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1 Introduction

In the previous chapters we have characterized nowhere dense classes by means of sizes of cliques
that we find as depth-r minors. In this chapter we study a dual characterization in terms of
r-independence. Recall that a vertex subset A ⊆ V (G) in a graph G is r-independent if any two
its elements a 6= b ∈ A are at distance greater than r. In degenerate graphs we are able to find
large independent subsets, however, this is no longer true if we ask for larger values of r. Consider
for example a star S, i.e., a tree of depth 1. No two vertices of S are at distance greater than 1.
However, if we were allowed to delete a bounded number of elements, we could delete the center of
the star and in the resulting graph we are left with r-independent elements, whatever value for r
we choose. We will formalize this concept of deleting a few elements to find large r-independent
sets by introducing the notion of uniform quasi-wideness. We will then show that the new concept
is equivalent to nowhere denseness and show how to use it in an algorithmic context.

2 Uniform wideness

Let us first consider the simpler concept of uniform wideness, which will help to understand uniform
quasi-wideness.

Definition 1. A class of graph C is called uniformly wide if there is a function N : N×N→ N such
that for all m, r ∈ N , G ∈ C and A ⊆ V (G) with |A| > N(m, r) there exists B ⊆ A with |B| > m
such that B is r-independent.

In other words, a class of graphs is uniformly wide if for every value of r, in every huge set A
we still find a large r-independent set. The appropriate definition of huge and large depends on the
value of r we care for. It is not difficult to see that uniformly wide classes are very simple classes,
as the next theorem shows.

Theorem 1. A class C of graphs is uniformly wide if and only if C is a class of bounded degree,
i.e., there is a number d such that the maximum degree ∆(G) of every G ∈ C is bounded by d.

Proof. Assume first that C is uniformly wide. By definition there is a function N : N×N→ N such
that for all m, r ∈ N , G ∈ C, and A ⊆ V (G) with |A| > N(m, r) there exists B ⊆ A with |B| > m
such that B is r-independent. We claim that for each G ∈ C, the maximum degree of G is smaller
than N(2, 2). Take any vertex v of G and let A = N(v). Then all vertices of A are pairwise at
distance at most 2, and hence there is no set B ⊆ A of size 2 that would be 2-independent. We
infer that |N(v)| = |A| < N(2, 2), and this must hold for every vertex v of G.

Conversely, assume that C has bounded degree, and let d be an integer such that the maximum
degree ∆(G) of every G ∈ C is bounded by d. Define N(m, r) = m · (d + 1)r. We claim that C is
uniformly wide with function N . To see this, let G ∈ C and A ⊆ V (G) with |A| > N(m, r) for some
numbers m and r. We can now greedily pick elements from A to the set B as follows. Choose an
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arbitrary vertex v ∈ A and put it into the set B, then remove all elements at distance at most r
from v from the set A. As every vertex has degree at most d, we remove at most (d+ 1)r vertices
from A in each step, which after m steps gives us the desired set B.

3 Uniform quasi-wideness

We now slightly change the definition of wideness to allow the deletion of a small number of vertices.

Definition 2. A class of graph C is called uniformly quasi-wide if there are functions N : N×N→ N
and s : N → N such that for all m, r ∈ N , G ∈ C and A ⊆ V (G) with |A| > N(m, r) there exists
S ⊆ V (G) with |S| 6 s(r) and B ⊆ A− S with |B| > m such that B is r-independent in G− S.

In other words, a class of graphs is uniformly quasi-wide if for every value of r and for every
huge set A we can delete a very small number of vertices such that we find a large r-independent
subset of A in G − S. Again the appropriate definitions of huge, large and very small depend on
the value of r we care for; this is governed by functions N and s that are sometimes called the
margins.

A

Figure 1: Definition of uniform quasi-wideness. In a huge set A (yellow) we may find a large subset
B (blue) that is r-independent after removing a small subset of vertices S (crossed out), whose
size depends only on the radius r. In case r is even, r-independence of B in G− S is equivalent to
saying that balls of radius r/2 around vertices of B in G−S are disjoint, as depicted in the figure.

The rest of this section is devoted to the surprising fact that uniform quasi-wide classes are
exactly the nowhere dense classes.

Theorem 2. A class C of graphs is uniformly quasi-wide if and only if it is nowhere dense.

We split the proof into two lemmas. The direction from left to right is easy to prove.

Lemma 3. If C is uniformly quasi-wide, then C is nowhere dense.

Proof. We prove the contrapositive. Supposing C is somewhere dense, there exists r such that every
complete graph Kt is a depth-r topological minor of some G ∈ C. Fix any functions N : N×N→ N
and s : N → N. Choose G ∈ C such that K := Kt 4

top
r G, where t := N(2 · s(2r + 1) + 2, 2r + 1);

fix a depth-r topological minor model φ of K in G. Let A be the set {φ(v) : v ∈ V (K)}. Consider
any vertex subset S ⊆ V (G) of size at most s := s(2r + 1), and let A′ ⊆ A be constructed from
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A as follows: whenever φ(u) ∈ S for some u ∈ V (K), remove φ(u) from A′, and whenever an
internal vertex of φ(uv) belongs to S for some uv ∈ E(K), remove both u and v from A′. Thus,
when constructing A′ from A we remove at most 2s vertices, meaning |A−A′| 6 2s. Now observe
that every two vertices of A′ are at distance at most 2r + 1 in G − S, because the path between
them in the model φ was left untouched by the removal of S. Hence, any subset B ⊆ A − S that
is (2r + 1)-independent in G − S contains at most 2s + 1 vertices: at most 2s vertices of A − A′
and at most 1 vertex of A′. Since |A| = t = N(2s + 2, 2r + 1) and S was chosen arbitrarily, this
witnesses that N and s are not valid wideness functions for C. As the choice for these functions
was arbitrary, we conclude that C is not uniformly quasi-wide.

The other direction is much harder to prove.

Lemma 4. If C is nowhere dense, then C is uniformly quasi-wide.

We will split the proof into several more lemmas. In the following, fix a function t : N→ N and
a graph G such that for all r ∈ N we have Kt(r) 64r G. Also fix a large A ⊆ V (G). Our strategy is
to inductively construct sequences

G = G0 ⊇ G1 ⊇ . . . ⊇ Gr and S1, S2, . . . , Sr,

where Gi are graphs and Si are vertex sets such that for all i ∈ {1, . . . , r}, we have

1. Gi = Gi−1 − Si and

2. Si ⊆ V (Gi−1).

Moreover, we will find a sequences

A = A0 ⊇ A1 ⊇ . . . ⊇ Ar and m0 > m1 > . . . > mr = m,

where Ai are vertex sets and mi are integers, such that for all i ∈ {1, . . . , r},

1. Ai ⊆ A is i-independent in Gi−1 − Si, Ai ∩ Si = ∅,

2. |Ai| > mi, and

3. Si = ∅ if i is odd and |Si| < t(i/2) if i is even.

We will then return the set Ar of size m which is r-independent in Gr = G−S, where S =
⋃

16i6r Sr.
The construction will be applicable provided initially the invariant |A0| > m0 holds, hence we will
set N(m, r) simply as the obtained m0.

The following two lemmas will imply that it suffices to consider only the cases i = 1 and i = 2.
Their proofs are immediate.

Lemma 5. Let A be a 2j-independent set in G. Let H 4j G be the depth-j minor of G obtained
by contracting the disjoint j-neighborhoods NG

j [v] for v ∈ A to single vertices. The vertex of H

resulting from contracting NG
j [v] will be identified with the original vertex v of G, thus via this

identification A is both a subset of vertices of G and a subset of vertices of H. Then any subset of
A is (2j + 1)-independent in G if and only if it is 1-independent in H.
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Lemma 6. Let A be a 2j + 1-independent set in G. Let H 4j G be the depth-j minor of G
obtained by contracting the disjoint j-neighborhoods NG

j [v] for v ∈ A to single vertices. The vertex

of H resulting from contracting NG
j [v] will be identified with the original vertex v of G, thus via

this identification A is both a subset of vertices of G and a subset of vertices of H. Then, for any
S ⊆ V (H)−A = V (G)−

⋃
v∈ANj(v), it holds that a subset of A is 2j + 2-independent in G− S if

and only if it is 2-independent in H − S.

