∪B = V (G) and there is
no edge between a vertex of A−B and a vertex of B−A. The set A∩B is called the separator of the
separation and the order of the separator is |A∩B|. A separation is balanced if |A−B| 6 2

3 |V (G)|
and |B −A| 6 2

3 |V (G)|. For a graph class C and n ∈ N, let sC(n) be the smallest integer such that
every graph in C with at most n vertices admits a balanced separation of order at most sC(n). We
say that the class C has strongly sublinear separators if there exists c > 1 and 0 < δ 6 1 such that

sC(n) 6 c · n1−δ for every n > 1.

Our first result shows that graphs with polynomial ω-expansion admit strongly sublinear separators.
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Theorem 1. Let G be a graph with n vertices and m edges and let `, h be positive integers. There
exists an O(nm)-time algorithm that finds either a complete graph Kh as a depth-(` log n) minor
of G or a balanced separation of order at most O(n/`+ `h2 log n) in G.

Before we prove the theorem, let us see how to derive the desired strongly sublinear bounds for
classes of polynomial ω-expansion.

Corollary 2. Let G be an n-vertex graph from a class with polynomial expansion; more precisely,
assume there are constants d > 0 and c > 1 such that for all r ∈ N we have ωr(G) 6 c(r + 1)d.
Let δ = 1

4d+3 . Then G admits a balanced separator of order O(n1−δ). Furthermore, there exists an
algorithm that computes such a balanced separator of G in time O(mn), where m = |E(G)|.

Proof. For r ∈ N, let f(r) := c(r + 1)d. We would like to find functions ` : N → N and h : N → N
satisfying the following two conditions:

(i) f(`(n) log n) < h(n) for sufficiently large n; and

(ii) O(n/`+ `h2 log n) = O(n1−δ).

By the assumptions on the expansion properties of G, condition (i) entails that that Kh is not a
depth-(` log n) minor of G. Hence, when applying Theorem 1 to G with ` = `(n) and h = h(n),
we can conclude that G has a balanced separator of order O(n/` + `h2 log n). Condition (ii) then
implies that this is a balanced separator of size O(n1−δ), which can be computed in time O(nm).

We claim that functions `(n) =
⌈
nδ
⌉

and h(n) =
⌈
n1/4−δ/2

⌉
satisfy these conditions. We have

f(`(n) · log n) = c
(⌈
nδ
⌉
· log n+ 1

)d
∈ O

(
ndδ logd n

)
.

Now recall that δ = 1/(4d+3). We hence have 1/(4d+2) > δ, which is equivalent to 1/4−δ/2 > dδ.
This implies condition (i). For condition (ii), observe that

O(n/`+ `h2 log n) = O(n1−δ + n1/2 log n) = O(n1−δ).

We now come to the proof of Theorem 1. We need one more lemma, which states in a connected
graph we may either find a spanning tree of logarithmic depth, or find a roughly balanced separation.
For an integer i > 0 and a set of vertices S, by Ni[S] we denote the set of vertices at distance at
most i from S; in particular Ni[S] ⊇ S.

Lemma 3. Let G be an n-vertex connected graph and let ` > 1 be an integer. Then either

(1) G admits a spanning tree of depth at most d4` log ne+ 2, or

(2) there exists S ⊆ V (G) satisfying the following conditions:

(2a) |N1[S]− S| 6 |S|/` and

(2b) |N1[S]− S| 6 |S|/`, where S = V (G)− S.

Moreover, given G one of the outcomes can be computed in time O(m), where m = |E(G)|.
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Proof. Denote V = V (G). Fix an arbitrary vertex v ∈ V and run breadth-first search from v.
If this breadth-first search discovered that all vertices of G are at distance at most 4d` log ne + 2
from v, then output the corresponding spanning tree of depth at most 4d` log ne+ 2 as output (1).

