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Computational aspects of the presence of drug resistance
mechanisms

Abstract

The development of drug resistance in bacteria causes antibiotic therapies
to be less effective and more costly. The rapidly growing number of bacterial
genomes being fully sequenced and publicly available opens new possibilities for
using large-scale computational approaches to improve our understanding of drug
resistance mechanisms.

In the first part of this thesis we present eCAMBer, a tool we have developed for
efficient support of comparative analysis of multiple bacterial strains within the
same species. eCAMBer works in two phases. First, it transfers gene annotations
among all considered bacterial strains. In this phase, it also identifies homologous
gene families and annotation inconsistencies. Second, eCAMBer, tries to improve
the quality of annotations by resolving the gene start inconsistencies and filtering
out gene families arising from annotation errors propagated in the previous phase.
We present results suggesting that eCAMBer efficiently identifies and resolves
annotation inconsistencies and it outperforms other competing tools both in
terms of running time and accuracy of produced annotations.

In the second part of the thesis we present GWAMAR, a tool we have developed
for detection of drug resistance-associated mutations in bacteria through compar-
ative analysis of whole-genome sequences. The pipeline of GWAMAR comprises
several steps. First, it employs eCAMBer for a set of bacterial genomes and an-
notations. Second, based on the computed multiple alignments of gene families,
it identifies mutations among the strains. Third, it calculates several statistics
to predict which of the mutations are most likely to be associated with drug
resistance. We present results of applying GWAMAR to three datasets retrieved
from publicly available data for M. tuberculosis, and S. aureus.

Keywords: antibiotic resistance, bacteria, evolution, comparative genomics
ACM Classification: J.3 Biology and genetics
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“It is not difficult to make microbes resistant to penicillin
in the laboratory by exposing them to concentrations not
sufficient to kill them, and the same thing has occasionally
happened in the body.”

Alexander Fleming, Nobel Prize lecture, 1945

1
Introduction

Drug resistance is a broad concept used to describe situations of reduced ef-
fectiveness of a drug in curing a disease or condition. Antibiotic resistance is
a form of drug resistance when some sub-population of a microorganism, typ-
ically bacteria, is capable of surviving when exposed to an antimicrobial drug.
The development of drug resistance in bacteria makes antimicrobial drugs less
effective and increases the cost of therapies. Since the time when first antibiotics
were introduced to treat bacterial infections, due to various factors — such as
irresponsible dosage of antibiotics, naturally occurring mutations, transmission
of drug-resistant strains — drug resistance in pathogens has become a serious
health problem. Hence, the evolution of drug resistance in bacteria is a relevant
field of research in molecular biology and bioinformatics. In this thesis, we focus
on computational aspects of the presence of drug resistance mechanisms in bacte-
ria. In particular, we propose and implement a new approach, called GWAMAR,
to identify mutations associated with drug resistance by comparative analysis of
whole-genome sequences of multiple bacterial strains. As an important part of
this work, we also propose a new approach, called eCAMBer, to support com-
parative analysis of multiple bacterial strains.
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1.1 The problem of drug resistance

Since the first antibiotics were discovered and introduced for treatment of bac-
terial infections, the initial optimism has been tempered by the emergence of
antibiotic resistance (Levy and Marshall, 2004). Among the 15 major classes of
antibiotics introduced into treatment of bacterial infections, none has escaped the
emergence of drug resistance (see Table 1.1, data adopted from Lewis (2013)).

Antibiotic class;
example Discovery Introduction Resistance Mechanism of action Activity or target

species

Sulfadrugs;
prontosil 1932 1936 1942 Inhibition of dihydro-

pteroate synthetase
Gram-positive
bacteria

β-lactams;
penicillin 1928 1938 1945 Inhibition of cell

wall biosynthesis
Broad-spectrum
activity

Aminoglycosides;
streptomycin 1943 1946 1946 Binding of 30S

ribosomal subunit
Broad-spectrum
activity

Chloramphenicols;
chloramphenicol 1946 1948 1950 Binding of 50S

ribosomal subunit
Broad-spectrum
activity

Macrolides;
erythromycin 1948 1951 1955 Binding of 50S

ribosomal subunit
Broad-spectrum
activity

Tetracyclines;
chlortetracycline 1944 1952 1950 Binding of 30S

ribosomal subunit
Broad-spectrum
activity

Rifamycins;
rifampicin 1957 1958 1962 Binding of RNA

polymerase β‐subunit
Gram-positive
bacteria

Glycopeptides;
vancomycin 1953 1958 1960 Inhibition of cell

wall biosynthesis
Gram-positive
bacteria

Quinolones;
ciprofloxacin 1961 1968 1968 Inhibition of

DNA synthesis
Broad-spectrum
activity

Streptogramins;
streptogramin B 1963 1998 1964 Binding of50S

ribosomal subunit
Gram-positive
bacteria

Oxazolidinones;
linezolid 1955 2000 2001 Binding of 50S

ribosomal subunit
Gram-positive
bacteria

Lipopetides;
daptomycin 1986 2003 1987 Depolarization of

cell membrane
Gram-positive
bacteria

Fidaxomicin 1948 2011 1977 Inhibition of
RNA polymerase

Gram-positive
bacteria

Diarylquinolines;
bedaquiline 1997 2012 2006 Inhibition of

F1,FO -ATPase
Narrow-spectrum
activity

Table 1.1: This table, with data adopted from Lewis (2013), presents the timeline of the
discovery and introduction of antibiotics. Columns (from left to right) correspond to: the
name of a class of antibiotics with an example of this class, the year the antibiotics were
discovered, the year the antibiotics were introduced, the year resistance to the antibiotics
was observed, the brief description of the mechanism of action and finally the spectrum of
the antibiotics activity.

Furthermore, drug resistance can be accumulated, giving rise to emergence of
bacteria resistant to multiple antibiotics (Nikaido, 2009; Magiorakos et al., 2012).
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Such bacteria are of special interest as the bacterial infections caused by them
are difficult to treat (Matteelli et al., 2014; Lange et al., 2014; Trauner et al.,
2014). The worldwide spread of drug-resistant bacteria has become a serious
threat to public health systems and may require some global solutions (Alanis,
2005; Laxminarayan et al., 2013).

As a consequence, the problem has drawn attention of major health organi-
zations such as WHO (World Health Organization), ECDC (European Centre
for Disease Prevention and Control) and CDC (Centers for Disease Control and
Prevention), which monitor and report the spreading of drug-resistant pathogens
in the world (WHO, 2014; ECDC, 2012; CDC, 2013).

The recent report on antimicrobial resistance by WHO (2014) states that
national data obtained for Escherichia coli (E. coli), Klebsiella pneumoniae
(K. pneumoniae) and Staphylococcus aureus (S. aureus) show that in many set-
tings more than 50% of isolated strains are resistant to commonly used antibac-
terial drugs.

Another recent report by WHO (2013) on M. tuberculosis estimates that the
bacteria was responsible for around 1.3 million deaths worldwide in 2013. Ac-
cording to the report, 3.6% of new cases of tuberculosis in 2012 were multi-drug
resistant (MDR-TB). The report estimates that only around 48% of patients
from a cohort from 2010 with MDR-TB were successfully treated. Moreover, 92
countries reported cases of extensively-drug-resistant (XDR-TB) isolates of the
bacteria. According to WHO (2014), MDR-TB is defined as resistance to the
first-line drugs: isoniazid and rifampicin; whereas XDR-TB is defined as MDR-
TB plus resistance to at least a fluoroquinolone and one second-line injectable
agent (amikacin, kanamycin or capreomycin).

Moreover, recently new forms of totally-drug resistant M. tuberculosis (TDR-
TB) have been discovered in Iran (Velayati et al., 2009), and in India (Udwadia
et al., 2012). Also, new findings which have been recently published by Klop-
per et al. (2013) suggest emergence of TDR-TB strains in South Africa. The
TDR-TB strains are characterized by a very broad spectrum of resistance, which
makes infections caused by TDR-TB virtually untreatable (Velayati et al., 2013).
However, there is no consensus on the precise definition of TDR-TB (Cegielski
et al., 2012).

The problem of drug resistance is also appalling, as we observe a slowing down
in the last twenty years of the pace of discovering new drugs against bacteria
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(Lewis, 2013). Moreover, it has been argued that it may not be economically
justifiable for pharmaceutical companies to develop new antibiotics (Alanis, 2005;
Shlaes et al., 2004). For example, Projan (2003) argues that, based on the cost
and complexity of drug discovery and development, investment into long-term
treatment of chronic diseases is more attractive than investment into short-course
therapies.

1.1.1 The discovery of teixobactin

Recently, Ling et al. (2015) announced in Nature their discovery of a new an-
tibiotic, they called teixobactin. The researchers used a new approach to screen
for substances which are naturally produced by bacteria and could also be active
against other bacteria. In the device they developed, called iChip, colonies of
different bacteria are cultured together with the target bacteria (S. aureus) in
different chambers. Then, the chambers with inhibited growth of the target bac-
teria contain antibiotics naturally produced by the cultured bacteria. It turned
out, that teixobactin is produced by a newly discovered bacteria called Eleftheria
terrae. Notably, employing their approach, the researchers identified 25 antimi-
crobial drugs, out of which teixobactin was the most active. The drug turned out
to be active both against S. aureus and M. tuberculosis. Moreover, no resistance
to the drug was observed in the experiments. The authors said that clinical trials
on people could start within two years.

1.2 Biological background

Different aspects of drug resistance in bacteria have been studied intensively
for a few decades now (Levy and Marshall, 2004; Davies and Davies, 2010). In
general, drug resistance emerges as a result of evolution which adapts bacteria
to the environment with antibiotics. Some bacteria, even within wild-type com-
munities, may have naturally increased level of drug resistance (Turnidge et al.,
2006). Exposure to a drug selects these bacteria with the increased level of abil-
ity for survival in the environment with this drug. Those bacteria will produce
a generation which will inherit the higher level of drug resistance. In fact, this
process is so fast, that it can be reproduced and traced in a laboratory (Zhang
et al., 2011) — providing a perfect example of Darwinian principles of evolution
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by natural selection (Sykes, 2010).
It should be noted, however, that the concept of drug resistance may also be

applied in the context of bacteria which are naturally resistant to a specific drug.
This type of resistance is called intrinsic, as opposed to acquired resistance.
Several examples of intrinsic resistance can be found in the review article on
intrinsic resistance by Cox and Wright (2013).