Figure 2: Reduction to cases i = 1 and i = 2 in Lemmas 5 and 6: contracting balls of radius
j around vertices of a 2j-independent set turns (2j + 1)-independence into 1-independence, and
(2j + 2)-independence into 2-independence.

The construction will be done iteratively for i = 1, 2, . . . , r, where in step i we wish to construct
Ai and Si by examining the graph Gi−1 and the (i − 1)-independent set Ai−1 in it. The whole
procedure will work as follows, assuming that for the cases i = 1 and i = 2 we have already
given the construction. Starting with the set A = A0, using the case i = 1 we will find a large
independent subset A1 ⊆ A without deleting any vertices, hence S1 = ∅, as claimed. Now that
A1 is 1-independent, using the case i = 2 we will find a small set S2 and a large subset A2 of A1

which is 2-independent in the graph G2 = G1 − S2 (hence, the set is 2-independent after deleting
S2, just as required in the definition of uniform quasi-wideness). As A2 is 2-independent in G2, we
can contract the disjoint 1-neighborhoods of elements of A2 (identifying contracted vertices with
elements of A2, as in Lemmas 5 and 6), thus obtaining a depth-1 minor H 41 G2. Using the case
i = 1 again, we find a large subset A3 ⊆ B2 that is 1-independent in H and apply Lemma 5 to
conclude that it is, in fact, 3-independent in G3. We continue with this set in the graph G3. Again,
we contract the disjoint 1-neighborhoods of elements of A3 (identifying contracted vertices with
elements of A3), thus obtaining a depth-1 minor H 41 G3. Using case i = 2 in H we find a small
set S4 ⊆ V (H)− A3 = V (G3)−

⋃
a∈A3

NG3
1 [a] and a large set A4 ⊆ A3 which is 2-independent in

H − S4. We apply Lemma 6 to conclude that A4 that A4 is 4-independent in G4 = G3 − S4; the
lemma is applicable since S4 ⊆ V (H)−A4. We continue this argumentation for r steps to construct
the graphs Gi and sets A1 and Si with the desired properties.

It remains to show cases i = 1 and i = 2: how to construct A1 out of A0, and how to construct
A2, S2 out of A1. One of the main ingredients for this is Ramsey’s Theorem.

Theorem 7. Let a, b ∈ N. Then there exists a number R(a, b) such that for every coloring of the
edges of a complete graph on R(a, b) vertices with colors red and blue we will either find a clique
on a vertices whose edges are all blue or a clique on b vertices whose edges are all red.
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Proof. We prove by induction on a + b that it suffices to take R(a, b) = R(a − 1, b) + R(a, b − 1).
Clearly, we for all n ∈ N we may take R(n, 1) = R(1, n) = 1; then, it is easy to see by induction
that the above recurrence will yield

R(a, b) 6

(
a+ b− 2

a− 1

)
.

Assume that we have established the bounds for R(a−1, b) and R(a, b−1) and consider a complete
graph K on R(a− 1, b) + R(a, b− 1) vertices whose edges are colored red and blue. Pick a vertex
v and partition the remaining vertices into two sets A and B, such that for every vertex w ∈ A
the edge vw is blue and for every vertex w ∈ B if the edge vw is red. We have |A| + |B| + 1 =
R(a− 1, b) +R(a, b− 1), and hence either |A| > R(a− 1, b) or |B| > R(a, b− 1). In the first case,
by induction we know that M contains either a clique on a − 1 vertices with all edges blue, or a
clique on b vertices with all edges red. In the latter subcase we are immediately done, and in the
former case we may add v to this clique to obtain a clique on a vertices will all edges blue. The
second case is analogous. This finishes the proof of the theorem.

We may now give the construction for i = 1. Recall that t(0) is such that Kt(0) 640 G, that is,

Kt(0) is not a subgraph of G. Suppose we are given a set A of size |A| > m0 :=
(m1+t(0)−2

t(0)−1
)
, where

m1 is the target size of a 1-independent set we are interested in. By Ramsey’s theorem, in G[A] we
may either find a clique of size t(0) or an independent set of size m1. The former case, however,
cannot happen since Kt(0) is not a subgraph of G. So we obtain an independent set of size m1,
as promised. To lifting this to the case of i = 2j + 1 using Lemma 6, as explained before, we will
apply this argument to a graph that is a j-shallow minor of the original graph, hence we will need
to set mi−1 :=

(mi+t(i/2)−2
t(i/2)−1

)
. Note again that Si = ∅ in this case.

The case i = 2, which will lift to the induction step for even i, is much harder. In this case
we assume that in our graph G we have already found a huge 1-independent set A1, and we want
to find a large 2-independent set in it, possibly after removing some small set of vertices S1 that
is disjoint from A1; we will have that |S1| < t := t(1). Denote by D the set of all neighbors of
vertices of A1 and consider the graph G′ defined as the subgraph of G on the vertex set A1 ∪ D
where we preserve only edges with one endpoint in A1 and second in D. Clearly G′ is bipartite,
with bipartition A1 ] D. Since A1 is independent in G, it is easy to see that any subset of A1 is
2-independent in G if and only if it is 2-independent in G′, so we may focus on G′. We will use the
following extension of Ramsey’s Theorem for a finite number of colours.

Theorem 8. Let n1, . . . , nk ∈ N. There exists a number R(n1, . . . , nk) such that for every coloring
of the edges of a complete graph on R(n1, . . . , Rk) vertices with k different colors c1, . . . , ck we will
find for some 1 6 i 6 k a clique on ni vertices all of whose edges are colored with color ci.

The theorem can easily be proved by induction on the number of colors, using the two-color
case. We will apply the theorem to prove the following lemma.

Lemma 9. Let G be a bipartite graph with partitions A and B. Let m, t, d ∈ N. If |A| >
R(t, . . . , t,m), where t is repeated

(
d−1
2

)
times, then at least one of the following assertions holds.

(a) A contains a set A′ ⊆ A of size m such that no two vertices of A′ have a common neighbor,

(b) in G there is a 1-subdivision of Kt with all principal vertices contained in A, or
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(c) B contains a vertex of degree at least d.

Let us motivate the statement of the lemma by examining its application to the graph G′ we
discussed before. The lemma says that provided A1 is sufficiently large, we will either find a 2-
independent set, which is exactly what we are looking for, or a 1-subdivision of Kt, which should
not happen in a nowhere dense class, or we may find a vertex v in D that has degree at least
d. We will add this vertex to the set S1 of vertices to delete and inductively continue with the
set A′1 = N(v) ∩ A1. We will apply the lemma again to the bipartite graph induced by A′1 and
its neighborhood and with v deleted (with a smaller value d′), again, giving us a 2-independent
subset (and we are done), a 1-subdivision of Kt (which is again not possible by assumption) or
another vertex of high degree. We apply the lemma again and again, always on the subset of A1

induced by the neighborhood of the high degree vertex, which eventually, if the initial value of d
was chosen large enough, gives us a complete bipartite graph Kt,t. This however, is not possible,
as Kt,t contains Kt itself as a depth-1 minor. We conclude that before we could apply the lemma
t times, we must have found a large 2-independent set. Precise argument will follow, but now we
give a proof of Lemma 9.