Suppose otherwise. Let p = 2d` log ne. For each i > 0 let Ri = N2i[v] and let Qi = Ri+1 − Ri.
In other words, we have R0 = {v}, Ri+1 = N2[Ri], and Qi = N2[Ri] − Ri. Note that R0 ⊆ R1 ⊆
R2 ⊆ . . .. Observe that by the assumption that the depth of the breadth-first search from v is
larger than 2p+ 2, we have that sets Qi for all 0 6 i 6 p are non-empty and Rp+1 6= V .

Let an index i ∈ {0, . . . , p} be a forward leap if the following condition holds:

|Qi| > |Ri|/`.

Note that this is equivalent to
|Ri+1| > (1 + 1/`)|Ri|.

Observe that if among indices i from {0, . . . , p} we have k forward leaps, then

|Rp+1| > (1 + 1/`)k > 2k/`,

where the last inequality follows from (1 + 1/`)` > 2. Consqeuently, if we had k > ` log n, then
|Rp+1| > n, a contradiction. Hence, there are at most ` log n = p/2 forward leaps.

Similarly, call an index i ∈ {0, . . . , p} a backward leap if

|Qi| > |V −Ri+1|/`,

or equivalently
|V −Ri| > (1 + 1/`)|V −Ri+1|

Since Rp+1 6= V , a symmetric reasoning shows that there are at most ` log n = p/2 backward leaps,
for otherwise we would have |V −R0| > n.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

S

Figure 1: Situation for p = 10. Each set Qj consists of two consecutive layers of the breadth-first
search from v. Example forward and backward leaps are depicted in blue and red, respectively.
Index 5 is the only one that is neither a forward nor a backward leap, hence we set S (light yellow)
to be Q0 ∪Q1 ∪ . . . ∪Q4 plus the first BFS layer from Q5.

Now there are p+ 1 indices in {0, . . . , p}, out of which there are at most p/2 forward leaps and
at most p/2 backward leaps. Hence, there is an index i that is neither a forward nor a backward
leap; observe that such i can be found in linear time. Set S = N1[Ri]; we now verify that S satisfies
conditions (2a) and (2b), so it can be returned as outcome (2).

We have N1[S] − S = N2[Ri] −N1[Ri] ⊆ Qi. Since |Qi| 6 |Ri|/` due to i not being a forward
leap, we infer that

|N1[S]− S| 6 |Qi| 6 |Ri|/` 6 |S|/`,
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as required. This establishes (2a). Symmetrically, denoting S = V − S, we have N1[S] − S ⊆
N1[Ri]−Ri ⊆ Qi. Since |Qi| 6 |V −Ri+1|/` due to i not being a backward leap, we infer that

|N1[S]− S| 6 |Qi| 6 |V −Ri+1|/` 6 |S|/`.

This establishes (2b).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Denote V = V (G) and p = d4` log ne + 2. Our algorithm will proceed in
rounds maintaining the following objects:

• A depth-p minor model φ of a complete graph Kk for some k < h. We maintain a property
that each branch set of φ consists of at most hp vertices. Denote by M the union of all branch
sets of φ; note that thus |M | < h2p = O(h2` log n).

• A set R disjoint from M and containing at most 2n/3 vertices.

• A set X disjoint from M and R, such that |X| 6 |R|/` and all neighbors of R are contained
in M ∪X.

We start with φ = R = X = ∅. Let us describe each round of the algorithm.
First, we check whether |R| > n/3. If this holds, then set A = R ∪ X ∪M and B = V − R.

Observe that we have A − B = R, B − A = V − (R ∪X ∪M), A ∩ B = X ∪M , and (A,B) is a
separation in G. Since n/3 6 |R| 6 2n/3, we also have |V − (R ∪X ∪M)| 6 2n/3, so (A,B) is in
fact a balanced separation. Finally, we have

|X ∪M | < |X|+ h2p 6 |R|/`+ h2p 6 O(n/`+ h2` log n),

so the order of this separation is also as requested. Hence (A,B) can be returned as the output of
the algorithm.

