Parameterized algorithms — tutorial 11

Representative sets

Let A be a family of sets of size p. A subfamily $\mathcal{A}' \subseteq \mathcal{A}$ is said to q-represent \mathcal{A} if for every set B of size q such that there is an $A \in \mathcal{A}$ that is disjoint from B, there is an $A' \in \mathcal{A}'$ that also is disjoint from B. If \mathcal{A}' q-represents \mathcal{A} , we write $\mathcal{A}' \subseteq_q^{rep} \mathcal{A}$.

Problem 1. For every p and q, show an example of a p-family \mathcal{A} so that there is no $\mathcal{A}' \subseteq \mathcal{A}$ of size smaller than $\binom{p+q}{p}$ that q-represents \mathcal{A} .

Problem 2. In d-HITTING SET problem we are given integer k, universe U and a family \mathcal{F} of subsets of universe that are of size at most d and we are asked whether there exists a set H such that $\forall_{F \in \mathcal{F}} H \cap F \neq \emptyset$ and $|H| \leq k$. In Ed-HITTING SET problem we additionally require that sets in \mathcal{F} have size exactly d. By using representative sets show that:

- 1. Ed-Hitting Set admits a kernel with at most $\binom{k+d}{d}$ sets
- 2. d-HITTING SET admits a kernel with at most $\binom{k+d}{d}$ sets

Problem 3. In d-SET PACKING problem we are given integer k, universe U and a family \mathcal{F} of subsets of universe that are of size at most d and we are asked whether \mathcal{F} contains k disjoint sets. In Ed-SET PACKING problem we additionally require that sets in \mathcal{F} have size $exactly\ d$. By using representative sets show that:

- 1. Ed-Set Packing admits a kernel with at most $\binom{kd}{d}$ sets
- 2. d-Set Packing admits a kernel with at most $\binom{kd}{d}$ sets

Throwback An (n, k)-universal set is a family \mathcal{U} of subsets of [n] such that for any $S \subseteq [n]$ of size k, the family $\{A \cap S : A \in \mathcal{U}\}$ contains all 2^k subsets of S. For any $n, k \ge 1$ one can construct (n, k)-universal set of size $2^k k^{O(\log k)} \log n$ in time $2^k k^{O(\log k)} n \log n$.

Problem 4. Give an algorithm that, given as input a family \mathcal{A} of sets of size p over a universe of size n, computes a q-representative family \mathcal{A}' of \mathcal{A} . The algorithm should have running time at most $|\mathcal{A}| \cdot 2^{p+q+o(p+q)} n^{O(1)}$ and the size of \mathcal{A}' should be at most $2^{p+q+o(p+q)} \log n$. Can you shave off $\log n$ factor from size of \mathcal{A}' (while not increasing running time significantly)?