Proof of Lemma 9. Assume that B does not contain a vertex of degree at least d (otherwise we
conclude that the third assertion holds). Enumerate the vertices of B as b1, . . . , bn. Let K be the
complete graph with vertex set A whose edges we will color with

(
d−1
2

)
+ 1 colors. We initially

consider all edges as colorless. Now we consider the vertices b1, . . . , bn in increasing order. In each
step i, 1 6 i 6 n, we consider the set X = N(bi)∩A and color each edge uv for u, v ∈ X which has
not previously received a color with an integer between 1 and

(
d−1
2

)
such that no two edges that

are colored in this step get the same color. This is possible as the degree of bi is assumed to be at
most d− 1. Finally, we color all edges which do not have received a color in the steps 1, . . . , n with
color

(
d−1
2

)
+ 1.

As |A| > R(t, . . . , t,m), in the resulting colored graph we can either find a clique of size t whose
edges are all colored with one of the colors 1, . . . ,

(
d−1
2

)
, or a clique of size m whose edges are all

colored with color
(
d−1
2

)
+1. In the latter case, the vertices of the clique define a subset A′ ⊆ A such

that no two vertices in A′ have a common neighbor, as stated in the first assertion of the lemma.
In the former case, all edges of the monochromatic clique have been added at different steps in
the construction, as all edges receive different colors in each individual step. Hence the edges have
been colored in

(
t
2

)
different steps, and each edge can be associated with a different vertex bi that

caused coloring of exactly this edge. Hence we find a 1-subdivision of Kt with all principal vertices
in A. This is the second assertion of the lemma.

As we discussed, the idea is to apply Lemma 9 to the graph G′ defined earlier not once, but t
times. For convenience, we write Rd(t,m) for R(t, . . . , t,m) where the first argument is repeated(
d−1
2

)
times. Then let

R?(t,m, d, s) :=

{
t if s=0

Rk(t,m) if s > 1, where k = R?(t,m, d, s− 1).

The next lemma explains the iterative application of Lemma 9.

Lemma 10. Let G be a bipartite graph with partitions A and B. If |A| > R?(t,m, t, t), then at
least one of the following assertions holds.
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(a) A contains a set A′ ⊆ A of size m and B contains a set S of size lass than t such that no two
vertices of A′ have a common neighbor outside of S,

(b) in G there is a 1-subdivision of Kt with all principal vertices contained in A,

(c) in G there is a complete bipartite subgraph Kt,t.

Proof. We will iteratively find vertices s1, s2, . . . and subsets A = A0 ⊇ A1 ⊇ A2 ⊇ . . . with
|Ai| > R?(t,m, t, t− i) and Ai ⊆ N(s1) ∩N(s2) ∩ . . . N(si). Suppose s1, . . . , si and Ai are already
defined for some i < t. Then apply Lemma 9 to the graph G[Ai ∪Bi], where Bi = B−{s1, . . . , si}.
This application yields either objects witnessing the satisfaction of the first or the second assertion
(for S = {s1, . . . , si}), or gives a vertex si+1 that has at least R?(t,m, t, t− i− 1) neighbors in Ai.
In the former two cases we may stop the iteration, and in the latter case we may define Ai+1 :=
Ai ∩N(si+1) and proceed. Finally, observe that if s1, . . . , st and At (with |At| > R?(t,m, t, 0) = t)
have been constructed, then {s1, . . . , st} ∪ At is a complete bipartite graph in G, so the third
assertion holds.

Using Lemma 10 we may solve directly the case i = 2 of the main construction. Assuming
that |A1| > m1 := R?(t,m2, t, t), where m2 is the requested size of a 2-independent set after this
step, apply Lemma 10 to the bipartite graph G′ we defined. This application cannot yield either
a 1-subdivision of Kt or a Kt,t subgraph of G′, since both these graphs contain Kt as a 1-shallow
minor, which is excluded since we assumed Kt 641 G. The last conclusion — a set S1 ⊆ D with
|S1| < t together with a subset A2 ⊆ A1 with |A2| > m2 that is 2-independent in G′ − S — is
exactly what we were looking for.

As we discussed earlier, the case i = 2 presented above lifts to all even i by applying Lemma 6.
More precisely, we apply case i = 2 to the graph H obtained from the contractions and the i-
independent set Ai in it. Observe that in this setting, to exclude assertions (b) and (c) in Lemma 10
it suffices to take t := t(i/2). Indeed, if in the contracted graph H we find either a 1-subdivision of
Kt with all principal vertices in Ai, or a Kt,t with one side contained in Ai and second outside of
Ai, then in the graph before contractions, both of these would yield a depth-(i/2) minor model of
Kt, a contradiction.

To summarize, we put

mi−1 :=

{(mi+t(i/2)−2
t(i/2)−1

)
if i is odd;

R?(t(i/2),mi, t(i/2), t(i/2)) if i is even.

By requesting mr := m, this gives a value of N(m, r) := m0 for which the whole construction can
be performed. This concludes the proof of Lemma 4, which was the missing part of the proof of
Theorem 2.

The bound on N(m, r) given by the proof might be considered infeasible for practical applica-
tions. To prevent the reader from these diffuse depreciating sentiments, we will in a later chapter
revisit the proof and provide much improved bounds.

Finally, let us note an effective version of the theorem. It follows by examining all the compo-
nents of the proof and observing that they can be turned into polynomial-time algorithms computing
respective objects.
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Theorem 11. Let C be nowhere dense. Then there are functions N : N × N → N and s : N → N
such that on input G ∈ C, m, r ∈ N and A ⊆ V (G) we can compute in polynomial time a set
S ⊆ V (G) with |S| 6 s(r) and B ⊆ A− S with |B| > m such that B is r-independent in G− S.

4 The splitter game

We finally provide a very intuitive game characterization of nowhere denseness.

Definition 3. Let G be a graph and let `,m, r > 0. The (`,m, r)-splitter game on G is played
by two players, “Connector” and “Splitter”, as follows. We let G0 := G. In round i of the game,
Connector chooses a vertex vi ∈ V (Gi−1). Then Splitter picks a subset Wi ⊆ N

Gi−1
r (vi) of size at

most m. We let Gi := Gi−1[N
Gi−1
r (vi)]−Wi. Splitter wins if Gi = ∅. Otherwise the game continues

at Gi. If Splitter has not won after ` rounds, then Connector wins.

v1

G0

W1

v2

G1

W2
· · ·

Figure 3: First two rounds of the splitter game. In the ith round, Connector first picks a vertex vi
and the arena gets restricted to the r-neighborhood of vi. Then the Splitter removes a set Wi of at
most m vertices from the arena. The goal of Splitter is to obtain an empty graph within ` rounds,
the goal of Connector is to prevent this.

In the splitter game, a strategy for Splitter is, well, what one expects it to be. Formally, it is a
function f that maps every partial play (v1,W1, . . . , vs,Ws, vs+1) to a new move Ws+1 ⊆ NGs

r (vs+1)
of Splitter. Similarly for Connector. A strategy f is a winning strategy for Splitter in the (`,m, r)-
splitter game on G if Splitter wins every play in which he follows the strategy f . If Splitter has a
winning strategy, we say that he wins the (`,m, r)-splitter game on G.

We first show that nowhere denseness guarantees that Splitter wins the splitter game.

Theorem 12. Let C be a nowhere dense class of graphs. Then for every r ∈ N there are ` ∈ N and
m ∈ N, such that for every G ∈ C, Splitter wins the (`,m, r)-splitter game on G.

Proof. As C is nowhere dense, it is also uniformly quasi-wide, and let s and N be the functions
witnessing this. Fix r ∈ N and let ` := N(r, 2s(r) + 1) and m := ` · (r+ 1). Note that both ` and m
only depend on C and r. We claim that for any G ∈ C, Splitter wins the (`,m, r)-splitter game
on G; for this, we present a suitable winning strategy.