Assume then that |R| < n/3. Next, inspect connected components of G − (M ∪ R ∪ X) and
suppose for a moment that each of them has less than n/3 vertices. Iteratively add vertex sets of
these connected components to R until its size reaches at least n/3. Note that it will not exceed
2n/3, as each single connected component brings less than n/3 vertices to R. Thus we arrive at a
situation when R has at least n/3 and not more than 2n/3 vertices, which we already resolved in
the previous paragraph.

We are left with the case when there exists a connected component C of G− (M ∪R∪X) that
contains at least n/3 vertices. Perform the following operations:

• Modify φ by dropping all branch sets that do not have a neighbor in C; thus M gets modified
accordingly as well.

• Modify R by adding to it all vertices reachable from R in G− (M ∪X) (where M is already
modified as above). Thus we still have that all neighbors of R are contained in M ∪X. Note
that no vertex of C got included into R.
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Figure 2: Example situation in the proof of Theorem 1. The bottom two panels depict possible
outcomes of the round, corresponding to Case 1 and Case 2 below, respectively.

Observe that after the modifications above we still have that |R| 6 2n/3, since R is disjoint with C,
which has size at least n/3. Again, if after modifications it turned out that |R| > n/3, then we may
find a balanced separator of suitable order as before, so suppose that still it holds that |R| < n/3.

Apply Lemma 3 to the component C. We consider two cases depending on the outcome.

Case 1. Lemma 3 produced a spanning tree T of C of depth at most p. For each branch set I
of φ, select any neighbor uI of I in C; such neighbor exists due to the performed modifications.
Construct a new branch set J by including the root-to-uI path in T for each branch set I of φ.
Since T has depth at most p, it follows that J has radius at most p and in total contains at most hp
vertices. Add J to φ. If φ thus became a depth-p minor model of Kh, then terminate the algorithm
and report it. Otherwise all the invariants are maintained and we may proceed to the next round.

Case 2. Lemma 3 produced a suitable vertex subset S of C. Observe that the outcome of Lemma 3
is also valid if we complement it, so by taking C −S instead of S if necessary, we may assume that
|S| 6 |C|/2. Now add S to R and add all neighbors of S in C into X. By Lemma 3, the number of
those neighbors is not larger than |S|/`, hence the invariant |X| 6 |R|/` is maintained in this way.
Further, since R before the inclusion of S was disjoint from C and smaller than n/3, the size of R
after inclusion of S is bounded by

|S|+ min(n/3, n− |C|) 6 |C|/2 + min(n/3, n− |C|) = min(n/3 + |C|/2, n− |C|/2) 6 2n/3.

Finally, it still holds that all neighbors of R are contained in M ∪ X and the minor model φ did
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not change. We conclude that all invariants are still maintained and hence we may proceed to the
next round.

This concludes the description of the algorithm. For the running time analysis, observe that
each round can be implemented in time O(m) and there are at most n rounds in total.

We only state the (partial) converse of Theorem 1. Note that we must make the additional
assumption that the class under consideration is closed under taking subgraphs.

Theorem 4. Let C be a class of graphs which is closed under taking subgraphs and let c > 0 and
0 < δ 6 1. If every n-vertex graph in C has a balanced separator of order at most cn1−δ, then
∇r(C) 6 c1r

c2/δ for appropriately chosen constants c1, c2.

Corollary 5. The following conditions are equivalent for a subgraph-closed class of graphs C:

(a) C has polynomial expansion;

(b) C has polynomial ω-expansion;

(c) C admits strongly sublinear separators.

3 Approximation algorithms for graphs of polynomial expansion

We now study approximation algorithms for the r-Dominating Set problem on graphs of polyno-
mial expansion. It turns out that the existence of strongly sublinear separators gives rise to a robust
partition of the vertex set into regions of roughly prescribed size so that the regions communicate
with each other only via interfaces sublinear in the sizes. Such a structure is called a λ-division
and it is one of key tools in the design of approximation algorithms in well-separable graphs.