Another phenomenon, called phenotypic drug resistance, describes a situation
when drug resistance is not reflected by genetic variations of an individual bacte-
ria. Examples of this phenomenon include creation of biofilms, persistence or sta-
tionary growth phase. For more details on this subject, see the review by Corona
and Martinez (2013).

1.2.1 Actions of drugs and molecular mechanisms of resistance

Antimicrobial drugs bind their molecular targets inside the bacterial cell in order
to disrupt some biological processes which are essential for the bacteria (Juhas
et al., 2012). In order for a drug to be effective, the following three conditions
should be satisfied: (i) its drug target is in the bacterial cell, (ii) the antibiotic
reaches the target in sufficient quantity, and (iii) the antibiotic is not inactivated
or modified by the bacteria (Džidić et al., 2008; Blair et al., 2015).

The known drug resistance mechanisms can be categorized following the review
by Wright (2011): (i) drug target modification — preventing binding of a drug;
(ii) efflux — reduced accumulation of the drug inside a bacteria cell by pumping
out the drug; (iii) chemical modification — modification of drug molecule by
specialized enzymes; and (iv) molecular bypass — alternative metabolic path-
ways which can substitute for the disturbed pathways used in drug-susceptible
bacteria.

On the molecular level, the process of acquisition of drug resistance is typi-
cally associated with genetic changes. These changes include chromosomal point
mutations and Horizontal Gene Transfer (HGT) (Džidić et al., 2008; Davies and
Davies, 2010).

For example, rifampicin acts by binding to the RNA polymerase — the enzyme
responsible for transcription of DNA — one of the essential processes in bacterial
cell. It forms a stable complex with the β sub-unit (encoded by gene rpoB) of
the enzyme. As a result it suppresses the initiation of the transcription process
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leading to death of bacterial cell (Campbell et al., 2001). The most common
mechanism of resistance to rifampicin (reported to be present in around 97% of
the cases) is based on the drug target modification by point mutation in the rpoB
gene, inside the rifampicin resistance-determining region (RRDR) (Bravo et al.,
2009).

1.2.2 Fitness cost and compensatory mutations

The process of acquisition of drug resistance is often associated with some addi-
tional cost, called fitness, which reduces the general viability of the bacteria (An-
dersson and Hughes, 2010; Koch et al., 2014). Results presented by Smith et al.
(2014) suggest also that MDR-TB and XDR-TB strains may have reduced vir-
ulence. Moreover, it has been argued, that drug resistance in bacteria can be
reversed by the presence of drug susceptible bacteria which would win the com-
petition in a drug-free environment (Levy, 2002).

On the other hand, it has been observed, that the deleterious effect of drug
resistance mutations may be reversed completely or partially by secondary mu-
tations, called compensatory mutations (Maisnier-Patin and Andersson, 2004;
Wiesch et al., 2010; Koch et al., 2014). According to our knowledge, there is no
database for compensatory mutations, and the information about them is spread
out through the literature.

1.3 Other related work

A promising approach to address the problem of drug resistance has been pro-
posed by Chong and Sullivan (2007). It is to use computational modeling to
identify old drugs that were designed for treating other diseases, but could also
be effective against pathogens. An effort in this direction was undertaken in a
research study on M. tuberculosis by Kinnings et al. (2009). The authors used
three-dimensional docking to identify in silico some putative drug-target inter-
actions. As a result, they predicted Comtan, a drug used in treating Parkinson’s
disease, as potentially effective against M. tuberculosis infections.

Systems biology is a large and well-founded field of computational biology
which focuses on global interactions within a biological system rather than its
elements separately (Sauer et al., 2007). It has been argued that systems biology
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approaches may be useful to deepen our understanding of the process of emer-
gence of antibiotic resistance (Wong and Liu, 2010). For example, Raman and
Chandra (2008) proposed an interesting concept of a co-target, defined as a gene
or a protein which, when targeted simultaneously with the primary target of a
drug, inhibits the pathway leading to the emergence of drug resistance. In the
framework developed by the authors co-targets are identified based on compu-
tational analysis of an information flow in the protein-protein interaction (PPI)
network.

Since the idea of employing systems biology approaches to bacteria is promis-
ing, it requires high-quality interaction networks. However, unlike for human or
yeast, the number of PPI networks experimentally obtained for bacteria remains
very small (Wong and Liu, 2010). Moreover, a comparative analysis of two PPI
networks available for M. tuberculosis by Zhou and Wong (2011), revealed that
the overlap between the available networks is unexpectedly low, raising questions
on reliability of the data.

A similar phenomenon was observed for metabolic pathways, Zhou et al. (2012)
compared available datasets of M. tuberculosis metabolic pathways from KEGG,
WikiPathways, and BioCyc. It turned out, that the pairwise overlap between the
data sources is only 0.3%-4%. The above results suggest that much yet has to be
done to improve the reliability of interaction networks for bacteria.

Some other fields of application for computational methods in the context of
drug resistance include: rational drug design (Lewis, 2013), combinatorial drug
usage (Jia et al., 2009), drug-target discovery (Chung et al., 2013; Zoraghi and
Reiner, 2013), and prediction of drug-target interactions (Bakheet and Doig,
2010; Felciano et al., 2013; Amir et al., 2014).

Interestingly, Lambert et al. (2011) points out multiple analogies in the process
of rapid evolution of drug resistance to chemotherapy in cancer cell communities
and the evolution of antibiotic resistance in bacteria. It sets perspectives for
transferring some methodologies from studying drug resistance in bacteria to
study drug resistance in cancer.

1.4 Problems faced and approached in this work

We address in this thesis the problem of using whole-genome sequences to iden-
tify and associate genetic changes with drug-resistance phenotypes by compara-
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tive analysis of multiple closely related bacterial strains. Thus, conceptually our
approach is similar to Genome-Wide Association Study (GWAS) approaches,
which have been successfully applied to identify single nucleotide polymorphisms
(SNPs) associated with phenotype for various human diseases (Manolio, 2010),
cancer (Stadler et al., 2010), and intelligence (Davies et al., 2011).

We hypothesize that similar approaches, when applied to bacteria, should bring
interesting results, enriching our knowledge on the molecular aspects of drug re-
sistance. For example, better knowledge of mutations associated with drug re-
sistance may help to design molecular test on drug resistance, such as Xpert
MTB/RIF (Köser et al., 2014). This relatively cheap test allows for rapid and
accurate tests for rifampicin resistance based on the presence of point muta-
tions in rpoB (Boehme et al., 2010). It has become a front-line diagnostic tool
in South Africa (Zumla et al., 2013). The potential of using whole-genome com-
parative approaches to understand bacterial drug resistance has been discussed
in the recent articles by Köser et al. (2014), Hasman et al. (2014) , Lázár et al.
(2014), Trauner et al. (2014) and Blair et al. (2015).

We note, however, that the methodology may require some modifications to
transfer it to bacteria. For example, horizontal gene transfer (HGT) plays an im-
portant role in the development of drug resistance in bacteria (Warnes et al.,
2012); thus it may be needed to focus not only at SNPs, but also at gene
gain/losses.

One challenge we faced during this project was caused by inconsistent and
poor-quality annotations of bacterial strains available in public databases. It has
been argued in various articles that these inconsistencies are due to different
annotation methodologies used by different sequencing laboratories (Overbeek
et al., 2007; Dunbar et al., 2011; Chai et al., 2014). It has also been shown,
that poor-quality annotations may complicate or bias the comparative analysis
of bacterial strains (A Palleja et al., 2008; Cock and Whitworth, 2010; Dunbar
et al., 2011; Yu et al., 2011; Wood et al., 2012). The tools we developed to tackle
this problem are presented in chapter 2.

The next challenge we faced was to collect sufficient amount of data on out-
comes of drug susceptibility tests for different strains. These outcomes would
constitute the phenotype data for further analysis. It turned out that this data
is spread throughout the literature and databases, thus not easy to gather. We
made the collected information publicly available at the website of our project,
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http://bioputer.mimuw.edu.pl/gwamar.
Finally, having collected the phenotype and genotype, we approach the prob-

lem of associating the identified genetic variations with the drug-resistance phe-
notypes. In order to achieve this, we implemented several association scores,
including two new association scores, called weighted support (WS) and tree-
generalized hypergeometric (TGH) score. We also propose a new association score,
called Rank-based metascore (RBM) for combining multiple scores into one in or-
der to compromise between different approaches used to define different scores.
The newly proposed scores employ phylogenetic information to improve the pre-
diction of genetic changes associated with drug resistance. Our approach and the
tools we have developed are presented in chapter 3.

1.5 Organization of the dissertation and articles

The dissertation is organized into four chapters. Most of the results presented in
the thesis have been published in peer-reviewed articles.

In the first chapter, we briefly reviewed the current background knowledge of
the drug resistance mechanisms. A broader coverage of the biological background
can be found in the review articles by Levy and Marshall (2004), Džidić et al.
(2008), Davies and Davies (2010) and by Wright (2011).

In the second chapter, we present our work on supporting comparative analysis
of multiple bacterial strains. We present and describe the methods and the soft-
ware we have developed to support that analysis. The presentation is based on our
three articles describing CAMBer (Woźniak et al., 2011a), CAMBerVis (Woźniak
et al., 2011b), and eCAMBer (Woźniak et al., 2014b).

In the third chapter, we present our work on detection of drug resistance-
associated mutations based on comparative analysis of whole-genome sequences
of multiple bacterial strains. In particular, we present GWAMAR, the tool we
have developed to support that analysis. The presentation is based on our two
articles (Woźniak et al., 2012) and (Woźniak et al., 2014a).

In the last chapter, we summarize our results and suggest possible directions
of further research.
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“The major credit I think Jim and I deserve, considering
how early we were in our research careers, is for selecting
the right problem and sticking to it. It’s true that by blun-
dering about we stumbled on gold, but the fact remains
that we were looking for gold. Both of us had decided,
quite independently of each other, that the central prob-
lem in molecular biology was the chemical structure of the
gene.”