Let G ∈ C be a graph. In the (`,m, r)-splitter game on G, Splitter uses the following strategy.
In the first round, if Connector chooses v1 ∈ V (G0), where G0 := G, then Splitter chooses W1 :=
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{v1}. Now let i > 1 and suppose that v1, . . . , vi−1, G1, . . . , Gi−1,W1, . . . ,Wi−1 have already been
defined. Suppose Connector chooses vi ∈ V (Gi−1). We define Wi as follows. For each j < i,
choose a path Pj,i in Gj−1 of length at most r connecting vj and vi. Such a path must exist

as vi ∈ V (Gi) ⊆ V (Gj) ⊆ N
Gj−1
r [vj ]. We let Wi :=

⋃
16j<i V (Pj,i) ∩ NGi−1

r (vi); in other words,
the move Wi of Splitter consists of all vertices of path Pj,i that are still in the arena. Note
that |Wi| 6 (i − 1) · (r + 1) 6 m, as the paths have length at most r and hence consist of r + 1
vertices. It remains to be shown is that the length of any such play is bounded by `.

Assume toward a contradiction that Connector may survive for ` rounds. Let (v1, . . . , v`,
G1, . . . , G`,W1, . . . ,W`) be a play witnessing this, where the moves of the Splitter are accord-
ing to the presented strategy. As ` > N(r, 2s(r) + 2), for A := {v1, . . . , v`} there is a set S ⊆ V (G)
with |S| 6 s(r), such that A−S contains subset B of size 2s(r) + 2 that is r-independent in G−S.
Suppose B = {vi1 , . . . , vi2s(r)+2

} with i1 < . . . < i2s(r)+2; for brevity we write wj := vij .
We now consider the pairs (w2j−1, w2j) for 1 6 j 6 s(r) + 1. By construction, Qj := Pi2j−1,i2j

is a path of length at most r from w2j−1 to w2j in Gi2j−1−1. We now observe that paths Qj , for
j ∈ {1, . . . , s(r) + 1}, are pairwise disjoint. Indeed, if 1 6 j < j′ 6 s(r) + 1, then the whole path Qj

was removed by the Splitter in round i2j (formally, V (Qj)∩ V (Gi2j−1) ⊆Wi2j ), hence it is entirely
disjoint with the vertex set of the graph Gi2j′−1−1 due to j′ > j. On the other hand, since Qj′

is entirely contained in the graph Gi2j′−1−1 by definition, indeed Qj and Qj′ are disjoint. Now,
since S contains at most s(r) vertices, some path Qj has to be entirely disjoint with S. However,
this means that w2j−1 and w2j do not belong to S and are at distance at most r in G − S. This
contradicts the assumption that B is r-indendent in G− S and finished the proof.

We observe that also the converse of Theorem 12 holds and hence the splitter game provides
another characterization of nowhere dense classes of graphs.

Theorem 13. Let C be a class of graphs. If for every r ∈ N there are `,m ∈ N such that for every
graph G ∈ C, Splitter wins the (`,m, r)-splitter game, then C is nowhere dense.

Proof. We prove the contrapositive. Suppose C is somewhere dense, hence C admits all complete
graphs as depth-r minors, for some fixed depth r ∈ N. Then we claim that for all `,m ∈ N there is
a graph G ∈ C such that Connector wins the (`,m, 4r + 1)-splitter game on G.

Fix `,m ∈ N. We choose G ∈ C such that G contains the complete graph K := K`m+1 as
a depth-(4r + 1) minor; let φ be a minor model of K in G witnessing this. Connector uses the
following strategy to win the (`,m, 4r+ 1)-splitter game. First, Connector chooses any vertex from
the branch set (under φ) of any vertex of K. The (4r+ 1)-neighborhood of this vertex contains the
whole branch sets of all vertices of K. Splitter removes any m vertices. We actually allow him to
remove the complete branch sets of φ containing all m vertices he chose. In round 2 we may thus
assume that we still find the complete graph K(`−1)m+1 as a depth-r minor of the current arena.
By continuing to play in this way until, after round ` the arena still contains some vertices and the
Connector wins.

5 Algorithmic applications: r-Dominating Set

As an algorithmic application of uniform quasi-wideness we show how to use it in the design of
efficient algorithms for the (parameterized) r-Dominating Set problem. Recall that in a graph
G, a subset of vertices D is r-dominates a subset of vertices A if every vertex of A is at distance at
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most r from a vertex of D. Further, D is an r-dominating set of G if D is r-dominates the whole
vertex set. By domr(G,A) we denote the smallest size of an r-dominator of A in G, and domr(G)
— the r-domination number of G — is the smallest size of an r-dominating set in G. We shall
consider the following decision problem called r-Dominating Set: given a graph G and parameter
k, is it true that domr(G) 6 k? In general, our goal will be two-fold: (a) to design an efficient
algorithm for this problem assuming r and k are small, and (b) to reduce the size of the instance at
hand to a function of r and k only. In the research terminology, point (a) is to design an efficient
parameterized algorithm for the problem, and point (b) is to design a kernelization procedure.

The main idea is to reduce the number of dominatees, that is, the number of those vertices
whose domination is essential. To formalize the notion of being essential for domination, we give
the following definition.

Definition 4. Let G be a graph and k ∈ N. A set Z ⊆ V (G) is called an r-domination core for
parameter k if every set D ⊆ V (G) of size at most k which r-dominates Z also r-dominates V (G).

Fix a nowhere dense class C of graphs and let N(m, r) and s(r) be the functions characterizing C
as uniformly quasi-wide according to Theorem 11. Fix positive integers r and k and let s := s(2r).
The next, slightly surprising lemma shows that in an r-domination core that is too large one can
always find an irrelevant dominatee that can be safely removed.

Lemma 14. Suppose G ∈ C and let Z ⊆ V (G) be a vertex subset satisfying

|Z| > N
(
(k + 2)(r + 1)s, 2r

)
.

Then we can compute in polynomial time a vertex w ∈ Z such that for any set D ⊆ V (G) with
|D| 6 k, the following equivalence holds:

D r-dominates Z if and only if D r-dominates Z − {w}.

Proof. By Theorem 11 we can find in polynomial time sets S ⊆ V (G) and B ⊆ Z − S such that
|S| 6 s, |B| > (k+ 2)(r+ 1)s and B is 2r-independent in G−S. For each v ∈ B, compute πr[v, S],
the r-distance profile of v on S; recall that πr[v, S] is a function from S to {0, 1, . . . , r,∞} such
that for a ∈ S we put πr[v, S](a) = dist(v, a) if this distance is at most r, and πr[v, S](a) = ∞
otherwise. Clearly, we can compute these distance profiles in polynomial time. Note that there
are at most (r + 1)s different r-distance profiles on S. Since |B| > (k + 2)(r + 1)s, there are k + 2
elements b1, . . . , bk+2 ∈ B which have the same distance profile. Now we choose w := b1 and show
that for any set D ⊆ V (G) with |D| 6 k, D r-dominates Z if and only if D r-dominates Z − {b1}.

The direction from left to right is obvious. Now, suppose D r-dominates Z − {b1}. Consider
the sets Wi := NG−S

r [bi] for i ∈ {2, . . . , k + 2}. Since B is 2r-independent in G − S, the sets Wi

are pairwise disjoint. Since there are k + 1 of these sets, at least one of them, say Wj , does not
contain any element of D. However, since bj ∈ Z − {b1} and D r-dominates Z − {b1}, there is a
path of length at most r from some element x ∈ D to bj . This path must, therefore, go through
an element of S. Since b1 and bj have the same r-distance profiles on S, we conclude that there is
also a path of length at most r from x to b1 and therefore D r-dominates Z.