λ-divisions. Let us introduce the relevant definitions. A cover of a set V is a family X of subsets
X ⊆ V , called regions, such that V =

⋃
X . A cover of a graph G is a cover of its vertex set with

the following property: for every edge uv of G, there is an element of the cover that contains both
u and v. The degree of a vertex v ∈ V in X is the number of regions of X that contain v. The
total degree of the cover X is the sum of degrees over all v ∈ V . The maximum degree of the cover
is the maximum degree over all v ∈ V . A vertex v ∈ V is an interior vertex of X if it appears in
exactly one region and a boundary vertex otherwise. A cover is called a λ-division if every region
has size at most λ.

Before we proceed, we note a basic fact about covers: if the total degree is only slightly larger
than the size of the ground set, then the total sum of sizes of boundaries of regions is small.

Lemma 6. Let X be a cover of a set V such that the total degree of X is equal to |V | + p. For
X ∈ X , let B(X) be set of boundary vertices of X. Then∑

X∈X
|B(X)| 6 2p.

Proof. If some u ∈ V has degree k in X , then it contributes to
∑

X∈X |B(X)| exactly k times if
k > 1, and 0 times if k = 1; this is upper bounded by 2k − 2 in both cases. Consequently,∑

X∈X
|B(X)| 6

∑
u∈V

(2 · degreeX (v)− 2) 6 2|V |+ 2p− 2|V | = 2p.

6



For a cover X , the difference between the total degree and the cardinality of the ground set is
called the excess of the cover. Using this term, Lemma 6 says that the sum of sizes of boundaries
of regions is bounded in terms of the excess.

We now move to the main point of this section: the existence of strongly sublinear balanced
separators implies that by iteratively breaking the graph we can construct λ-divisions with small
total degree for λ bounded by a constant.

Lemma 7. Let G be an n-vertex graph such that every induced m-vertex subgraph of G has a
balanced separator of size O(m1−δ), for some 0 < δ 6 1. Then, for every ε > 0, G admits a
λ-division with total degree (1 + ε)n, where λ ∈ O

(
ε−1/δ

)
. Furthermore, such a λ-division can be

computed in polynomial time.

Proof. We iteratively construct a labeled tree T , called a decomposition tree, where each node is
labeled with an induced subgraph of G, with G being the label of the root. As long as there
is a leaf in T labeled G[U ] of size larger than λ, for some constant λ be be specified, compute
a balanced separation (A,B) for G[U ]. Let Z = A ∩ B be the separator. We have A ∪ B = U ,
|A−Z| 6 2/3 · |U | and |B−Z| 6 2/3 · |U |, A−Z is separated from B−Z in G[U ], and |Z| 6 f(|U |),
where f(m) = cm1−δ for some constant c. Now we attach two children labeled G[A] and G[B] to
the processed node. The algorithm terminates when all labels G[U ] at leaves of the decomposition
tree have size at most λ. We return the leaves of the tree as the regions of the division. It is clear
that the algorithm returns a cover of G.

We now show that the returned cover has the claimed degree. First observe that each label G[U ]
at depth i in the separation tree has size at most (3/4)in =: ni, provided we set λ large enough.
This follows easily by induction: if a label has size m, then each of its children has size at most
(2/3)m+ f(m) 6 (2/3)m+ cm1−δ 6 (3/4)m, where the last inequality holds m > (12c)1/δ; hence
we should set λ > (12c)1/δ to make this step go through. In particular, the depth of the separation
tree is bounded by h := dlog4/3 ne.

The sum of sizes of the children of a node at level i with m vertices is bounded by

m+ f(m) = m+ cm1−δ = (1 + cm−δ)m 6 (1 + cn−δi )m.

Hence, in total we have at most (
h−1∏
i=0

(
1 + cn−δi

))
n

vertices at the leaf level of the tree. Now we have
h−1∏
i=0

(
1 + cn−δi

)
6

h−1∏
i=0

exp
(
cn−δi

)
= exp

(
h−1∑
i=0

cn−δi

)
6 exp

(
c′n−δh

)
6 1 + 2c′n−δh .