Francis Crick, What Mad Pursuit, 1988

2
Comparative genome annotation

In this chapter we present our approach and the tools we have developed to
improve consistency and overall accuracy of genome annotations, thus supporting
the comparative analysis of multiple bacterial strains. The need to address this
problem appeared when we attempted to use the publicly available genomes
to identify genes and mutations associated with drug resistance. It turned out
that in some settings the inconsistent and poor-quality annotations of bacterial
strains may bias that analysis. In section 2.1 we review other related approaches
which tackle this problem. We also introduce basic concepts and notations used
in this work. In section 2.2 we present CAMBer — the first tool we developed for
supporting comparative analysis of multiple bacterial strains. Next, in section 2.3
we present eCAMBer, which is a highly optimized revision of CAMBer, scaling
it up for significantly larger datasets comprising hundreds of bacterial strains. In
section 2.4 we present CAMBerVis, a tool we have developed for visual analysis
of annotation inconsistencies. Finally, in section 2.5 we discuss results obtained
by applying these tools to the case-study datasets for M. tuberculosis, S. aureus
and E. coli. The presented results show that eCAMBer is faster and produces
more reliable annotations than other currently available tools.
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2.1 Introduction

Due to advances in high-throughput sequencing technologies (Loman et al., 2012;
Weinstock and Peacock, 2014), the number of bacterial genome sequences avail-
able in public databases is growing rapidly. One database with bacterial genome
sequences is PATRIC, developed by Gillespie et al. (2011). Notably, from June 8,
2011 to February 12, 2014, the total number of whole-genome sequences available
in the PATRIC database grew from 3303 to 14114, reaching 21786 in September
24, 2014. By then, there were 1653 whole-genome sequences of E. coli and 642
whole-genome sequences of S. enterica strains available in the database (Gillespie
et al., 2011).

The fast-growing number of available bacterial genome sequences enable new
interesting comparative analysis of multiple bacterial strains (Binnewies et al.,
2006; Hiller et al., 2007; Laing et al., 2011). In particular, it opens new oppor-
tunities to use whole-genome comparative approaches to analyse drug resistance
mechanisms (Hasman et al., 2014; Alam et al., 2014).

2.1.1 Protein-coding genes in bacteria

Genes are the most fundamental units of heredity in living organisms. On the
molecular level gene is a fragment of the genome which is associated with regula-
tory regions, transcribed regions, and or other functional sequence regions (Pear-
son, 2006).

The most important class of genes in bacteria constitute the protein-coding
genes, which are transcribed into mRNA and then translated into proteins. Un-
like in higher order organisms, in bacteria, protein-coding genes constitute the
vast majority of genes. Protein-coding genes are also densely packed inside the
bacterial genome. For example, the genome of M. tuberculosis is 4.4M bp. long
and contains around 4,000 genes, of which about 3,900 are protein-coding genes,
which span around 90% of the genome (Cole et al., 1998). Similarly, the genome
sequence of E. coli is around 4.64M bp. and contains around 4,140 protein coding-
genes (of 4,500 genes), which span about 84% of the genome (Blattner et al.,
1997).
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2.1.2 Bacterial genome annotations

The concept of genome annotation may refer to many different aspects of at-
taching biological information to genome sequences, such as: identifying gene
locations (Karp et al., 2007), assigning functions to genes (Richardson and Wat-
son, 2013), and assigning network context to gene products (Kasif and Steffen,
2010).

In this work, we focus on identifying locations of protein-coding genes. The
translation unit of a protein-coding gene is a continuous fragment of DNA, of
length divisible by 3. It begins with a start codon (typically ATG, but also GTG
and TTG are common) at the translation initiation site (TIS), and ends with a
stop codon (TAA, TAG or TGA). An open-reading frame (ORF) is any fragment
of DNA which satisfies the above conditions, thus it has the potential to code
for a protein. However, the presence of an ORF does not imply that the region
is translated.

We use the term gene annotation (or ORF annotation) to refer to genome
coordinates of the translation unit of a protein-coding gene from its TIS (alter-
natively called gene start) to the nearest stop codon (alternatively called gene
end). Note that each ORF annotation is unambiguously determined by specifying
strand and position of its start codon. Thus, we can use the term TIS annotation
as a synonym to ORF annotation.

Typically, but not always, together with the newly published genome se-
quences of bacterial strains, genome annotations with the locations of genes
are released. For example, in the dataset of 173 M. tuberculosis strains, studied
in chapter 3, only 128 have their genome annotations deposited in the RefSeq
database (Tatusova et al., 2014).

2.1.3 Genome annotation inconsistencies

It has been observed that there are common inconsistencies and inaccuracies in
genome annotations among closely related bacterial strains. Moreover, it has also
been argued that most of these inconsistencies are not reflected by sequence dis-
crepancies, but arise as a result of different annotation methodologies applied by
different laboratories (Wood et al., 2012; Richardson and Watson, 2013; Dunbar
et al., 2011).

In fact, Dunbar et al. (2011) has shown that the use of the same tool to
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annotate a set of bacterial genomes increases annotation consistency. However,
these annotation inconsistencies among closely related genomes can even arise
from annotations produced by the same annotation tool or made by the same
laboratory.

The observed inconsistencies are mostly of two types: mis-identification of gene
presence (false-positive and false-negative predictions are possible) and inconsis-
tent gene starts. Some works, however, distinguish a separate class of annotation
inconsistencies, caused by frameshift mutations (Angiuoli et al., 2011).

It has also been argued, that comparative analyses may be complicated or
biased due to the inconsistencies in genome annotations among closely related
bacterial strains (Salzberg, 2007; Dunbar et al., 2011; Yu et al., 2011). This
includes identification of overlapping genes (A Palleja et al., 2008; Cock and
Whitworth, 2010), estimation of core-genome size (Ali, 2013), and gene functional
annotation (Chai et al., 2014).

Interestingly, the presence of annotation inconsistencies is an expected phe-
nomenon when single-genome prediction tools are applied independently. For
example, suppose we annotate independently k = 20 genomes, and assume that
the missing gene error rate is ϵ = 0.035, which is the corresponding Prodi-
gal (Hyatt et al., 2010) error rate estimated on the E. coli dataset. Then, since
1 − (1 − ϵ)k = 0.51, about 51% of core gene families would have at least one
missing gene annotation.

2.1.4 Comparative approaches for genome annotation

It has been proposed by Poptsova and Gogarten (2010) that the accuracy of
single-genome annotation tools can be improved by comparative annotation among
multiple genomes. However, even though there are many annotation tools dedi-
cated to a single-genome, there are relatively few tools supporting comparative
annotation and analysis of multiple bacterial genomes. Hence, there is a need to
develop more tools to improve consistency of genome annotations across multiple
bacterial strains (Poptsova and Gogarten, 2010).

Mugsy-Annotator, developed by Angiuoli et al. (2011), is a tool which helps in
the curation of annotations of multiple bacterial genomes by identifying annota-
tion inconsistencies. First, this tool computes whole-genome multiple alignment
by employing Mugsy (Angiuoli and Salzberg, 2011). Then, based on annotated
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gene coordinates mapped on genomes in the multiple-genome alignment, Mugsy-
Annotator identifies orthologous gene families and annotation inconsistencies,
and proposes changes to the input annotations.

Two new majority voting-like approaches have been recently proposed to im-
prove annotation accuracy and consistency among multiple genomes: ORFcor,
developed by Klassen and Currie (2013) and GMV, developed by Wall et al.
(2011). However, these tools approach only on the problem of inconsistent TIS
annotations.

Another notable tool which employs the idea of comparing gene annotations
among closely related genomes is GenePRIMP, developed by Pati et al. (2010).
This tool identifies and reports gene annotation anomalies based on protein
BLAST queries run against the NCBI nr database. These reports are helpful
for manual curation of genome annotations. A similar feature has also been im-
plemented in CAMBerVis (Woźniak et al., 2011b) — the tool we have developed
for visualization and analysis of annotation inconsistencies. The importance of
software to support manual curation of bacterial genome annotations have also
been discussed by Salzberg (2007), who proposes a wiki-based solution.

Finally, a promising idea to improve annotation accuracy and consistency —
by combining outputs of several single-genome annotation tools — has been
explored with a few proposed approaches by Pavlović et al. (2002), Yada et al.
(2003), Shah et al. (2003) and Ederveen et al. (2013). However, these meta-
approaches can be viewed as single-genome annotation tools.

2.1.5 Other related work

An idea, called compressive genomics, has recently been proposed with new ap-
proaches to optimize BLAST search time of sequence databases (Loh et al., 2012;
Daniels et al., 2013). However, one significant conceptual difference, between
these methods and the closure procedure in eCAMBer, is that these approaches
try to reduce the size of the target database, whereas the eCAMBer closure pro-
cedure reduces the redundancy among BLAST queries. It may be interesting, for
further research, to combine these ideas.

Since the most time-consuming operations for CAMBer and eCAMBer are
BLAST queries during the closure procedure for transferring the gene annota-
tions, thus it is worth considering to replace BLAST with one of the recently
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published tools with better running times. One such tool is DIAMOND, devel-
oped by Buchfink et al. (2015). The authors present results suggesting their tool
achieves better accuracy than BLAST. Moreover, in some settings, it performs
up to 20,000 times faster.

2.1.6 Basic concepts and notations

In this chapter we assume that we have a set of closely related bacterial strains,
typically within the same species, whose genomes have been sequenced and an-
notated. More precisely, we consider a set of bacterial strains S. For each strain
S ∈ S, we have its input genome annotation AS and a set of contig sequences
which constitutes the genome GS, indexed by contig identifiers. Additionally, let
OS denote the set of all ORFs (annotated and not annotated) in the genome
sequence of strain S.

Each genome annotation AS ⊆ OS is represented as a set of gene annotations,
where each gene annotation x ∈ AS is represented as a tuple:

(length, end, strand, contig). (2.1)

Here:

• length - a number which corresponds to the length of the nucleotide se-
quence (including the start and stop codons) of the gene;

• end - a number which corresponds to the position of the last character of
the nucleotide sequence of the gene within the contig;

• strand - location of the gene, on the positive (’+’) or opposite strand (’-’);

• contig - identifier of the contig with the gene sequence.

Since we consider only protein-coding gene annotations we assume additionally
that length is divisible by 3.