An immediate corollary of Lemma 14 is that we can always find a small domination core. Simply
start with Z = V (G), which is an r-domination core vacuously, and apply the above procedure to
remove an irrelevant dominatee from the r-domination core Z until |Z| 6 N

(
(k + 2)(r + 1)s, 2r

)
.
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Figure 4: Situation in the proof of Lemma 14.

Corollary 15. There is an algorithm running in polynomial time that given a graph G ∈ C computes
an r-domination core of G for parameter k of size at most N

(
(k + 2)(r + 1)s, 2r

)
.

Having a small domination core is already sufficient to design an efficient parameterized algo-
rithm for the problem, via standard dynamic programming on subsets.

Lemma 16. Given a graph G with n vertices and m edges, vertex subset Z, and radius r ∈ N, one
can compute domr(G,Z) in time 2|Z| · |Z|O(1) · (n+m).

Proof. First, we compute the distance dist(u, z) for all u ∈ V (G) and z ∈ Z; for this it suffices
to run a breadth-first search from each vertex of Z, which takes time O(|Z|(n + m)). Thus, we
may assume that with each vertex u ∈ V (G) we store the set Lu := N r

G[u] ∩ Z of vertices of
Z r-dominated by u. Let us enumerate V (G) as u1, u2, . . . , un. We shall compute the following
dynamic programming table: for 0 6 i 6 n and X ⊆ Z, we define

D[i,X] := smallest size of a subset of {u1, . . . , ui} that r-dominates X.

It is clear that D[0, ∅] = 0 and D[0, X] =∞ for X 6= ∅. Moreover, the following recurrence is easy
to verify:

D[i,X] = min (D[i− 1, X] , 1 + D[i− 1, X − Lui ]) .

The arguments of the minimum respectively correspond to the cases when ui is not taken or taken
to the constructed solution. Using this recurrence it is straightforward to compute all the values of
D[i,X] by iterating through all i from 1 to n. Then the value D[n,Z] is equal to domr(G,Z).

Corollary 17. For any nowhere dense class C, the r-Dominating Set problem on an n-vertex
graph from C can be solved in time f(r, k) · nc for some function f and a universal constant c,
indepndent of C.

Proof. Using Corollary 15, in polynomial time compute an r-domination core Z in G of size at most
g(r, k), for some function g depending only on C. By definition of an r-domination core we have
that domr(G) 6 k if and only if domr(G,Z) 6 k. Then use Lemma 16 to compute domr(G,Z) in
time 2g(r,k) · g(r, k)O(1) · n2, and check whether it is not larger than k.

We now move to the second algorithmic corollary, namely reducing the instance size to a function
of k and r. For this, we need to reduce the number of dominators, that is, the number of vertices
that shall be used to dominate other vertices. Obviously, only vertices at distance at most r to a
vertex from the r-domination core are relevant. Furthermore, if there are two vertices v, v′ ∈ V (G)
with Nr[v] ∩ Z = Nr[v

′] ∩ Z, it suffices to keep one of u and v as a representative.
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Theorem 18. Suppose C is a nowhere dense class of graphs. Then there exists a polynomial time
algorithm that on input G ∈ C and r, k ∈ N computes an induced subgraph H ⊆ G and a vertex
subset Z ⊆ V (H) such that domr(G) 6 k if and only if domr(H,Z) 6 k. Furthermore, H has size
bounded by a function of k and r only.

Proof. Using the algorithm of Corollary 15, we first compute an r-domination core Z in G of size
at most N

(
(k + 2)(r + 1)s, 2r

)
.

Now, for every vertex v ∈ V (G) we compute the set Lv := NG
r [v] ∩ Z. Consider two vertices

v, v′ ∈ V (G) equivalent if Lv = Lv′ . Clearly, the number of equivalence classes of this relation
is at most 2|Z|, hence let A be any set of at most 2|Z| vertices containing one element from each
equivalence class. Finally, construct a set W as follows: start with putting A∪Z into W and then,
for every pair of vertices u, v ∈ A∪Z, if distG(u, v) 6 r then add the vertices of any path of length
at most r between u and v to W . Clearly the size of W computed in this manner is bounded
by a function of k and r only, and we are left with verifying that H := G[W ] and Z satisfy the
asserted property: domr(G) 6 k iff domr(H,Z) 6 k. Since Z is an r-domination core in G, we
have domr(G) 6 k iff domr(G,Z) 6 k. Hence, it suffices to prove that domr(G,Z) = domr(H,Z).

In one direction, if D ⊆ V (H) r-dominates Z in H, then D also r-dominates Z in G, because
H is an induced subgraph of G. This proves that domr(G,Z) 6 domr(H,Z).

In the other direction, take any D ⊆ V (G) that r-dominates Z in G. For each x ∈ D, some
vertex x′ that is equivalent to x has been included in A. Let D′ := {x′ : x ∈ D}; clearly |D′| 6 |D|
and D′ ⊆ A ⊆W . It is now straightforward to see that D′ r-dominates Z in H, since for each x ∈ D
the corresponding vertex x′ ∈ D′ r-dominates exactly the same vertices of Z in H as x r-dominated
in G. This is because we explicitly added to H a path of length at most r between x′ and every
vertex of Z that was r-dominated by x′ in G. This proves that domr(G,Z) > domr(H,Z), ergo
domr(G,Z) = domr(H,Z) and we are done.

Again, the size of the “kernel” (H,Z) provided by Theorem 18 may be impractical. However,
in the next section we will refine this result by showing that, for bounded expansion classes, the
kernel size may be reduced to linear in k. For nowhere dense classes, the size may be reduced to
almost linear, but this is a more difficult result (but not much more difficult).

6 Linear kernelization for r-Dominating Set

We will now improve the conclusion of Theorem 18 by proving that in bounded expansion classes
one may compute a kernel for the r-Dominating Set problem whose size is linear in k, the target
size of the r-dominating set. More precisely, our goal in this section is the following theorem.

Theorem 19. Let C be a class of bounded expansion and let r ∈ N be fixed. Then there exists a
polynomial-time algorithm that, given a graph G ∈ C and k ∈ N, either correctly concludes that
domr(G) > k, or computes an induced subgraph H of G and a subset of its vertices Z ⊆ V (H) such
that domr(G) = domr(H,Z) and |V (H)| 6 ck for some constant c depending only on C and r.

The proof of Theorem 19 will essentially involve all the tools that we have seen so far during this
course. The main ingredients will be (a) the approximation algorithm for r-Dominating Set, (b)
neighborhood complexity, and (c) uniform quasi-wideness. We will also need a number of technical
lemmas that were given during the tutorials. We recall and formally prove them first.
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6.1 Toolbox

We will work with the concepts of projections and projection profiles, which appeared at least twice
during tutorials: once in the beginning in the context of the so-called Projection Closure lemma,
and then in the context of neighborhood complexity. The setting is as follows. Let G be a graph
and let A be a subset of vertices of G. A path P connecting some u ∈ V (G)−A with some a ∈ A is
called A-avoiding if all vertices traversed by P , apart from the endpoint a, do not belong to A. For
r ∈ N, the r-projection of a vertex u ∈ V (G)−A onto A, denoted Mr(u,A), is the set of all vertices
of A reachable from u by an A-avoiding path of length at most r. The r-projection profile of a
vertex u ∈ V (G)−A on A is the function µr[u,A] : A→ {1, . . . , r,∞} defined as follows: for a ∈ A,
the value µr[u,A](a) is the length of a shortest A-avoiding path connecting u and a, or ∞ if this
length is larger than r. Thus Mr(u,A) = (µr[u,A])−1({1, . . . , r}). A function f : A→ {1, . . . , r,∞}
is realized as an r-projection profile on A if there exists u ∈ V (G)−A such that f = µr[u,A].

During the previous lectures we have seen that in a bounded expansion class, the number of
different r-distance profiles on a set A is bounded linearly in the size of A. During the tutorials we
have lifted this argument to r-projection profiles.