For the for-last inequality, note that n−δi = (3/4)(h−i)δ · n−δh and c ·
∑h−1

i=0 (3/4)(h−i)δ is a sum of a
decreasing geometric series that can be bounded by a constant c′. In the last inequality we used
the known bound ex 6 1 + 2x that holds for 0 6 x 6 1/2. Now to achieve the required total degree
we need 2c′n−δh 6 ε, which is equivalent to (2c′/ε)1/δ 6 nh. Hence we may set the threshold at
which we terminate the recursion as

λ := max
(

(12c)1/δ, (2c′/ε)1/δ
)
∈ O(ε−1/δ).

Corollary 8. Let G be an n-vertex graph with polynomial expansion of degree d and let ε > 0.
Then G has O

(
(1/ε)4d+3

)
-divisions with total degree (1 + ε)n.
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Packings. Let G be a graph. A collection F of connected subsets of V (G) is a (k, t)-packing
if G[F ] has radius at most t for every F ∈ F , and every vertex appears in at most k sets of F .
Elements of F are called clusters. The induced packing graph G[F ] has F as the set of vertices and
two clusters F, F ′ ∈ F are connected by an edge if they share a vertex or there are vertices v ∈ F
and w ∈ F ′ such that vw ∈ E(G).

Observe that if F is a (k, t)-packing, then the induced packing graph G[F ] is a depth-t minor
of the lexicographic product G•Kk. The following lemma is essentially the stability of grads under
taking lexicographic products, which we investigated during tutorials earlier in the semester.

Lemma 9. Let G be a graph and let F be a (k, t)-packing of G. Then for each r ∈ N,

∇r(G[F ]) 6
k − 1

2
+ (2(k − 1)(2rt+ r + t+ 1) + 1) · ∇2rt+t+r(G).

In particular, if t and k are constants and class C has polynomial expansion of order d, then the
class of graphs induced by (k, t)-packings in graphs from C has polynomial expansion of order d+ 1.

Proof. Let H be a depth-r minor of G[F ], and let φ be a depth-r minor model of H in G[F ]. For
h ∈ V (H), let Ih be the subgraph induced in G by

⋃
F∈φ(h) F ; in other words, we take the union

of all elements of the packing that reside in the branch set of h. By the same reasoning as we used
to show that a depth-r minor of a depth-s minor is a depth-(2rs+ r + s) minor, we see that each
subgraph Ih has radius at most 2rt + t + r. For each h ∈ V (H), fix any center c(h) ∈ Ih that
is at distance at most 2rt + r + t from each vertex of Ih. Call an edge hh′ ∈ E(H) degenerate
if c(h) = c(h′); let Ed ] End be the partition of E(H) into degenerate and non-degenerate edges.
Further, for each non-degenerate edge hh′ ∈ End, fix a path Phh′ connecting c(h) and c(h′) that
leads through Ih ∪ Ih′ . Note that we may take Phh′ to be the concatenation of two paths: one path
P hhh′ contained in Ih, containing c(h), and having length at most 2rt+ t+ r; and second path P h

′
hh′

contained in Ih′ , containing c(h′), and also having length at most 2rt+ t+ r.
For each v ∈ V (G), the number of degenerate edges hh′ with v = c(h) = c(h′) is bounded by(|c−1(v)|
2

)
. Since F is a (k, t)-packing, we have that |c−1(v)| 6 k, implying

(|c−1(v)|
2

)
6 |c−1(v)| · k−12 .

Consequently, the total number of degenerate edges is bounded as follows:

|Ed| 6
k − 1

2
·
∑

v∈V (G)

|c−1(v)| = k − 1

2
· |V (H)|. (3.1)

Next, we bound the number of non-degenerate edges. Call two non-degenerate edges hh′, gg′ ∈
End with pairwise different endpoints in conflict if Phh′ and Pgg′ intersect. For two distinct non-
degenerate edges hh′, gg′ ∈ End sharing an endpoint, say h = g, we say that they are in conflict if

either P h
′

hh′ intersects Pgg′ or P g
′

gg′ intersects Phh′ ; in other words, Phh′ and Pgg′ have to be disjoint

apart from allowing P hhh′ to intersect P ggg′ . The following claim follows by a direct verification.