Based on this notation, the location of the gene start corresponding to gene
annotation x ∈ AS may be calculated using the following formula:

start =
{

end− length + 1 if strand = ’+’
end + length− 1 if strand = ’-’

(2.2)
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Due to gene annotation inconsistencies, multiple ORF annotations — corre-
sponding to the same gene in different strains — may suggest different lengths
of the gene. In order to account for this situation, we generalize the concept of
a gene annotation. We introduce a term we called a multigene annotation. Each
multigene annotation is represented as a tuple:

(set of ORF lengths, end, strand, contig). (2.3)

Here:

• set of ORF lengths - a set of numbers, representing different different ORF
lengths which correspond to different gene starts of the multigene;

• end - a number which corresponds to the position of the last character of
the nucleotide sequence of the gene within the contig;

• strand - location of the gene, on the positive (’+’) or opposite strand (’-’);

• contig - identifier of the contig with the gene sequence.

Gene annotations corresponding to different ORF lengths in a multigene an-
notations are called elements of the multigene. Obviously gene annotations can
be viewed as multigene annotations with just one element.

Additionally, we introduce the following auxiliary functions: (i) elts, for a given
multigene, returns the set of ORF annotations corresponding to the multigene
(sharing the same stop codon); (ii) mults, for a given set of ORF annotations,
returns the smallest set of its corresponding multigene annotations; (iii) function
seq, for a given ORF annotation, returns its corresponding nucleotide sequence.

It should also be noted that, there is a gene identifier associated with each
gene annotation. If available, for some gene annotations, additional information
about its gene name is attached.

2.1.7 The problem setting

The goal is to arrive at revised genome annotations which arise from comparison
and consolidation of annotations among the considered strains.
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2.2 CAMBer: comparative analysis of multiple bacte-
rial strains

Here we present in detail the methodology of CAMBer (Woźniak et al., 2011a),
which is the first tool we have developed to support comparative analysis of m
ultiple bacterial strains.

2.2.1 The closure procedure

The first and the key procedure of CAMBer is called the closure procedure. In this
step, starting from the input genome annotations, CAMBer iteratively transfers
gene annotations between the considered strains, using the BLAST software for
sequence similarity searching (Camacho et al., 2009).

Let us assume CAMBer tries to transfer an ORF annotation x ∈ AS which
corresponds to a gene in S on strain T . Then, it runs BLAST with the sequence
of x, denoted q = seq(x), as the query against the genome sequence of strain
T ∈ S.

Let y′ be a hit in T returned by BLAST to the query q and let y be the ORF
annotation obtained from y′ by extending it to the nearest in-frame stop codon
(in the 3’ direction on the same strand as y′). We call the BLAST hit extension
y an acceptable hit with respect to the query sequence q, if the following five
conditions are satisfied:

• the BLAST hit y′ corresponds to one of the appropriate start codons: ATG,
GTG, TTG;

• the BLAST hit y′ has its beginning aligned with the beginning of the query
sequence q;

• the e-value score of the BLAST hit from q to y′ is below a given threshold
et (typically it is set to 10−10 or 10−20);

• the ratio of the length of y to q is less than 1 + pt and greater than 1− pt,
where pt is a given threshold (typically 0.2 or 0.3). This condition is imposed
in order to keep similar lengths of related sequences;

• the percent of identity of the hit (calculated as the number of identities di-
vided by the query length times 100) is above a length-dependent threshold
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given by the HSSP curve (Rost, 1999). The curve was originally designed
for amino-acid queries, in our case we use the formula:

it(L) =


100 L ≤ 11

nt + 480 · L−0.32·(1+e−L/1000) 11 < L ≤ 450

nt + 19.5 L > 450

(2.4)

where L is the floor of the number of aligned nucleotide residues divided
by 3. Typically nt is set to 30.5% or 50.5%.

Let q → y denote that there is an acceptable hit y from the query sequence q.
Now, assume that at step i ≥ 0, for each strain S ∈ S, we have annotation Ai

S

associated with that strain. Let N i
S denote the set of gene annotations which will

be used as queries in the next iteration, initially N0
S = A0

S, for every S ∈ S. Then,
for every target strain T ∈ S, the annotation Ai+1

T in the step i + 1 is obtained
by taking all extensions of acceptable hits in T for the queries ranging over all
genes annotated in N i

S, for every other strain S. All new ORF annotations extend
N i+1

S — the set of queries for the next iteration. This process stops when no new
acceptable hit is obtained.

Thus, for every strain T ∈ S, the genome annotations Ai
T in the subsequent

iterations of the closure procedure in CAMBer, are defined as follows:


N0

T = A0
T

H i
ST = {y ∈ OT : ∃x∈N i

S
seq(x)→ y}

Ai+1
T = Ai

T ∪
∪

S∈S
S ̸=T

H i
ST

N i+1
T = Ai+1

T \ Ai
T

(2.5)

The pseudocode 1 gives a more detailed view on the algorithm of computing
the closure procedure in eCAMBer. The procedure will terminate, since the total
number of ORFs among all the strains is finite.

For each strain S ∈ S, we denote by Ac
S the set of gene annotations resulting

from the closure procedure. Similarly, for each strain S ∈ S, we denote by M c
S

the set of multigenes resulting from the closure procedure.
Assuming that we use BLAST with default parameters, our method has three

specific parameters defining conditions for an acceptable hit: e-value threshold et,
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Algorithm 1 The closure procedure in CAMBer (pseudocode)
Require: A set S of bacterial strains; and for each S ∈ S, a set A0

S of genome
annotations, a set GS of sequences constituting the genome of S. The map-
ping function sequencesS(A) returns the set of sequences in the genome GS

corresponding to the set of annotations A.
1: N0

S ← A0
S (for all S ∈ S)

2: i← 0
3: while ∃SN i

S ̸= ∅ do
4: for all T ∈ S do
5: N i+1

T ← ∅
6: for all S ∈ S where ̸= T do
7: H i

ST ← acceptable hits from sequences of N i
S on genome GT

8: N i+1
T ← N i+1

T ∪H i
ST \ Ai

T

9: end for{BLAST computations are done in parallel for each pair S, T ∈
S. Here, S, T denote the source and target strains, respectively}

10: Ai+1
T ← Ai

T ∪N i+1
T

11: end for
12: i← i+ 1
13: end while
14: return genome annotations Ai

S, for all S ∈ S

length tolerance threshold pt, and length-dependent-percent-of-identity threshold
implied by nt.

2.2.2 Consolidation graphs

Having computed the closure procedure we can construct now an ORF consolida-
tion graph GO. In this graph GO = (VO, EO), each node o ∈ VO represents an ORF
annotation in Ac

S, for some S ∈ S. There is an undirected edge {o1, o2} ∈ EO be-
tween a pair of ORF annotations, if there is an acceptable hit from the sequence
of o1 to o2 or from the sequence of o2 to o1.

More formally, we define the graph GO as follows:

{
VO =

∪
S∈S A

c
S

EO = {{o1, o2} : seq(o1)→ o2 ∨ seq(o2)→ o1}
(2.6)

Second, we introduce the multigene consolidation graph GM = (VM , EM). Each
node m ∈ VM in the graph is a multigene obtained after the closure procedure,
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for some S ∈ S. There is an undirected edge {m1,m2} ∈ EM between a pair of
multigenes, if there is a pair of ORFs o1 ∈ elts(m1) and o2 ∈ elts(m2), such that
there is an edge between them in the ORF consolidation graph (i.e., such that
{o1, o2} ∈ EO).

More formally, having the gene consolidation graph GO = (VO, EO) we can
construct the multigene consolidation graph GM = (VM , EM) as follows:{

VM =
∪

S∈S M
c
S

EM = {{m1,m2} : ∃o1∈elts(m1)∃o2∈elts(m2){o1, o2} ∈ EO}
(2.7)

Figure 2.1 illustrates the process of computing the closure procedure, as well
as a construction of the consolidation graphs.

2.2.3 The refinement procedure

We assume the connected components of a multigene consolidation graph GM

to represent multigene families with a common gene ancestor. Our next goal is
refining the multigene homology relation represented by edges in GM to obtain as
many one-to-one homology classes as possible, i.e. having at most one multigene
per strain in such a class. We call a connected component of GM an anchor if it
includes at most one multigene for every strain. One-element anchors are called
orphans. Non-anchors are the components which fail to be anchors.

Multigenes in the same anchor are potentially orthologous to each other. In
contrast, a non-anchor contains at least two multigenes that are potentially non-
orthologous. Genomic context information has been successfully used to clarify
gene relationships and improve gene function prediction (Wolf et al., 2001). So,
we propose exploiting genomic context information to analyse and decompose
non-anchors into smaller connected subgraphs that can emerge as anchors in the
resulting refined consolidation graph.

The refinement procedure proceeds in stages. At each stage we carry a graph
which is a subgraph of the graph from the previous stage. At stage 0, the original
multigene consolidation graph GM is used as the initial input graph G0

M .
Suppose we have at stage i a graph Gi

M . We restrict this graph by performing
the following test on each pair (m,m′) of multigenes originating from strains S

and T , connected by an edge in Gi
M which belongs to a non-anchor component
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Figure 2.1: Schema of the closure procedure in CAMBer and the method to represent
its outcome, including construction of the gene and multigene consolidation graphs. For
clarity of the presentation only one step of the procedure is shown, for the same reason
we restrict the presentation to only two strains. Square brackets indicate positions of gene
ends of gene annotations (input and predicted), while round brackets with a star indicate
positions of gene starts for input gene annotations. Round brackets without a star indicate
positions of gene starts corresponding to predicted ORF annotations (new elements of the
multigene) added during the closure procedure. a) Input annotations for strains indicate
the initial state of the procedure. b) Dashed arrows indicate acceptable hits. The reader
should notice a birth of a second element, rendering a multigene with two elements. c)
Two examples of edges in the consolidation graph. Dots represent different elements of a
multigene which is represented here as a rectangle. Edges of the ORF consolidation graph
(connecting dots) represent acceptable hits (after ignoring their directions). Edges between
rectangles represent edges of the multigene consolidation graph.

of Gi. Let a be the nearest left neighbor multigene of m in S which belongs
to an anchor of Gi

M containing a multigene from T . Let b be the nearest right
neighbor multigene of m in S which belongs to an anchor of Gi

M containing a
multigene from T . Analogously we define left (a′) and right (b′) neighbors of m′ in
T . Assuming that all four multigenes a, a′, b, b′ exist, we keep the edge connecting
m and m′ in Gi+1

M if either (a, a′) and (b, b′) (see Figure 2.2 (a)), or (a, b′) and
(b, a′) (see Figure 2.2 (b)) are edges in Gi

M , i.e. the corresponding pairs are in the
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Figure 2.2: Schematic view of one step of the refinement procedure in CAMBer. Rectangles
denote multigenes which belong to non-anchors in the current stage. Rhombus denotes a
multigene which is already in an anchor at this stage. Edges connecting rectangles (dashed
and solid) are edges of the graph of the current stage. Edges connecting rhombuses are the
anchor edges. “YES” means that the edge is keep for the next stage, while “NO” means it
is omitted. Parts a) and b) illustrate two situations when we can select one of the edges
and leaving out the other. Part c) illustrates the situation when we cannot make such a
decision, leading to an unresolved cluster. Both edges are kept in the graph of the next
stage. Such a cluster may be resolved at a later stage. Other cases which lead to omitting
the edges are possible too.

same anchors of Gi
M . If at least one of the multigenes a, a′, b, b′ does not exist, the

edge connecting m and m′ in Gi+1
M is not copied from Gi

M . The procedure stops
when no edge is removed from the current graph. We call the resulting graph a
refinement of GM . Figure 2.2 (c) shows a situation when we have to retain two
edges, leading to a cluster with unresolved one-to-one relationship. These cases
may get resolved later when more anchors are obtained.
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2.2.4 Time complexity

The most time-consuming operation in the closure procedure is running BLAST.
We denote by blast() the BLAST running time. We note that the BLAST running
time may vary due to various factors, such as the query sequence length, or
the target genome size. However, since we work with genomes of closely related
strains the impact of those factors is limited. Thus, we assume it to be constant.