Lemma 20. Let C be a class of bounded expansion and let r ∈ N. There exists a constant c,
depending only on C and r, such that for every G ∈ C and nonempty A ⊆ V (G), the number of
different functions from A to {1, . . . , r,∞} realized as r-projection profiles on A is at most c|A|.

Proof. Take any G ∈ C and A ⊆ V (G). Construct G′ from G by removing all edges with both
endpoints in A and subdividing 2r times every edge with exactly one endpoint in A. Vertices of
G are naturally identified with the corresponding vertices of G′. It is straightforward to see that
for every vertex u ∈ V (G) − A, its r-projection profile in G, µGr [u,A], is equal to its 3r-distance
profile in G′, πG

′
3r [u,A], where all finite values are shifted by 2r. Observe also that if C has bounded

expansion, then the class C′ comprising graphs obtained from graphs from C by subdividing every
edge an arbitrary number of times also has bounded expansion; this is because every depth-r minor
of a graph from C′ can be obtained from a depth-r minor of a graph from C by adding vertices
of degree 2 only. Thus G′ ∈ C′, hence the number of different 3r-distance profiles on A in G′ is
bounded by c|A|, for some constant c depending only on C and r. Consequently, the number of
different r-projection profiles on A in G is also bounded by c|A|.

Of course, Lemma 20 also shows that in a graph from class of bounded expansion the number of
different r-projections on a set A is bounded linearly in |A|. Next, we will need the aforementioned
Projection Closure Lemma. Intuitively, it says that every vertex subset can be “closed” to a set
that admits r-projections only of bounded size, at the cost of blowing up the size linearly.

Lemma 21 (Projection Closure Lemma). Let C be a class of bounded expansion and let r ∈ N.
Then there exists a constant c and a polynomial-time algorithm that, given a graph G ∈ C and a
vertex subset A ⊆ V (G), computes a vertex subset A′ ⊇ A such that |A′| 6 c|A| and |Mr(u,A

′)| 6 c
for all u ∈ V (G)−A′.

Proof. Let d = d2∇r−1(C)e. We perform an iterative procedure which maintains a graph H,
initially set to G, and a subset of its vertices B, initially set to A. Every iteration of the procedure
works as follows. Check whether there exists a vertex u ∈ V (H) − B with |Mr(u,B)| > d. If this
is not the case, terminate the procedure outputting H and B. Otherwise, select any d distinct
vertices b1, . . . , bd from Mr(u,B) together with A-avoiding paths P1, . . . , Pd of length at most r,
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where Pi connects u with bi. Modify H by contracting the subgraph
⋃d

i=1 Pi−{bi} onto u, add the
vertex resulting from this contraction to B, and proceed with the iteration. It is straightforward
to implement this procedure in polynomial time.

Observe that during the above procedure, each contraction affects only vertices not belonging
to B and the vertex resulting from the contraction is being put into B, so it does not participate in
any further contractions. Moreover, each contraction is applied to a connected subgraph of radius
r−1. It follows that throughout the procedure, we maintain the invariant that H is a depth-(r−1)
minor of G.

We claim that the procedure terminates after at most |A| iterations. Suppose otherwise, and
let H and B be the state after |A|+ 1 iterations. In particular B consists of 2|A|+ 1 vertices: |A|
original vertices of A and |A|+1 vertices resulting from contractions that were added in subsequent
iterations. Observe that each added vertex u, at the moment of adding it to B, brought at least d
edges to H[B]; these are edges connecting it to b1, . . . , bd, in the notation from the description of
the procedure. It follows that after 2|A|+ 1 iterations, the graph H[B] contains at least d(|A|+ 1)
edges. However, this means that

|E(H[B])|
|V (H[B])|

>
d(|A|+ 1)

2|A|+ 1
>
d

2
> ∇r−1(C),

which contradicts the fact that H is a depth-(r − 1) minor of G.
Let then H and B be the results of the procedure, returned by it at the moment of termination.

Note that each vertex b ∈ B is either an original vertex of A or has been obtained by contracting
a subgraph of G on at most d(r − 1) + 1 vertices. In the latter case, let φ(b) be the set of vertices
of this subgraph (that was contracted onto b). In the former case, when b ∈ A, we let φ(b) = {b}.
Thus |φ(b)| 6 d(r − 1) + 1 for all b ∈ B.

Let now A′ :=
⋃

b∈B φ(b). Clearly A ⊆ A′ ⊆ V (G) and we have

|A′| 6 (d(r − 1) + 1) · |B| 6 2(d(r − 1) + 1) · |A|.

Thus, it suffices to prove that the r-projections on A′ of vertices from V (G)−A′ have sizes bounded
by a constant. Take any u ∈ V (G′)−A′; observe that V (G′)−A′ = V (H)−B, so u is also a vertex
of V (H)−B. By the condition of termination of the procedure, we have that |MH

r (u,B)| < d. On
the other hand, it is straightforward to see that MG′

r (u,A′) ⊆
⋃

b∈MH
r (u,B) φ(b). This is because

under the contractions that yield H from G, every A′-avoiding path in G connecting u with a vertex
of φ(b) is mapped to a B-avoiding path in H of the same length connecting u with b. Hence,

|MG′
r (u,A′)| 6 (d(r − 1) + 1) · |MH

r (u,B)| < d(d(r − 1) + 1).

Concluding, it suffices to take c := max(2(d(r − 1) + 1), d(d(r − 1) + 1)).

The last tool that we will use is another closure lemma. This time we are concerned about
finding a small superset of a given vertex subset A that is sufficient to preserve distances, up
to threshold r, between elements of A. During the tutorials we first gave a proof of this results
using Projection Closure Lemma and lexicographic products. Then, in the third homework we
suggested another proof using generalized coloring numbers. We now give the second proof, as it
is conceptually simpler.
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Lemma 22 (Shortest Paths Closure Lemma). Let C be a class of bounded expansion and let r ∈ N.
Then there exists a constant c and a polynomial-time algorithm that, given a graph G ∈ C and a
vertex subset A ⊆ V (G), computes a vertex subset A′ ⊇ A such that |A′| 6 c|A| and whenever
distG(u, v) 6 r for some u, v ∈ A, then also distG[A′](u, v) = distG(u, v).

Proof. As we discussed in the previous lectures, we may in polynomial time compute a vertex
ordering σ of G such that wcolr(G, σ) 6 d for some constant d depending only on C and r. Now,
for every vertex a ∈ A let La ⊆ V (G) be constructed as follows: for every u ∈ WReachr[G, σ, a],
add to La the vertex set of an arbitrarily chosen shortest path from a to u. As each of these paths
brings at most r vertices to La apart from a itself, we have |La| 6 1 + rd.

Now define A′ :=
⋃

a∈A La. Clearly |A′| 6 (1 + rd)|A|, so we will put c := 1 + rd. It remains
to prove the last assertion about A′. For this, take any u, v ∈ A with distG(u, v) 6 r. Obviously
distG[A′](u, v) > distG(u, v), since G[A′] is an induced subgraph of G, hence we only need to prove
the converse inequality. Let P be any shortest path between u and v and let w be the vertex of
P that is the smallest in σ. The prefix of P from u to w and the suffix of P from w to v witness
that w ∈ WReachr[G, σ, u] ∩WReachr[G, σ, v]. Consequently, A′ contains the vertex sets of some
shortest paths (in G) between u and w and between u and v. Therefore, we have

distG[A′](u, v) 6 distG[A′](u,w) + distG[A′](w, v) = distG(u,w) + distG(w, v) = distG(u, v),

where the last equality follows from the fact that w lies on a shortest path from u to v.

