Parameterized algorithms — tutorial 9 Cut problems

Let us recall definition of important cut. Let G be an undirected graph and let $X,Y\subseteq V(G)$ be two disjoint sets of vertices. Let $S\subseteq E(G)$ be an (X,Y)-cut and let R be the set of vertices reachable from X in $G\setminus S$. We say that S is an important (X,Y)-cut if it is inclusion-wise minimal and there is no (X,Y)-cut S' with $|S'|\leqslant |S|$ such that $R\subset R'$, where R' is the set of vertices reachable from X in $G\setminus S'$.

Problem 1. Prove that bound 4^k for number of important (X,Y)-cuts of size at most k is optimal up to polynomial factor i.e. show an example where we have at least $4^k k^{-O(1)}$ important (X,Y)-cuts of size at most k.

Problem 2. In Edge Multiway Cut we are given a graph G, set of terminals $T = \{t_1, \ldots, t_{|T|}\}$ and a nonnegative integer k and we are asked whether it is possible to find set $S \subseteq E(G)$ so that $|S| \leq k$ and every connected component of $G \setminus S$ contains at most one terminal. Prove that we can solve Edge Multiway Cut problem on trees in polynomial time.

Problem 3. In EDGE MULTICUT problem we are given a graph G, pairs of vertices $(s_1, t_1), \ldots, (s_l, t_l)$ and a nonnegative interger k and we are asked whether there is a set $S \subseteq E(G)$ so that $|S| \le k$ and for every $1 \le i \le l$ there is no path between s_i and t_i in $G \setminus S$.

Prove that we can solve EDGE MULTICUT problem on trees in $\mathcal{O}^*(2^k)$ time.

In (p,q)-Partition problem we are given a graph G and integers p and q and we are asked whether there exists partition of V(G) into disjoint sets V_1, \ldots, V_k (called *clusters*) so that for every $1 \le i \le k$ we have that $|V_i| \le p$ and $d(V_i) \le q$ where d(X) for $X \subseteq V(G)$ is number of edges with exactly one end in X.

In exercises 4-8 we are going to prove that (p,q)-Partition is FPT when parametrized by q.

Problem 4. Let $f: 2^{V(G)} \to \mathbb{R}$ be called *posimodular* iff for every $A, B \subseteq V(G)$ it satisfies $f(A) + f(B) \ge f(A \setminus B) + f(B \setminus A)$. Prove that function d(X) is posimodular.

Problem 5. For (p,q)-Partition problem to have solution there is an obvious necessary condition that every vertex has to be in some (p,q)-cluster. Prove that this condition is sufficient as well. Deduce that this problem is solvable in $n^{O(q)}$ time.

Problem 6. In SATELLITE PROBLEM we are given a graph G, integers p,q, a vertex $v \in V(G)$ and a partition (V_0,V_1,\ldots,V_r) of V(G) such that $v \in V_0$ and there is no edge between V_i and V_j for any $1 \le i < j \le r$ (note that it's not $0 \le i < j \le r$). The task is to find a (p,q)-cluster C satisfying $V_0 \subseteq C$ such that for every $1 \le i \le r$, either $C \cap V_i = \emptyset$ or $V_i \subseteq C$. Prove that this problem can be solved in polynomial time.

For a given graph G and its vertex v we say that a set $X \subseteq V(G)$ is important if:

- $d(X) \leq q$,
- G[X] is connected,
- there is no $Y \supset X, v \notin Y$ such that $d(Y) \leq d(X)$ and G[Y] is connected.

Problem 7. Let C be an inclusion-wise minimal (p,q)-cluster containing v. Prove that every component of $G \setminus C$ is an important set.

Problem 8. Given an *n*-vertex graph G, vertex $v \in V(G)$, and integers p and q, we can construct in time $2^{O(q)}n^{O(1)}$ an instance I of the SATELLITE PROBLEM such that

- If some (p,q)-cluster contains v, then I is a yes-instance with probability $2^{-O(q)}$,
- If there is no (p,q)-cluster containing v, then I is a no-instance.

Conclude we can solve (p,q)-Partition in $\mathcal{O}^{\star}(2^{O(q)})$.