Then, let k be the number of all considered strains and let n be the maximal
number of gene annotations among all the strains. For each strain during the
closure operation we use every identified or annotated ORF only once. Then, the
running time of one iteration of the closure procedure is k2 · n · blast().

Now, we estimate time complexity of one iteration in the refinement procedure.
Again, let k be the number of all considered strains and let n be the maximal
number of identified multigenes among all strains. Denote by m the number of
non-anchors in the consolidation graph. Additionally, let p denote the maximal
number of multigenes for one strain among all non-anchor components. In order
to find the nearest left and right neighbors of a multigene in linear time we first
sort all of them. This takes time k ∗n∗ log n. Since we have at most p2 ·

(
k
2

)
edges

to check for support of the neighboring anchors (checking for support may take
time at most n), for each of the m non-anchors, it follows that the estimated
total time to resolve all of the m non-anchors is k · n · log n+m · p2 ·

(
k
2

)
· n.

2.3 eCAMBer: efficient support for large-scale com-
parative analysis of multiple bacterial strains

Here we present details on a new version of CAMBer, which we call eCAMBer
(efficient CAMBer). It also aims to identify annotation inconsistencies and or-
thologous gene families. However, unlike other tools available, it has significantly
better running time by taking advantage of working with highly similar genome
sequences.

2.3.1 Overview

As its input, eCAMBer, requires a set of genome sequences and annotations for
multiple bacterial genomes. It should be noted, however, that eCAMBer sup-
ports automatic download of bacterial annotations from the PATRIC (Gillespie
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et al., 2011) database and, as an option, it allows the use of Prodigal to gen-
erate the input annotations. It works in two phases. In the first phase it uses
BLAST+ (Camacho et al., 2009) to transfer each gene annotation among multi-
ple strains. Based on the results of this procedure, homologous multigene clusters
are identified. In the second phase eCAMBer applies subsequently the procedures
for refinement, TIS voting and clean up. Figure 2.3 presents a schematic view of
these subsequent procedures of eCAMBer.

Input: genome sequences 
and gene annotations for multiple strains

Multigene annotations with sequence 
consolidation graph

(multiple TISs for a gene are possible)

 The closure procedure 

Multigene annotations with clustering, 
(non-anchor multigene clusters are split 

based on genomic context)

Gene annotations with clustering
(single TIS is selected for each multigene)

TIS voting procedure   

Gene annotations
(unreliable gene clusters are removed)

Clean up procedure   

Multigene annotations with sequence 
consolidation graph

(multiple TISs for a gene are possible)

 Refinement procedure   

 Multigene clustering based on   
sequence consolidation graph  

P
ha

se
  

1
P

ha
se

  
2

Figure 2.3: Schematic view of subsequent procedures in eCAMBer. Boxes of the chart rep-
resent the subsequent sets of genome annotations. Edges indicate application of eCAMBer
procedures to process these annotations. We call a set of ORF annotations, multigene an-
notations, if multiple ORF annotations may share the same stop codon, indicating possible
starts of translation (TISs). We use a notion of a multigene to represent multiple ORF
annotations sharing the same stop codon.

The main improvements in eCAMBer, as compared to CAMBer (Woźniak
et al., 2011a), are:
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• significant speed up of the closure procedure for unifying genome annota-
tions among bacterial strains;

• modified refinement procedure for splitting homologous gene families into
orthologous gene clusters;

• new TIS voting procedure for selecting the most reliable TIS;

• new clean up procedure for removal of gene clusters that are likely to be
gene annotation errors propagated during the closure procedure.

Here, we describe the details of the above listed procedures. The default val-
ues for parameters introduced below were chosen arbitrarily. However, based
on our experiments, the program is robust for other choices of the parameters
from a reasonable spectrum. eCAMBer allows users to specify values of all the
parameters.

2.3.2 The closure procedure

The closure procedure is the first step of eCAMBer. The input consists of genome
sequences and genome annotations for a set of closely related bacterial strains.
In this procedure gene annotations are iteratively transferred among the set of
considered strains, until no new ORF (open reading frames) annotations are
identified.

Similarly as in CAMBer, let y′ be a hit in T returned by BLAST to the query q

and let y be the ORF annotation obtained from y′ by extending it to the nearest
in-frame stop codon (in the 3’ direction on the same strand as y′). We call the
BLAST hit extension y an acceptable hit with respect to the query sequence q,
if the following five conditions are satisfied:

• the BLAST hit y′ corresponds to one of the appropriate start codons: ATG,
GTG, TTG, or the same start codon as in the query sequence;

• the BLAST hit y′ has its beginning aligned with the beginning of the query
sequence;

• the BLAST e-value score is below a given threshold et (in the default setting
et = 10−10);
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• the ratio of the length of the extended hit to the query length is less than
1+ pt and greater than 1− pt, where pt is a given threshold (in the default
setting pt = 0.2);

• the percentage of identity of the hit (calculated as the number of iden-
tities divided by the query sequence length, times 100) is above a length-
dependent threshold given by the adaptation of the HSSP curve introduced
in our previous work (Woźniak et al., 2011a), defined by the parameter nt

(in the default setting nt = 60.5).

Algorithm 2 The closure procedure in eCAMBer (pseudocode)
Require: A set S of bacterial strains; and for each S ∈ S, a set A0

S of genome
annotations, a set GS of sequences constituting the genome of S. The map-
ping function sequencesS(A) returns the set of sequences in the genome GS

corresponding to the set of annotations A.
1: Q0 ←

∪
S∈S sequencesS(A0

S), Q
0 ← ∅

2: i← 0
3: while Qi ̸= ∅ do
4: for all T ∈ S do
5: H i

T ← acceptable hits from Qi on the target genome GT

6: Ai+1
T ← Ai

T ∪H i
T

7: end for{The above operations are done in parallel for each target genome
T ∈ S. Also, for a query sequence q ∈ Qi, if its BLAST hits are available in
a database of precomputed BLAST results, eCAMBer takes results from
the database instead.}

8: Q
i+1 ← Q

i ∪Qi

9: Qi+1 ←
∪

T∈S sequencesT (H i
T ) \Q

i

10: i← i+ 1
11: end while
12: return genome annotations Ai

S, for all S ∈ S

First, we start with the set of input annotations A0
S, for each strain S in

the set of considered strains S. Then, in ith iteration we compute the set of
BLAST queries Qi as the set of distinct ORF sequences among all strains, which
have not been used as BLAST queries yet. Let additionally Q

i denote the set of
sequences used as BLAST queries before the ith annotation. Of course Q

0
= ∅.

Next, we calculate in parallel, for each target strain T ∈ S, BLAST results
for all sequence queries in Qi. For each strain T ∈ S, all acceptable hits H i

T
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are added to the strain annotations, defining Ai+1
T ← Ai

T ∪H i
T . Next, the set of

newly identified sequences across all genomes
∪

T∈S sequencesT (H i
T ) is computed,

which is then used to update the set of BLAST queries for the next iteration
Qi+1 ←

∪
T∈S sequencesT (H i

T ) \Q
i. We also update the set of sequences already

used as queries Qi+1 ← Q
i∪Qi. The procedure stops when no new ORF sequences

are identified, hence Qi = ∅.
Thus, for every strain T ∈ S, the genome annotations Ai

T in the subsequent
iterations of the closure procedure in CAMBer, are defined as follows:


H i

T = {x ∈ OT : ∃q∈Qiq → x}
Ai+1

T = Ai
T ∪H i

T

Qi+1 ←
∪

T∈S sequencesT (H i
T ) \Q

i

Q
i+1 ← Q

i ∪Qi

(2.8)

The pseudocode 2 presents a more detailed view on the algorithm of computing
the closure procedure in eCAMBer.

Similarly, as in CAMBer, for each strain S ∈ S, we denote by Ac
S the set of

gene annotations produced by the closure procedure above. We further denote
by Ac the set of all ORF annotations produced by the closure procedure. For
each strain S ∈ S, we denote by M c

S the set of multigenes resulting from the
closure procedure.

Figure 2.4 presents a schematic view of the implementation of the closure
procedure in eCAMBer.

The careful reader may notice two important differences between the closure
procedure in CAMBer and eCAMBer. In particular, eCAMBer uses unique ORF
sequences, rather than ORF annotations, as queries against all strain genomes
and, thus, does not repeat a BLAST query when the same ORF sequence corre-
sponds to multiple ORF annotations. In contrast, firstly, CAMBer uses all ORF
sequences as queries and, thus, may repeat a query BLAST several times. Sec-
ondly, CAMBer BLASTs a query against all strains’ genomes except the strain
from which the query is taken. The second difference may potentially lead to
different outcomes generated by these two approaches.

Since BLAST computations are the most time-consuming operations in each
iteration of the closure procedure, we express the time complexity of one iteration
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Input genome annotations 
of k multiple strains

Gene sequences without
precomputed BLASTs

Database of BLAST results 
for distinct gene sequences
against all strain sequences

(k+2 files)

Run BLAST against each 
of k strains and find 

acceptable hits 
(k BLAST queries)

Updated list of distinct gene sequences

Gene sequences 
with precomputed BLASTs

Gene sequence
in database?