Claim 1. Let F ⊆ End be any subset of non-degenerate edges that are pairwise non-conflicting. Let
H ′ be the subgraph of H consisting of all edges of F and vertices incident with them. Then setting
Jh :=

⋃
h′ : hh′∈F P

h
hh′ for all h ∈ V (H ′) yields a depth-(2rt+ r + t) minor model of H ′ in G.

Observe that a non-degenerate edge hh′ may be in conflict with at most

(k − 1)(4rt+ 2t+ 2r + 2) = 2(k − 1)(2rt+ r + t+ 1)
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other edges. Indeed, there are at most 4rt+ 2t+ 2r+ 2 vertices on Phh′ , and each of them may give
rise to at most k − 1 conflicts, because F is a (k, t)-packing. Therefore, if we create an auxiliary
graph on non-degenerate edges where two edges are adjacent if they are in conflict, then this graph
has maximum degree at most 2(k− 1)(2rt+ r+ t+ 1), implying that it admits an independent set

of size at least |End|
2(k−1)(2rt+r+t+1)+1 . By Claim 1, this gives rise to a depth-(2rt+ r + t) minor of G

with edge density at least 1
2(k−1)(2rt+r+t+1)+1 ·

|End|
|V (H)| , implying

|End| 6 |V (H)| · (2(k − 1)(2rt+ r + t+ 1) + 1) · ∇2rt+t+r(G). (3.2)

Combining (3.1) with (3.2) we infer that

|E(H)|
|V (H)|

=
|Ed|+ |End|
|V (H)|

6
k − 1

2
+ (2(k − 1)(2rt+ r + t+ 1) + 1) · ∇2rt+t+r(G).

Since H was chosen as an arbitrary depth-r minor of G[F ], this concludes the proof.

Local search. Local search algorithms are a natural idea in the field of approximation algorithms:
we start with any solutiona and we exhaustively try to make some local improvements. Once no
local improvement can be applied, we output the current solution. Local search is very successful
in practice, especially in combination with heuristic methods like simulated annealing that enable
a broader exploration of the solution space, but is notoriously difficult to analyze in the theoretical
(worst-case) setting. We will now use show local search with appropriately large search radius
to gives a polynomial-time approximation scheme (PTAS) for r-Dominating Set on any class of
polynomial expansion. Here, a PTAS for a minimization problem is a family of algorithms (Aε)ε>0

such that each Aε computes a (1 + ε)-approximate solution for the problem and runs in polynomial
time; the degree of the polynomial may depend in ε.

Two sets X and Y are called λ-close if |X4Y | 6 λ, i.e., if one can transform X into Y by
adding and removing at most λ vertices from X. A solution X for some optimization problem is
λ-locally optimal if there is no solution Y that is λ-close to X and improves upon X.

Definition 1. The λ-local search algorithm for an optimization problem starts with an arbitrary so-
lution and by examining all λ-close sets, repeatedly makes λ-close improvements until it terminates
at a λ-locally optimal solution.

Each improvement in a maximization (minimization) problem increases (resp. decreases) the
cardinality of the set, so there are at most n rounds of improvement, where n is the size of the ground
set. Within each round we can exhaustively try all λ-close exchanges in time nO(λ), bounding the
total running time by nO(λ).

Theorem 10. Fix r ∈ N, ε > 0, and a class C of polynomial expansion of order d. Then there is
λ ∈ O

(
(1/ε)4d+7

)
such that the λ-local search algorithm applied to any graph G ∈ C computes an

r-dominating set of size at most 1 + ε times larger than the smallest size of an r-dominating set.

Proof. Select an arbitrary order � on vertices of G. Let D be an r-dominating set of G. For every
vertex v ∈ V (G), let π(v) ∈ D be the vertex from D that is the closest to v, and in case there are
several of them, pick the �-minimal one. Let P (v) be any shortest path from v to π(v) in G; then
P (v) has length at most r. For each u ∈ D, define the cluster Cu as follows:

Cu :=
⋃

v∈π−1(u)

P (v);
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that is, every u ∈ D takes to its cluster all the paths P (v) leading to it. Let D = {Cu : u ∈ D} be
the collection of clusters.

