Parameterized algorithms — tutorial 12 W[1] and W[2]-hardness

Problem P is W[1]-hard when parametrized by k if we can find an FPT-reduction (with parameter k) from CLIQUE to P.

Problem P is W[2]-hard when parametrized by k if we can find an FPT-reduction from DOMI-NATING SET to P.

Problem 1. In Induced Matching problem we are given a graph G, an integer k and we are asked whether there exist 2k vertices x_1, \ldots, x_k and y_1, \ldots, y_k which induce matching, or in other words so that there are no edges between x_i and x_j , no edges between y_i and y_j and there is an edge between x_i and y_j if and only if i = j. Prove that this problem is W[1]-hard when parameterized by k.

Problem 2. In DOMINATING CLIQUE problem we are given a graph G, an integer k and we are asked whether there exists a set $X \subseteq V(G)$ such that |X| = k, G[X] is a clique and N[X] = V(G). Prove that this problem is W[2]-hard when parameterized by k.

In exercises 3-5 we will investigate DOMINATING SET ON TOURNAMENTS problem. In this problem we are given a tournament T (directed graph so that there is an edge between every pair of vertices) and an integer k and we are asked whether there exists a set $X \subseteq V(T)$ such that $|X| \leq k$ and for every $v \in T$ either $v \in X$ or there exists $u \in X$ such that there is an edge (u, v).

Problem 3. Prove that every tournament on n vertices has dominating set of size at most $1 + \log_2(n)$. Conclude that we can solve DOMINATING SET IN TOURNAMENT in quasi-polynomial time (it means $O(n^{polylog(n)})$).

Problem 4. Prove that for every $k \in \mathbb{N}$ there exists a tournament such that it doesn't have dominating set of size at most k. Provide an algorithm that computes example of such tournament in f(k) time.

Hint: Use probabilistic method.

Problem 5. Prove that there exists FPT-reduction from Set Cover to Dominating Set on Tournaments.

Problem 6. In Grid Tiling problem we are given an integer k, an integer n and k^2 sets of pairs $S_{i,j} \subseteq [n] \times [n]$ for $1 \le i, j \le k$. The task is to find for each $1 \le i, j \le k$ a pair $s_{i,j} \in S_{i,j}$ such that for each valid choice of i and j we have that $s_{i,j}$ and $s_{i,j+1}$ agree on first coordinate $s_{i,j}$ and $s_{i+1,j}$ agree on second coordinate. Prove that this problem is W[1]-hard when parameterized by k.

Problem 7. In Unit Disk Independent Set we are given set on disks of diameter 1 on a plane and an integer k and we are asked whether there exist k pairwise disjoint disks. In other words we need to choose k centers so that distance between every pair of them is more than 1. Prove that this problem is W[1]-hard when parameterized by k.