Add BLAST results 
to the database

Distinct gene sequences

Updated genome annotations 
of multiple strains 

Mapping of gene sequences on
actual gene locations

Newly annotated 
gene sequences as input 

for the next iteration

One iteration of the closure procedure
in eCAMBer

Figure 2.4: Schematic view of the closure procedure in eCAMBer. In this procedure eCAM-
Ber, unlike CAMBer, takes advantage of working with closely related genomes. In contrast
to the old approach, in each iteration, instead of using each ORF sequence as a query, it
first identifies groups of ORFs with exactly identical sequences. This approach avoids use
of the same ORF sequence multiple times as a BLAST query.

of the closure procedure by the number of performed BLAST computations. Let
k = |S| denote the number of considered strains and let n be the maximal number
of gene annotations per strain, in the ith iteration. Let, d denote the number of
distinct gene sequences to be used as queries in the ith iteration. Then, time
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complexity of one iteration of the closure procedure implemented in eCAMBer
can be expressed as O(d · k), whereas it is O(n · k2) for CAMBer.
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Figure 2.5: Comparison of the number of distinct gene sequences to the total number
of gene annotations in original genome annotations of 569 strains of E. coli. Strains were
included cumulatively in the order of increasing genome sizes. In the figure, the x-axis
corresponds to the number of strains included. The increasing gap in the number of different
gene annotations and the number of distinct gene sequences is the consequence of highly
similar genome sequences, which is a typical phenomenon for bacterial strains within the
same species. Based on this observation, we designed the closure procedure in eCAMBer
to avoid redundant BLAST queries. Applying this strategy we have optimized eCAMBer
to be able to work with datasets comprising hundreds of bacterial strains.

As our case-study experiments show, d is usually much smaller than n · k (see
Figure 2.5). However, it should be noted that, potentially, if every annotated ORF
sequence in S is different, thus d = O(n · k) then the complexity of eCAMBer
might be as for CAMBer.

Importantly, the number of I/O operations per iteration is also significantly
decreased, from O(n · k2) in CAMBer to O(k) in eCAMBer.

2.3.3 Sequence consolidation graph

Having the closure procedure computed we represent its results in the form of
graph structures, called consolidation graphs. Here we introduce the sequence
consolidation graph, which is a compact representation of the outcome of the
closure procedure in eCAMBer.

In this graph GS = (VS, ES, EB), nodes represent distinct sequences of anno-
tated ORFs. There are two types of edges, EB called accepted-hit edges, and ES
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called shared-end edges. There is an undirected shared-end edge {s1, s2} ∈ ES

between a pair of sequence nodes if there is a multigene having two ORF an-
notations (sharing the same stop codon) with these two sequences. There is an
undirected accepted-hit edge {s1, s2} ∈ EB between a pair of sequence nodes if
there is an acceptable hit from sequence q1 to an ORF with sequence q2, or if
there is an acceptable hit from sequence q2 to an ORF with sequence q1.

More formally, we define the graph GS as follows:
VS =

∪
S∈S sequences(Ac

S)

ES = {{s1, s2} : ∃m∃o1∈elts(m)
o2∈elts(m)

s1 = seq(o1) ∧ s2 = seq(o2)}

EB = {{s1, s2} : ∃o2s1 → o2 ∨ ∃o1s2 → o1}

(2.9)

Let us consider the following property: If two ORF annotations o1 and o2 have
identical sequence, then for every query q, q → o1 ⇔ q → o2.

Since the BLAST e-value for a hit depends on genome length, it is possible
that for two different target genomes the e-value of the corresponding hits will
have different values. Thus, it is possible that one of the hits will be acceptable
whereas the other not. However, in practice, such cases are very unlikely and, in
our opinion, can be neglected in the analysis.

It turns out that, assuming the above mentioned property, sequence consoli-
dation graph is a compact representation of both gene consolidation graph and
multigene consolidation.

Assuming the above, the gene consolidation graph GO = (VO, EO) can be
derived from the sequence consolidation graph GS = (VS, ES, EB) following the
formula:

{
VO =

∪
S∈S A

c
S

EO = {{o1, o2} : {seq(o1), seq(o2)} ∈ EB}
(2.10)

Then, having the gene consolidation graph, we can construct the multigene
consolidation graph following the 2.7 formula.

Figure 2.6 illustrates the correspondence between the consolidation graphs.
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Figure 2.6: Schematic view on the correspondence between graph representations of the
closure procedure results in the form of consolidation graphs; A) the genomes with marked
ORF annotations. Round and square brackets indicate positions of the gene starts and gene
ends, respectively. Round brackets with stars indicate original gene annotations, whereas
those without starts indicate the transferred TIS annotations; B) multigene representation
of the annotations with the ORF consolidation graph edges shown between multigene
elements, edges of the multigene consolidation graph are not shown for the readability; C)
the sequence consolidation graph in which nodes correspond to the distinct ORF sequences.
In this graph, there is an undirected shared-end edge between a pair of sequence nodes
if there is a multigene having two ORF annotations (sharing the same stop codon) with
these two sequences. There is an undirected accepted-hit edge between a pair of sequence
nodes if there is an acceptable hit from sequence the first sequence to an ORF with the
second sequence, or vice-versa. Shared-end edges are drawn dashed, whereas accepted-hit
edges are drawn solid.

2.3.4 Homologous gene clusters

The second step of eCAMBer is to determine homologous gene families as con-
nected components of the multigene consolidation graph GM . There is a natural
one-to-one correspondence between the connected components of the multigene
consolidation graph and the connected components of the sequence consolidation
graph (the latter connected components are obtained by taking the union of ES
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and EB). So, in eCAMBer, we do this using connected components of the se-
quence consolidation graph GS, because it tends to be smaller for closely related
genomes. The obtained set of homologous gene families is represented as a set of
disjoint multigene clusters, denoted by CM .

2.3.5 Refinement procedure

The third step of eCAMBer is the refinement procedure. The goal of the re-
finement procedure is splitting the homologous gene families, represented by
multigene clusters, to obtain anchors. We call a multigene cluster an anchor,
if it includes at most one multigene for every strain. Analogously, we call a
multigene cluster non-anchor, if there is a strain which includes at least two
multigenes in the cluster. Multigenes in the same anchor are potentially orthol-
ogous to each other, whereas a non-anchor contains at least two multigenes that
are non-orthologous. Following CAMBer, we use genomic context information
to decompose non-anchors into smaller multigene clusters that can emerge as
anchors, as described below.

The input for the refinement procedure consists of the set of multigene clusters
CM , the sequence consolidation graph GM , and the multigene annotations M c

S, for
each strain S ∈ S. We start with classifying the set CM of multigene clusters into
two disjoint sets of anchors and non-anchors, denoted CA and CN , respectively.
We also sort all multigenes within strain contigs by positions of their stop codons.
We reconstruct the subgraph of the multigene consolidation graph, called the
refinement graph. In this graph GR = (VR, ER), nodes VR are constituted by
the subset of multigenes, which belong to non-anchor clusters. There is an edge
{m1,m2} ∈ ER, between a pair of multigenes coming from different strains, if
there is an edge {m1,m2} ∈ EM , and the two multigenes belong to the same
multigene cluster. By E

{S,T}
R we denote the subset of edges between multigenes

from a pair of strains S and T .
Then, for each unordered pair of strains {S, T} we perform the following proce-

dure in parallel. First, for each multigene m, we identify a pair of its nearest neigh-
bors which belong to anchors with a multigene element present on the opposite
strain. Such left and right neighbors of m are denoted as l{S,T}

m and r
{S,T}
m , respec-

tively. Then, for each edge {m1,m2} ∈ E
{S,T}
R we check whether it is supported

in the sense that it satisfies one of the following conditions: (i) it connects multi-
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genes belonging to a cluster, such that m1 and m2 are its only elements in strains
S and T ; (ii) the corresponding pairs (l

{S,T}
m1 , l

{S,T}
m2 ) and (r

{S,T}
m1 , r

{S,T}
m2 ) belong to

the same anchor; (iii) the corresponding pairs (l
{S,T}
m1 , r

{S,T}
m2 ) and (r

{S,T}
m1 , l

{S,T}
m2 )

belong to the same anchor. If any of the four neighbors does not exist we substi-
tute it with a dummy node, which virtually belongs to any anchor.

Finally, we obtain the refined graph G∗
R by removal of unsupported edges from

GR. Then, the set of connected components CR of G∗
R defines the set of multigene

clusters after the split. Finally, we update the set of multigene clusters as C∗
M ←

(CM \ CN) ∪ CR.
The careful reader may notice the differences between the refinement proce-

dures implemented in CAMBer and eCAMBer. First, the refinement procedure in
CAMBer performs in iterations until no multigene clusters can be split. In eCAM-
Ber the refinement procedure consists of only one iteration. However, since the
input and output for the procedure are of the same type, it can be used multiple
times, until no new clusters are split. Second, the condition for an edge to be
supported in eCAMBer is more relaxed than that in CAMBer. Both approaches,
for a pair of multigenes on different strains, identify pairs of their nearest left
and right neighbor multigenes (belonging to anchor clusters with elements on
both strains). However, CAMBer checks the actual presence of edges between
the neighbors, whereas eCAMBer only checks if the identified neighbors match
the same pair of clusters. This approach allows eCAMBer to avoid a costly re-
construction of the whole multigene consolidation graph.

2.3.6 TIS voting procedure

The fourth step of eCAMBer is the TIS voting procedure. The goal of the TIS
voting procedure is to select the most reliable TIS for each multigene. To do
this, we implement an approach based on the concept of majority voting. This
strategy has also been used to improve genome annotation accuracy in several
recent studies (Zhou and Rudd, 2013; Klassen and Currie, 2013).

