Parameterized algorithms — tutorial 10 LP guided branching

Problem 1. Prove that VERTEX COVER ABOVE MATCHING is FPT. In other words prove that if M is maximum matching in graph G then we can determine whether G admits a vertex cover of size k in time $f(k-|M|)|G|^{O(1)}$.

Problem 2. In following exercise we are going to improve algorithm for VERTEX COVER ABOVE LP.

Let us remind that as long as all- $\frac{1}{2}$ solution is not a unique solution to LPVC then we are able to find a different solution to LPVC that partitions $V = V_0 \cup V_{\frac{1}{2}} \cup V$ where $V_0, V_{\frac{1}{2}}$ and V_1 are disjoint and $V_{\frac{1}{2}} \neq V$, takes greedily whole V_1 to vertex cover, disregards V_0 and decreases our budget by $|V_1|$, or in other words reduces instance (G, k) to instance $(G[V_{\frac{1}{2}}], k - |V_1|)$.

For an independent set I let's define its surplus as |N(I)| - |I|.

- 1. Prove that after exhaustively applying mentioned reduction rule there is no independent set with nonpositive surplus.
- 2. Prove that we can either find in polynomial time an independent set of surplus 1 or determine that it doesn't exist.
- 3. Design a reduction rule that exploits existence of independent set of surplus 1. How does measure $\mu(G, k) = k vc^*(G)$ change after this reduction?
- 4. Prove that if our graph doesn't contain independent set of surplus at most 1 then we can improve our estimates for $\mu(G, k)$ in our branching steps. Compute final complexity.

Problem 3. In ODD CYCLE TRANSVERSAL problem we are given a graph G and an integer k and we are asked whether there exists $X \subseteq V(G)$ so that $|X| \leq k$ and $G \setminus X$ is bipartite.

Let G be a graph and let H be a graph created in a following way. Let $V_i = \{v_i | v \in V(G)\}$ for $i \in \{1, 2\}$ and let vertex set of H be $V(H) = V_1 \cup V_2$. Let

$$E(H) = \{v_1v_2 \mid v \in V(G)\} \cup \{u_iv_i \mid uv \in E(G), i \in \{1, 2\}\}.$$

Prove that G admits odd cycle transversal of size k iff H admits vertex cover of size n + k. Deduce that we can solve odd cycle transversal in time $O(2.6181^k n^{O(1)})$.

Problem 4. In Variable Deletion Almost 2-SAT problem we are given 2-CNF formula ϕ and an integer k and we are asked whether we can delete at most k variables from ϕ together with all clauses containing them in order to make ϕ satisfiable.

Prove that Variable Deletion Almost 2-SAT can be solved in $O(2.6181^k n^{O(1)})$ time.