6.2 Phase 1: reducing dominatees

Similarly as in the previous section, the kernelization algorithm will proceed in two phases. First,
we reduce dominatees — intuitively, a dominatee is a vertex that is required to be dominated, and
we iteratively remove these constraints from vertices until only a linear number of dominatees is
left. Second, we reduce dominators — vertices that may be taken to an r-dominating set. Once
we have only a linear number of dominatees and dominators, all the other vertices may only serve
the purpose of describing the metric in the graph. As made explicit in the Shortest Paths Closure
Lemma, we only need to preserve a linear number of them to represent faithfully distances between
dominators and dominatees.

In this subsection we give the first, main phase of the algorithm: reduction of dominatees. From
now on we fix a class of bounded expansion C, graph G ∈ C, radius r ∈ N, and target dominating
set size k ∈ N.

The concept of dominatees is made formal via the notion of a domination core, as in the previous
section. Unfortunately, due to technical reasons that will become clear later, we will need a slightly
different definition of a core, which we shall call a strict core for clarity. For convenience, we
introduce the following notation. For a vertex subset Z ⊆ V (G), a dominator of Z is any subset
of vertices D that r-dominates Z; recall that the size of a smallest dominator of Z is denoted by
domr(G,Z). A dominator of Z is optimal if it has the minimum possible size domr(G,Z).

Definition 5. A strict core in G is any subset of vertices Z ⊆ V (G) such that every optimal
dominator of Z is also an r-dominating set of G.

Observe that the above definition does not say anything about suboptimal dominators of Z;
they might not be r-dominating sets of G. It is only required that any set that r-dominates Z
optimally is automatically an r-dominating set in G. The following observation is straightforward.
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Lemma 23. If Z is a strict core in G then domr(G,Z) = domr(G).

Proof. Clearly domr(G,Z) 6 domr(G), because in the former we only need to r-dominate a subset
of vertices. On the other hand, since every optimal dominator of Z is also an r-dominating set in
G, we have domr(G,Z) > domr(G).

Throghout the rest of this section we will present an irrelevant dominatee rule: in a large strict
core Z we may always find, in polynomial time, a vertex that can be safely removed from Z. This
is made formal in the following lemma.

Lemma 24. There is a constant c, depending only on C and r, such that given a vertex subset Z
with |Z| > ck and a guarantee that Z is a strict core, one can in polynomial time either correctly
conclude that domr(G) > k or find a vertex z ∈ Z such that Z − {z} is also a strict core.

As before, we may start with Z = V (G), which is trivially a strict core, and remove vertices
from Z one by one using the algorithm of Lemma 24 until the size of the strict core at hand is at
most ck. Thus, Lemma 24 immediately implies the following.

Lemma 25. There is a constant c, depending only on C and r, such that one can in polynomial
time either correctly conclude that domr(G) > k or compute a strict core Z in G of size at most ck.

We now proceed with the proof of Lemma 24, so we assume that we are given a subset of
vertices Z with |Z| > ck and a guarantee that Z is a strict core. The value of the constant c will be
determined in the course of the proof, and it will be a function of multiple other constants depending
on C and r, given by various tools that we will use. Each of them will be denoted by c with a
subscript succinctly describing the origin of the constant. We describe how to combinatorially find
a vertex z that can be excluded from the strict core Z; the proof can be trivially turned into a
polynomial-time algorithm.

The first move is to apply the approximation algorithm for r-Dominating Set. Recall that in
the fifth lecture we gave a polynomial-time algorithm that, given a graph G from a fixed bounded
expansion class C and radius r ∈ N, computes an r-dominating set inG of size at most capx·domr(G),
for some constant capx depending only on C and r. Apply this algorithm to G and let Dapx be the
obtained r-dominating set in G. If |Dapx| > capxk, then we are sure that domr(G) > k and we
may terminate the algorithm and report this result. Thus, from now on we may assume that
|Dapx| 6 capxk.

Next, we apply the Projection Closure Lemma to Dapx for parameter 3r, yielding its superset
A ⊇ Dapx with the following properties: |A| 6 cprj|Dapx| and every 3r-projection on A of a vertex
outside of A has size at most cprj, for some constant cprj depending only on C and r. Observe that
thus |A| 6 cprjcapxk and A is also an r-dominating set in G, as it contains Dapx.

Now let us examine the set Z ′ := Z − A. We classify the vertices of Z ′ according to their
3r-projections on A. More precisely, we define following equivalence relation: for u, v ∈ Z ′, we put

u ∼ v if and only if µ3r(u,A) = µ3r(v,A).

By Lemma 20, the number of equivalence classes of ∼ is bounded by cnei · |A| for some constant
cnei depending only on C and r. Note that this number is upper bounded by cneicprjcapxk.

Now suppose that we have c = cneicprjcapxc
′+cprjcapx, for some constant c′ that we will determine

later. Since |Z| > ck and |A| 6 cprjcapxk, we have |Z ′| > cneicprjcapxc
′ · k. Since ∼ has at most
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Figure 5: The structure exposed in the proof of Lemma 24. We have a set A of size O(k) that is
an r-dominating set in G and 3r-projections onto it are of constant size. We partition vertices of
V (G)−A according to 3r-projection profiles on A and, provided Z is large, we find an equivalence
class C (yellow and red vertices) consisting of a large (super-constant) number of elements of Z−A
with exactly the same 3r-projection M on A. To find an irrelevant dominatee among them, we
apply uniform quasi-wideness to highlight a large subset C ′ ⊆ C (red vertices) that becomes 2r-
independent in G−S, for some set S (crossed out) of bounded size. We will later filter C ′ according
to r-distance profiles on S, but this is not depicted.

cneicprjcapxk equivalence classes, there is an equivalence class C that has more than c′ elements.
From now on we will focus on the equivalence class C and find the irrelevant dominatee there.

The intuition now is that we have a really large set C of elements of Z that need to be r-
dominated by any dominator of Z, and all of them have the same 3r-projection (profile) on A.
Since A is an r-dominating set, this 3r-projection is nonempty, while the Projection Closure Lemma
ensures us that it is also of size bounded by cprj. Hence there is a very cheap way to r-dominate all
the vertices of C: just take all the vertices of this 3r-projection. We now would like to show that
every optimal dominator of Z needs to, roughly, use this way of r-dominating C, as other ways
would be suboptimal. Moreover, exclusion of any vertex z from C still forces such behavior, so the
optimal r-domination of C − {z} automatically forces r-domination of z as well due to equality of
projection profiles.

This intuition is not entirely accurate, as we need to dig a bit more for the irrelevant dominatee.
More precisely, this is the moment when we apply uniform quasi-wideness, to find a large 2r-
independent subset of C. Since C has bounded expansion, it is also nowhere dense, so it is also
uniformly quasi-wide. Therefore, invoking uniform quasi-wideness for radius 2r, there exists a
constant s and a function N(m) such that provided |C| > N(m), we may find in polynomial time
sets S ⊆ V (G) and C ′ ⊆ C − S with |S| 6 s, |C ′| > m, and C ′ being 2r-independent in G − S.
We shall apply this for m = (cprj + 1)(r + 2)s, so we accordingly set c′ := N((cprj + 1)(r + 2)s).
More precisely, by putting c′ as above we can find sets S and C ′ with asserted properties and
|C ′| > (cprj + 1)(r + 2)s.

We finally classify the vertices of C ′ according to their r-distance profiles on S. Precisely,
since |S| 6 s, the number of different r-distance profiles on S is bounded by (r + 2)s. Since
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|C ′| > (cprj + 1)(r + 2)s, there is a subset C ′′ ⊆ C ′ of size at least cprj + 2 such that all elements of
C ′′ have the same r-distance profiles on S.

We now claim that any vertex z ∈ C ′ is an irrelevant dominatee: precisely, for any fixed z ∈ C ′
it holds that Z −{z} is still a strict core. For this, take any optimal dominator D of Z −{z} in G.
If D in addition r-dominates z, then D is also an optimal dominator of Z and, by the assumption
that Z is a strict core, D is an r-dominating set of G. We are left with examining the case when
D does not r-dominate z. In this case we will derive a contradiction with the optimality of D.

