MAG — exercise session 10

FII, protrusions, bidimensionality

Definition 1. A subset property is a set Π of pairs (G,S), where $S \subseteq V(G)$. The property Π is mso-definable if there is an mso-formula $\varphi(X)$ such that $G \models \varphi(S)$ if and only if $(G,S) \in \Pi$. By $\min \langle \Pi \rangle$ we denote the following problem: given G, compute $\mathsf{OPT}_{\Pi}(G) = \min \{ |S| \colon (G,S) \in \Pi \}$.

Definition 2. For a graph property Π , the problem $\min \langle \Pi \rangle$ is *separable* if there exists a function f(p) such that for any two p-interface graphs \mathbb{G} and \mathbb{H} we have the following. If S is any optimum solution for $\min \langle \Pi \rangle$ on $\mathbb{G} \oplus \mathbb{H}$, then

$$|\mathsf{OPT}(\mathbb{G}) - |S \cap V(\mathbb{G})|| \leq f(p).$$

If f(p) is linear, then Π is linear separable.

Problem 1. Prove that the following condition is sufficient to ensure that the property Π is linear separable. For any p and any two p-interface graphs \mathbb{G} and \mathbb{H} , the following implications hold:

- For any $S \subseteq V(\mathbb{G} \oplus \mathbb{H})$, if $(\mathbb{G} \oplus \mathbb{H}, S) \in \Pi$ then $(\mathbb{G}, (S \cap V(\mathbb{G})) \cup \operatorname{int}(\mathbb{G})) \in \Pi$.
- For any $S \subseteq V(\mathbb{G})$, $T \subseteq V(\mathbb{H})$, if (\mathbb{G}, S) , $(\mathbb{H}, T) \in \Pi$ then $(\mathbb{G} \oplus \mathbb{H}, S \cup T \cup \operatorname{int}(\mathbb{G}) \cup \operatorname{int}(\mathbb{H})) \in \Pi$.

Problem 2. Conclude that the following problems are linear separable: VERTEX DELETION TO H-MINOR-FREE (for connected H), r-DOMINATING SET, CONNECTED DOMINATING SET.

Definition 3. A graph property Π has *finite integer index* if for every p, the following equivalence relation \sim_{Π} on p-interface graphs has finite index. Two p-interface graphs \mathbb{G}_1 and \mathbb{G}_2 are considered equivalent if and only if there exists an integer c such that for every p-interface graph \mathbb{H} we have $\mathsf{OPT}(\mathbb{G}_1 \oplus \mathbb{H}) - \mathsf{OPT}(\mathbb{G}_2 \oplus \mathbb{H}) = c$.

Problem 3. Suppose Π is mso-definable by a formula $\phi(X)$. Fix p and define an equivalence relation \equiv_{ϕ} on p-interface graphs with vertex subsets as $(\mathbb{G}_1, S_1) \equiv_{\phi} (\mathbb{G}_2, S_2)$ if and only if for all (\mathbb{H}, T) it holds that $\mathbb{G}_1 \oplus \mathbb{H} \models \phi(S_1 \cup T)$ iff $\mathbb{G}_2 \oplus \mathbb{H} \models \phi(S_2 \cup T)$. Prove that \equiv_{ϕ} has finite index.

Problem 4. In the setting from the exercise above, assume in addition that Π is separable with function f(p). For a p-interface graph \mathbb{G} and an equivalence class κ of \equiv_{ϕ} , let define $\mathsf{OPT}(\mathbb{G}, \kappa)$ to be the smallest size of S such that $(\mathbb{G}, S) \in \kappa$, or $+\infty$ if such S does not exist. Further define $\gamma_{\mathbb{G}}(\kappa)$ as $\mathsf{OPT}(\mathbb{G}, \kappa) - \mathsf{OPT}(\mathbb{G})$ if the absolute value of this number is at most f(p), or \bot otherwise. Prove that if p-interface graphs $\mathbb{G}_1, \mathbb{G}_2$ satisfy $\gamma_{\mathbb{G}_1}(\kappa) = \gamma_{\mathbb{G}_2}(\kappa)$ for all equivalence classes κ of \equiv_{ϕ} , then $\mathbb{G}_1 \sim_{\Pi} \mathbb{G}_2$. Conclude that every separable and mso-definable subset minimization problem has finite integer index.

Definition 4. A *t-protrusion* in a graph G is a set of vertices X such that G[X] has treewidth at most t and there are at most t vertices in X that have neighbors outside of X. The set of latter vertices is called the *boundary of* X, and denoted by ∂X .

Problem 5. Suppose a graph G contains a t-protrusion X. Prove that then for any $c \leq |X|$, G has a t-protrusion of size between c and 2c.

Problem 6. Prove that for every fixed t, there is a polynomial-time algorithm (with degree possibly depending on t) that given a graph G and integer c, either concludes that there is no t-protrusion of size at least c, or finds a 2t-protrusion of size at least c.

Definition 5. The problem $\min \langle \Pi \rangle$ is minor-bidimensional if the following conditions hold:

- If H is a minor of G, then $OPT(H) \leq OPT(G)$.
- There exist constants $\delta > 0$ and c such that $\mathsf{OPT}(\mathsf{Grid}_{k \times k}) \geqslant \delta k^2 c$ for all k.

Problem 7. Suppose Π is a subset problem such that $(G, S) \in \Pi$ depends only on whether the graph G - S belongs to some fixed graph class C. Prove that if Π is minor-bidimensional, then C has bounded treewidth.

Problem 8. Suppose $\min\langle\Pi\rangle$ is minor-bidimensional and linear-separable and G is a planar graph with $\mathsf{OPT}(G) = k$. Prove that there is a partition A, X, B of the vertex set of G with no edges between A and B such that $|X| \leq \mathcal{O}(\sqrt{k})$, and $\mathsf{OPT}(G[A \cup X]), \mathsf{OPT}(G[B \cup X]) \leq \frac{2}{3}k + \mathcal{O}(\sqrt{k})$.

Problem 9. Prove that if $\min \langle \Pi \rangle$ is minor-bidimensional and linear-separable, then there exist constants c, η such that every planar graph G with $\mathsf{OPT}(G) = k$ admits a vertex subset X of size at most $\mathcal{O}(k^c)$ such that G - X has treewidth at most η .

Note: During next lecture we will make a refined analysis showing that one can take c = 1.

Problem 10. Let G be a planar graph and let A be a subset of its vertices. Prove the following:

- There are at most 2|A| vertices of $V(G) \setminus A$ that have more than 2 neighbors in A.
- Vertices of $V(G) \setminus A$ with at most 2 neighbors in A may be partitioned into at most 4|A| classes so that vertices in the same class have exactly the same neighbors in A.