Sparsity — homework 6 VC dimension, polynomial expansion, deadline: February 1st, 2018, 14:15 CET **Problem 1.** A graph class \mathcal{C} has bounded doubling dimension if there exists a number $M \in \mathbb{N}$ such that the following holds: for every graph $G \in \mathcal{C}$ and every integer $r \geq 1$, every ball of radius r in G can be covered by at most M balls of radius $\lfloor r/2 \rfloor$. Prove that every class with bounded doubling dimension has polynomial expansion. Note: A ball of radius r in a graph G is a set of vertices of the form $\{u : \operatorname{dist}_G(u,v) \leq r\}$ for some $v \in V(G)$. Note that balls of radius 0 are single vertices. **Problem 2.** Consider the λ -local search algorithm for the r-INDEPENDENT SET problem: start with an arbitrary solution and as long as there is an improvement step consisting of removing and adding at most λ vertices to the current solution, apply it. Prove that for every $r \in \mathbb{N}$, $\epsilon > 0$, and class \mathcal{C} of polynomial expansion there exists a constant $\lambda \in \mathbb{N}$, depending only on r, ϵ , and \mathcal{C} , such that λ -local search yields a $(1 - \epsilon)$ -approximation algorithm for r-INDEPENDENT SET on graphs from \mathcal{C} . More precisely, λ -local search applied on any graph $G \in \mathcal{C}$ computes an r-independent set of size at least $1 - \epsilon$ times the largest size of an r-independent set in G. **Problem 3.** Fix $d \in \mathbb{N}$. Consider the set system \mathcal{F} of half-spaces over the vector space \mathbb{R}^d : for each non-zero vector $w \in \mathbb{R}^d$ and $c \in \mathbb{R}$, include in \mathcal{F} the half-space $$A_{w,c} := \{ v \in \mathbb{R}^d \colon \langle v, w \rangle \leqslant c \},\$$ where $\langle \cdot, \cdot \rangle$ denotes the scalar product. Prove that the VC dimension of \mathcal{F} is equal to d+1. Note: The definition of VC dimension works equally well when the ground set is infinite. Also, note that the task consists of an upper and a lower bound.