For every z′ ∈ C ′′ − {z}, let us fix any vertex dz′ ∈ D that r-dominates z′ and any path Pz′ of
length at most r connecting z′ with dz′ .

Claim 1. For each z′ ∈ C ′′ − {z} we have that Pz′ is disjoint from A ∪ S.

Proof. Suppose that Pz′ intersects A ∪ S and let u be the vertex of V (P ) ∩ (A ∪ S) that is the
closest (on Pz′) to z′. If u ∈ A then, by the equality of 3r-projection profiles of z and z′ on A,
we infer that d also r-dominates z; a contradiction. On the other hand, if u ∈ S then the same
contradiction follows from the equality of r-distance profiles of z and z′ on S. y

As Pz′ is disjoint from S, we have that dz′ belongs to the r-neighborhood of z′ in G − S.
However, C ′′ ⊆ C ′ is 2r-independent in G− S, so these r-neighborhoods are pairwise disjoint. We
infer that vertices dz′ are pairwise different for z′ ∈ C ′′ − {z}, so in particular there is at least
|C ′′| − 1 > cprj + 1 of them.

Let M be the (common) 3r-projection of vertices of C onto A. Recall that by the Projection
Closure Lemma we have |M | 6 cprj, and M is nonempty since A is an r-dominating set in G. Now
construct D′ from D by removing all vertices dz′ for z′ ∈ C ′′ − {z} and adding all vertices of M .
Thus we remove at least cprj + 1 vertices and add at most cprj, yielding |D′| < |D|. To obtain now
a contradiction it suffices to prove the following.

dz′

z′

Pz′

Q

a

w

R

Figure 6: Situation in the proof of Claim 2.

Claim 2. The set D′ is a dominator of Z.

Proof. Since M , the common 3r-projection of vertices of C on A, is nonempty and has been
explicitly included in D′, we have that D′ r-dominates every vertex of C, in particular z. Let us
then take any w ∈ Z − {z}; we need to prove that D′ still r-dominates w. Let d be a vertex of D
that r-dominates w; such d exists since D was a dominator of Z − {z} by assumption. If d is not
among {dz′ : z′ ∈ C ′′−{z}}, then d is still contained in D′ and then D′ r-dominates w. So suppose
otherwise: d = dz′ for some z′ ∈ C ′′ − {z}. Let Q be any path of length at most r from w to d
and let R be any path of length at most r from w to a vertex a ∈ A; such path R exists since A
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is an r-dominating set in G. Examine the walk W defined as the concatenation of paths Pz′ , Q,
and R, in this order. This is a walk of length at most 3r that connects z′ with a vertex a ∈ A. Let
a′ be the first (closest to z′) vertex of A on W . Then the prefix of W from z′ to a′ witnesses that
a′ ∈M , so in particular a′ is included in D′. Vertex a′ cannot lie on Pz′ , since Pz′ is disjoint from
A by Claim 1. Therefore, a′ lies on Q ∪ R. However, all vertices of Q ∪ R are at distance at most
r from w, because Q and R are paths of length at most r, hence a′ ∈ D′ r-dominates w. y

To summarize, Claim 2 implies that the case when D does not r-dominate z is impossible,
implying that every optimal dominator of Z − {z} is also an optimal dominator of Z, and hence it
is an r-dominating set in G. For the argument to be applicable we needed to set

c′ := N((cprj + 1)(r + 2)s) and c := cneicprjcapxc
′ + cprjcapx,

where s and N(·) are margins governing uniform quasi-wideness of C for radius 2r. We conclude
that for such c Lemmas 24 and 25 hold.

6.3 Phase 2: reducing dominators

Once we we have reduced the number of dominatees to linear in k, we will reduce the number of
dominators in one shot similarly as before. Let Z ⊆ V (G) be a strict core of size at most ccorek
obtained by applying the algorithm of Lemma 25; throughout this section we rename the constant
c given by Lemma 25 to ccore to avoid confusion. The intuition is that now we care only about
dominating vertices in Z. Hence, any two vertices of G that have the same r-neighborhood in Z
are functionally equivalent, as they dominate the same subset of Z. Hence, we need to preserve
only one of them.

To formalize this intuition, we introduce the following equivalence relation on V (G): for u, v ∈
V (G), we put

u ∼ v if and only if Nr[u] ∩ Z = Nr[v] ∩ Z.

As we know from previous lectures, the number of equivalence classes of ∼ is bounded by cnei|Z|
for some constant cnei depending only on C and r. This means that ∼ has at most cneiccore · k
equivalence classes.

For each class C of ∼, arbitrarily select any its member dC ∈ C. Let

W := Z ∪ {dC : C is an equivalence class of ∼}.

Finally, apply Shortest Paths Closure Lemma to W , yielding a set W ′ with |W ′| 6 cspc|W | for
some constant cspc depending only on C and r, such that distG(u, v) 6 r for u, v ∈ W entails
distG[W ′](u, v) = distG(u, v). Let H = G[W ′]; then |W ′| 6 cspccneiccore · k, so we may set c :=
cspccneiccore. We are left with verifying that H and Z indeed satisfy all the required properties; the
proof is essentially advanced symbol pushing.

Claim 3. It holds that domr(H,Z) = domr(G).

Proof. We first prove that domr(H,Z) > domr(G). Since H is an induced subgraph of G, every
dominator of Z in H is also a dominator of Z in G, implying domr(H,Z) > domr(G,Z). However,
Z is a strict core in G, so domr(G,Z) = domr(G) by Lemma 23.

We now prove that domr(H,Z) 6 domr(G). Take any r-dominating set D in G, say of optimum
size domr(G). By the construction of W , for every d ∈ D there is some d′ ∈ W with d ∼ d′. Let
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D′ := {d′ : d ∈ D}; clearly |D′| 6 |D| = domr(G). By the definition of ∼ we have that D′ is still a
dominator of Z in G, because every vertex d′ ∈ D′ r-dominates the same vertices of Z as d ∈ D.
Moreover, D′ is a dominator of Z in H as well. This is because for every d′ ∈ D′ and every z ∈ Z
that is r-dominated by d′ in G, we have that distG(d′, z) 6 r and d′, z ∈ W , which implies that
distH(d′, z) = distG(d′, z) 6 r by the Shortest Paths Closure Lemma. We conclude that in H there
is a dominator of Z of size at most domr(G), implying domr(H,Z) 6 domr(G). y

Claim 3 finishes the proof of Theorem 19.

6.4 Concluding remarks

The proof presented above combines many different tools that we have learnt to give a preprocessing
algorithm for r-Dominating Set on any class of sparse graphs (formally, for any class of bounded
expansion). The outcome of the algorithm is guarenteed to be of size linear in the target budget
k, although the constant standing in front is, let’s say, impractical.

It is natural to ask whether a similar preprocessing algorithm can be given for nowhere dense
graph classes; the outcome, as usual, should be of size f(ε)·k1+ε for any ε > 0, instead of linear in k.
This is indeed true and the proof follows exactly the same strategy. The main difference is that all
constants (apart from s, the bound on the number of removed vertices in uniform quasi-wideness)
will be replaced by bounds of the form f(ε) · kε for any ε > 0. We need to be, however, careful
that we do not use any reasonings that involve exponential functions of these “quasi-constants”. In
particular, we need to use neighborhood complexity for nowhere dense classes, which is significantly
more difficult than for classes of bounded expansion, and when applying uniform quasi-wideness
we need to know that the function N(m) can be chosen to be polynomial in m — which does not
follow from the proof we gave. During the next lectures we will give an introduction to tools using
which these gaps can be filled.
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