Claim 2. For any r-dominating set D, clusters from D are pairwise disjoint.

Proof. For the sake of contradiction suppose some vertex w ∈ V (G) belongs to two different clusters,
say Cu and Cu′ where u ≺ u′. This means that there are vertices v and v′ such that π(v) = u,
π(v′) = u′, and w belongs to the intersection of P (v) and P (v′). Let s be the distance on P (v)
from w to u, similarly define s′ for P (v′) and u′. Observe that it cannot be that s < s′, because
then v′ would be closer to u than to u′, a contradiction with the choice of u′. Similarly it cannot
happen that s′ > s, yielding s = s′. But then either v′ is closer to u than to u′, or u, u′ are equally
distant from v′ but u ≺ u′. Again this is a contradiction with the choice of u′. y

Each cluster from D obviously has radius at most r, so by Claim 2, D is a (1, r)-packing.

We choose λ ∈ O
(
(1/ε)4d+7

)
, to be specified later. Consider performing the λ-local search

algorithm and suppose it outputs a locally minimum r-dominating set L. Let D be a smallest
r-dominating set in G. Let D and L be the corresponding (1, r)-packings, constructed as above for
D and L, and let πD : V (G) → D and πL : V (G) → L be also the corresponding mappings. For
u ∈ D let D(u) = π−1D (u) be the unique cluster of D that contains u, similarly define L(u).

Let F := D ∪ L and let H := G[F ] be the induced packing graph of F . Observe that F is a
(2, r)-packing, hence by Lemma 9, G[F ] has polynomial expansion of order d + 1. By Lemma 7,
there is λ ∈ O((1/ε)4d+7) for which we can find a λ-division X of G[F ] with total degree at most
(1+ε/16)|F|. Note that |F| = |D|+ |L| 6 2|L|, hence the total degree of X is at most |F|+ε/8 · |L|.

Now consider any region X ∈ X ; recall that X consists of clusters from F . Let us define the
following sets:

• B(X) is the set of boundary vertices of X (which are clusters from F).

• D(X) = D ∩X is the set of those clusters in D that belong to X.

• L(X) = L ∩X − B(X) is the set of those clusters in L that are interior vertices of X.

Further, let D(X) be the set of those u ∈ D for which D(u) ∈ D(X), and similarly L(X) is the set
of those u ∈ L for which L(u) ∈ L(X). The next claim is the key point in the proof.

Claim 3. For any region X ∈ X , the set L′ := (L− L(X)) ∪D(X) is an r-dominating set in G.

Proof. For the sake of contradiction suppose there exists a vertex w ∈ V (G) that is not r-dominated
by L′. Let u = πL(w) and v = πD(w). Recall that w is r-dominated by u; since w is not r-dominated
by L′, it follows that u ∈ L(X). Consequently, the cluster L(u) is not a boundary vertex of X.
On the other hand, we have w ∈ D(v), hence clusters L(u) and D(v) are adjacent in the induced
packing graph H. Since L(u) is not a boundary vertex of X, it follows that D(v) belongs to X. So
v ∈ D(X) and w is r-dominated by v ∈ L′, a contradiction. y

Observe that the exchange set described in Claim 3 is of size at most λ, because all exchanged
vertices (or rather corresponding clusters) belong to X. Since L is locally optimal, we obtain that

L(X) 6 D(X) for each region X ∈ X .
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Finally, using this observation and Lemma 6 we estimate the size of L:

|L| = |L| 6
∑
X∈X

|L(X)|+ |B(X)| 6
∑
X∈X

|D(X)|+ |B(X)|

6 |D|+ 2
∑
X∈X

|B(X)| = |D|+ ε/2 · |L| = |D|+ ε/2 · |L|.

Hence (1− ε)|L| 6 |D|, implying |L| 6 |D|/(1− ε/2) 6 (1 + ε)|D|.
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