In this procedure, for each multigene m in each multigene cluster c ∈ C∗
M , we

try to find a TIS (originally annotated or transferred) that belongs to a connected
component of the ORF consolidation graph, where the connected component
satisfies the following two conditions: (i) it has TISs (originally annotated or
transferred) present in at least 80% of the multigenes in c; and (ii) it has TISs
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originally annotated in at least 50% of the multigenes in c, or it has TISs originally
annotated in at least twice the number of multigenes in c than all other connected
components in c. If such a TIS is found, it is selected as the TIS for m. If such
a TIS is not found, but m has an originally annotated TIS, then the originally
annotated TIS is selected as the TIS for m. If both of these two cases cannot
be applied, the TIS corresponding to the longest ORF in the multigene m is
selected. After the TIS voting procedure, every multigene has exactly one TIS
selected. Thus, we obtain unambiguous TIS annotation for every gene.

Note that the connected components of the sequence consolidation graph —
after shared-end edges have been removed — are in a natural one-to-one cor-
respondence with the connected components in the ORF consolidation graph.
So in eCAMBer, we implement the TIS voting procedure using the sequence
consolidation graph, as it tends to be smaller for closely related genomes.

2.3.7 Clean up procedure

The last step of eCAMBer is the clean up procedure, which is designed to filter
out multigene clusters which are likely due to gene annotation errors propagated
during the closure procedure.

The input for this procedure consists of the set of multigene clusters C∗
M and

multigene annotations M c
S, for each strain s ∈ S. For each multigene cluster

c ∈ C∗
M we compute the following features: (i) l, the median multigene length in

c; (ii) p, the ratio of the number of strains with at least one element from c to the
total number of strains; (iii) r, the ratio of the number of strains with at least
one originally annotated multigene to the total number of strains with at least
one element from c; (iv) v, the ratio of the number of multigenes in the cluster
that are overlapped by a longer multigene to the total number of multigenes in
the cluster.

Then, we update the set of multigene clusters C∗
M , by removing of multigene

clusters for which (p < 1
3

or r < 1
3
) and (l < 150 or v > 0.5).

2.3.8 Other features of eCAMBer

In order to make eCAMBer more user friendly, we have added a functionality
for downloading genome sequences and genome annotations from the PATRIC
database, for the set of selected strains within a species. The downloaded data
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is automatically formatted as input for eCAMBer. Additionally, eCAMBer inte-
grates Prodigal to generate input gene annotations.

Notably, the current implementation of eCAMBer allows the closure procedure
at any iteration. We found out that in many settings one iteration of the closure
procedure gives satisfactory results.

The other features implemented in eCAMBer aim in preparation of the input
genotype data for GWAMAR — the tool we have developed for detection of
genotype-phenotype associations (see chapter 3 for more details).

In this order, eCAMBer employs MUSCLE — the software for computing mul-
tiple sequence alignments (Edgar, 2004). Specifically, eCAMBer, uses MUSCLE
to compute multiple sequence alignments for amino-acid sequences of genes in
the identified gene families. It also uses MUSCLE to compute multiple sequence
alignments of promoter regions (-50bp downstream the TIS) for these gene fam-
ilies.

Having computed the multiple sequence alignments, eCAMBer identifies point
mutations based on columns in the alignments with at least one differing char-
acter. Applying this strategy, eCAMBer identifies amino-acid point mutations
inside the protein-coding genes, as well as mutations inside the gene promoter
regions.

Additionally, eCAMBer identifies gene gain/loss mutations based on the struc-
ture of the corresponding gene families.

The identified point mutations and gene gain/loss mutations constitute the
input genotype data for GWAMAR.

Furthermore, eCAMBer supports employing of PHYLIP (Felsenstein, 2005)
and PhyML (Guindon et al., 2010) — the software for reconstruction of the
phylogenetic tree based on the maximal-likelihood approach.

Finally, eCAMBer generates output compatible with CAMberVis (Woźniak
et al., 2011b), a tool for simultaneous visualization of multiple genome anno-
tations of bacterial strains. CAMBerVis also handles visualization of genome
annotation inconsistencies.
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2.4 CAMBerVis: visualization software to support com-
parative analysis of multiple bacterial strains

The amount of data that is being generated stimulates active development of
visualization techniques and softwares (Nielsen et al., 2010), which are invalu-
able to biologists for manual curation of results in cases where standard genome
annotation tools produce inconsistencies.

In order to better support this type of analysis, we have implemented CAM-
BerVis — a software which allows for visual comparison of the genome structure
annotations of multiple bacterial strains. According to our knowledge, it is the
first visualization software distinguishing original and predicted genome struc-
ture annotations. Another advantage of CAMBerVis over existing softwares is
its intuitive management of plasmids, which are common in bacteria.

CAMBerVis is a standalone application written in Java, which makes it a
cross-platform application, tested on Windows, Mac and Linux. Notably, it is
implemented based on the Netbeans IDE platform, which makes the application
flexible and easy to extend. CAMBerVis, integrated with two example datasets
for M. tuberculosis and S. aureus, is freely available at the project website, http:
//bioputer.mimuw.edu.pl/ecamber.

2.4.1 Example usage

The input to CAMBerVis consists of genome FASTA files and a file with pre-
dicted genome structure annotation. The file format can be generated automati-
cally with the use or CAMBer or eCAMBer. However, this format is generic and
not dependent on these tools. A user may find more details of the format in the
software documentation and learn from the integrated examples on M. tubercu-
losis and S. aureus.

Here we describe the main features of CAMBerVis based on a typical use
case. In the first step we identify a gene family of interest with some annotation
inconsistencies. CAMBerVis manages statistics for every gene family in a table
in the ComponentsStats window. Using this table we can easily find gene families
with missing gene annotations or inconsistencies among annotated TISs.

Second, the visualization is automatically focused on the selected gene fam-
ily showing simultaneously its multigenes (with both annotated and predicted
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TISs) in all strains. We may also see their neighborhood in different scales using
intuitive genome navigation.

Third, we use on-the-fly comparative analysis supported by CAMBerVis. For
example, in the case of inconsistently annotated TISs, we may compare promoter
regions by multiple alignments using the integrated CLUSTALW. CAMBerVis
also enables external queries via NCBI BLAST API, which can be applied to
check which TIS is the most often annotated in external databases like for ex-
ample NCBI Non-redundant (nr) database.

Figure 2.7: The main view of the CAMBerVis interface with loaded example data for 22
strains of S. aureus. The view is focused on a highly conserved gene cluster (gene family)
with 5 different TISs in each multigene, selected from the list in the “ComponentsStats”
window. Multigenes are visualized as horizontal rectangles, with TISs presented as vertical
ticks (originally annotated TISs are red and long). The window “TasksTable” keeps track
of results obtained on-the-fly by ClustalW or NCBI BLAST API.

Figure 2.7 presents a screen shot of the running application. The visualization
is focused on a gene family identified by “ComponentsStats” table sorted by the
number of TISs. There are 5 different TISs annotated in GenBank among the
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22 fully sequenced strains of S. aureus, annotated with following frequencies:
2,1,7,4,8 (ordered from the TIS giving rise to the shortest gene to the TIS giving
rise to the longest gene). An analysis of the multiple alignment computed by
CLUSTALW showed that the gene family is highly conserved among strains and
only four of the strains have SNP in the 100bp long promotor region. Queries
to the NCBI Non-redundant (nr) database showed that the TIS that yields the
longest gene is the most often annotated.

2.5 Results and discussion

Here we present and discuss in detail results obtained by employing the tools
we developed to support comparative analysis of multiple bacterial strains. The
description goes along the lines of articles introducing the tools (Woźniak et al.,
2011a, 2014a).

2.5.1 Results for CAMBer

Here we present details of applying CAMBer to three datasets of 9 M. tuberculo-
sis, 22 S. aureus and 41 E. coli strains. It was ran with the following parameters:
et = 10−10 , pt = 0.3 and nt = 30.5%.

The input datasets were generally taken from GenBank (Benson et al., 2013),
with the exception of six M. tuberculosis strains. The input datasets for three of
these strains came from the Broad Institute database; while the remaining three
came from the supplementary material of (Ioerger et al., 2009).

2.5.1.1 Mycobacterium tuberculosis

Table 2.1 provides source information for the strains. We notice that there is
substantial variance (left box plot in Figure 2.8) in the number of originally an-
notated genes. This is probably due to different gene-finding tools and method-
ologies being applied by different labs, rather than the real genomic composition.

It is quite remarkable that variance in the number of predicted multigenes after
the closure procedure is much smaller (right box plot in Figure 2.8). Table 2.2
shows for each strain the distribution of multigenes with respect to the num-
ber of elements (TISs). By far the largest group in each strain are one-element
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strain ID source resist. # of genes lab.

H37Rv NC_000962 DS 3988(26) S
H37Ra NC_009525 DS 4034(22) C

F11 NC_009565 DS 3941(5) B
KZN 4207(T) Ioerger et al. (2009) DS 3902(47) T
KZN 4207(B) Broad Institute DS 3996(4) B

KZN 1435 Broad Institute MDR 4059(10) B
KZN V2475 Ioerger et al. (2009) MDR 3893(3792) T

KZN 605 Broad Institute XDR 4024(26) B
KZN R506 Ioerger et al. (2009) XDR 3902(46) T

Table 2.1: Details for input strains for the M. tuberculosis case study. The first number
in column called “# of genes” corresponds to the number of annotated genes, the second
(in brackets) corresponds to the number of genes excluded in the study due to unusual
start or stop codons or sequence length not divisible by three. In order to avoid ambiguity
in naming the same strain sequenced by two labs we introduce an additional suffix (T or
B). Characters in last column, called “lab.”, describe the sequencing laboratories: B - The
Broad Institute, T - Texas A&M University, C - Chinese National Human Genome Center
at Shanghai, S - Sanger Institute.

# of multigenes with a given number of elements
5 4 3 2 1 total

F11 1 6 68 605 3475 4155
H37Ra 1 5 66 607 3488 4167
H37Rv 1 6 66 602 3483 4158

KZN 605 1 6 68 602 3457 4134
KZN 1435 1 6 69 597 3472 4145

KZN 4207(T) 1 6 70 600 3463 4140
KZN R506 1 6 70 602 3459 4138
KZN V2475 1 6 70 601 3461 4139

KZN 4207(B) 1 5 69 602 3465 4142

Table 2.2: Statistics for the number of multigene start sites after applying the closure
procedure to the dataset of 9 M. tuberculosis strains.

multigenes. Also, Figure 2.9 shows that the predicted multigenes are quite even
distributed in terms of gene length.

The careful reader may have also noticed that the same strain (KZN 4207)
sequenced in two labs has quite different numbers of annotated genes (3902 vs.
3996); but after the closure procedure we have for these two genomes almost the
same number of multigenes (4140 vs. 4142).

