Sparsity — homework 3

Generalized coloring numbers, deadline: November 20th, 2017, 14:15 CET

Problem 1. Let $r \in \mathbb{N}$, let G be a graph, and let σ be a vertex ordering of G. Consider the following algorithm. Every vertex $u \in V(G)$ picks v(u) to be the smallest vertex of WReach $_r[G, \sigma, u]$ in the ordering σ . Then, define D as the set of those vertices that have been picked by any vertex; that is, $D := \{v(u) : u \in V(G)\}$.

Prove that D is an r-dominating set of G that moreover satisfies $|D| \leq \operatorname{wcol}_{2r}(G, \sigma) \cdot \operatorname{dom}_r(G)$.

Problem 2. Let \mathcal{I}_k be the class of intersection graphs of families of closed intervals on a line with ply at most k. In other words, a graph G belongs to \mathcal{I}_k if and only if we can associate a closed interval $I_u \subseteq \mathbb{R}$ with every vertex $u \in V(G)$ such that $uv \in E(G)$ if and only if $I_u \cap I_v \neq \emptyset$, and no $x \in \mathbb{R}$ belongs to more than k intervals from $\{I_u\}_{u \in V(G)}$.

Prove that $\operatorname{wcol}_r(\mathcal{I}_k) \leqslant \binom{r+k-1}{r}$ for all $r \in \mathbb{N}$.

Problem 3. For a graph G, integer $r \in \mathbb{N}$, and a vertex subset $A \subseteq V(G)$, an r-shortest path closure of A is any $B \supseteq A$ such that for all $u, v \in A$ with $\operatorname{dist}_G(u, v) \leqslant r$, we have $\operatorname{dist}_{G[B]}(u, v) = \operatorname{dist}_G(u, v)$. Prove that for every class C of bounded expansion and integer $r \in \mathbb{N}$, there exists a constant $c \in \mathbb{N}$, depending on C and r, such that the following holds. For every graph $G \in C$, one may assign to each vertex $u \in V(G)$ a set $L_u \subseteq V(G)$ with $|L_u| \leqslant c$, such that for every vertex subset $A \subseteq V(G)$, the set $B := \bigcup_{u \in A} L_u$ is an r-shortest path closure of A.