This case study shows that the method can also be applied to completely unan-
notated genomes, yielding an initial annotation of a newly sequenced genome.
For example, due to a shift in annotation coordinates for the strain KZN V2475
we removed most of the gene annotations (after the shift). Using our method,
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Figure 2.8: This plot presents the impact of CAMBer on the number of annotated genes
in the dataset of 9 M. tuberculosis strains. On the x-axis strains are listed (from left to
right) in descending order of their genome size. The blue points and the red points present
respectively the number of originally annotated genes and the number of multigenes after
the closure procedure for each strain. The green points indicate the numbers of multigenes
after the closure procedure and after applied post-processing of removal multigenes shorter
than 200 nucleotides length.

we were able to annotate 4139 multigenes in the genome.
After refinement of the multigene consolidation graph, the number of con-

nected components rose from 4177 to 4287 (see Table 2.3), but size of the largest
component dropped from 127 (there are two such components in the multigene
consolidation graph) to 15 (only one such component after refinement). Also the
maximal number of multigenes in one strain and in one non -anchor dropped
from 17 in the multigne consolidation graph to 3 in the refined consolidation
graph.

connected components before refinement after refinement

all 4178 4287
core 3986 4030
orphans 48 68
anchors 4136 4265
non-anchors 42 22
core anchors 3945 4012

Table 2.3: Statistics for the number of connected components with respect to their types,
before and after the refinement procedure applied to the dataset of 9 M. tuberculosis
strains.
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Figure 2.9: Histograms of gene lengths in logarithmic scale (base = 10) for all the M. tu-
berculosis strains taken together. The x-axis is quantified into ranges of length 0.1. Black
points presents the numbers of originally annotated genes, blue points indicate the num-
bers of multigenes after applying CAMBer, red points indicate the numbers of multigenes
formed during the closure procedure.

It is interesting to compare the two largest components of the multigene consol-
idation graph. As mentioned above they have in total 127 multigenes, each strain
having between 12 and 17 multigenes in these non-anchors. What is remarkable
here is that H37Rv, having 16 multigenes in each of the two components, has all
of these 32 genes annotated in the TubercuList database, developed by Lew et al.
(2011), as transposons which belong to the same insertion element (IS6110). Even
though these two non- anchors were not successfully resolved by the refinement
procedure, the resulting non-anchors (four obtained from each of the original
two large non- anchors in the multigene consolidation graph) are pretty small: at
most two multigenes per strain. More precisely, each of the original non-anchors
was split by the refinement procedure into 34 subclusters (4 non-anchors, and 30
anchors with 9 orphans).

The multigene consolidation graph contains 4177 connected components, with
only 43 components (about 1%) being non-anchors and 48 being orphans. Af-
ter the refinement procedure we obtained slightly more connected components
(4287), but the number of non-anchors substantially dropped to 22 (Table 2.3).
Figure 2.10 gives another point of view for the refinement procedure results.
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Figure 2.10: Histogram of the number of connected components (y-axis) shared by a par-
ticular number of strains (x-axis). For better clarity only numbers of connected components
after the refinement procedure are shown.

With this approach we were also able to discover five cases of gene fusion/fission
in the investigated genomes which seems pretty unusual for such closely related
strains. We leave the analysis of this phenomenon for further study.

2.5.1.2 Staphylococcus aureus

Two methicillin-resistant strains (N315 and Mu50) are the first fully sequenced
S. aureus genomes (Kuroda et al., 2001).

Genome sequences and annotations of 22 fully sequenced strains were used in
our study. At the time of writing, these were the only available S. aureus strains
with “completed” sequencing status. Table 2.4 presents the list of the strains.

In this medium-size case study most of the results and corollaries are similar
to the M. tuberculosis case study. However, we highlight below three interesting
observations.

The first observation is that there is a much large number of short predicted
multigenes compared to the number of short original annotated genes, as shown in
Figure 2.11. This contrasts sharply with the situation for M. tuberculosis depicted
in Figure 2.9. This means that in S. aureus many strains have short original
annotations that are annotated to one of them but not to other strains, even
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strain ID GenBank ID # of genes genome size lab.

TW20 0582 FN433596 2769(5) 3043210 Welcome Trust Sanger Institute
JKD6008 CP002120 2680(0) 2924344 Monash University

JH9 CP000703 2769(5) 2906700 US DOE Joint Genome Institute
JH1 CP000736 2680(0) 2906507 US DOE Joint Genome Institute

MRSA252 BX571856 2697(0) 2902619 Sanger Institute
Mu3 AP009324 2746(0) 2880168 Juntendo University

Newman AP009351 2655(5) 2878897 Juntendo University
Mu50 BA000017 2699(63) 2878529 Juntendo University

USA300 TCH1516 CP000730 2624(0) 2872915 Baylor College of Medicine
USA300 FPR3757 CP000255 2699(61) 2872769 University of California

ST398 S0385 AM990992 2657(0) 2872582 University Medical Centre Utrecht
ED133 CP001996 2560(0) 2832478 University of Edinburgh
ED98 CP001781 2699(0) 2824404 University of Edinburgh

04-02981 CP001844 2653(2) 2821452 Robert Koch Institute
NCTC 8325 CP000253 2661(0) 2821361 University of Oklahoma

MW2 BA000033 2650(59) 2820462 NITE
N315 BA000018 2892(0) 2814816 Juntendo University

JKD6159 CP002114 2632(6) 2811435 University of Melbourne
COL CP000046 2593(59) 2809422 TIGR

TCH60 CP002110 2555(1) 2802675 Baylor College of Medicine
MSSA476 BX571857 2672(1) 2799802 Sanger Institute

RF122 AJ938182 2673(0) 2742531 University of Minnesota

Table 2.4: Details for input strains used in the S. aureus case study. The first number in
column called “# of genes” corresponds to the number of annotated genes, the second (in
brackets) corresponds to the number of genes excluded in the study due to unusual start
or stop codons or sequence length not divisible by three.
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though highly homologous regions exist in other strains. This suggests possible
higher occurrence of annotation errors in short genes of S. aureus, especially in
strains like NCTC 8325; see Figure 2.12.
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Figure 2.12: This plot presents the impact of CAMBer on the number of annotated genes
in the dataset of 22 S. aureus strains. On the x-axis strains are listed (from left to right)
in descending order of their genome size. The blue points and the red points present
respectively the number of originally annotated genes and the number of multigenes after
the closure procedure for each strain. The green points indicate the numbers of multigenes
after the closure procedure and after applied post-processing of removal multigenes shorter
than 200 nucleotides length.

The second observation is that computing of the closure procedure took 8
iterations, which is similar to the much larger study of E. coli (8 iterations) and
more than the M. tuberculosis case study (3 iterations).

The third observation is that the maximal number of TISs in a multigene is 13
(see Table 2.5 for more details), where for E. coli it is 9 and for M. tuberculosis
5.

As in the other case studies, we observe uneven distribution in the number of
original annotated genes; see Figure 2.12. To assess the degree of unevenness we
calculated the mean absolute difference in counts coming from two neighboring
strains, where strains are ordered in decreasing order of the size of their genomes.
It is 78 for the original annotation curve vs. 70 for the curve constructed after
the closure procedure, which further drops to 29 after post-processing removal
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# of multigenes with a given number of elements (TISs)
13 10 9 8 7 6 5 4 3 2 1 total

TW20 0 0 1 0 1 3 9 45 224 823 2183 3289
JKD6008 0 0 1 0 1 2 8 44 218 827 2058 3159

JH9 0 0 0 1 0 0 10 42 240 805 2052 3150
JH1 0 0 0 1 0 0 11 43 241 805 2048 3149

MRSA252 9 0 0 0 1 2 8 44 207 805 1970 3046
Mu3 0 0 0 1 0 0 12 39 235 789 2032 3108

Newman 0 0 1 0 1 2 12 46 231 818 2089 3200
Mu50 0 0 0 1 0 0 12 39 234 788 2033 3107

USA300 TCH1516 0 0 1 0 1 2 12 49 237 815 2020 3137
USA300 FPR3757 0 0 1 0 1 2 12 49 239 813 2016 3133

ST398 0 0 1 0 0 0 6 39 198 768 2017 3029
ED133 0 0 1 0 0 1 9 41 212 762 1946 2972
ED98 0 0 0 1 0 0 11 38 235 769 1974 3028

04-02981 0 0 0 1 0 0 11 40 236 778 1967 3033
NCTC8325 0 0 1 0 1 2 11 44 228 799 2044 3130

MW2 0 0 0 0 0 3 11 45 230 790 1948 3027
N315 0 0 0 1 0 0 12 40 234 765 1947 2999

JKD6159 6 1 0 0 0 0 9 38 208 760 1880 2902
COL 0 0 1 0 1 2 13 49 234 785 1964 3049

TCH60 4 1 1 0 0 1 8 48 192 776 1936 2967
MSSA476 0 0 0 0 0 3 11 42 225 780 1933 2994

RF122 0 0 0 0 0 5 8 40 186 706 1905 2850

Table 2.5: Statistics for the number of multigene start sites after applying the closure
procedure to the dataset of 22 S. aureus strains.

of multigenes shorter than 200 nucleotides.
This inconsistency was probably caused by different gene-finding methodolo-

gies applied by different labs. Curves like those presented in Figure 2.12 allow us
also to estimate which labs were more conservative and which were more liberal
when calling a given ORF a gene. For example, we observe a big peak in the
number of original annotated genes for the strain NCTC 8325, suggesting that
this is perhaps the case of a more liberal annotation. Indeed, we investigated the
number of connected components with multigenes present in all strains but have
original gene annotations in only one strain. It turned out that there are only
7 strains that contribute at least one such connected component, of which the
strain NCTC 8325 contributes the highest number (22), with the second strain
being USA300 TCH1516 (18). All other strains contributed less than 4 such
components. An example of a strain with a rather conservative annotation is
USA300 FPR3757, as can be clearly seen from a dip of the curve in Figure 2.12.

It is rather expected that most of the inconsistencies concern short genes,
leading to a sudden increase in the number of short multigenes after the closure
procedure; see Figure 2.11. Therefore, it is interesting to investigate the cases
where new long multigenes are predicted after the closure procedure. There are
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in total 31 connected components with multigenes of length at least 300 nu-
cleotides which were originally annotated in less than half of the strains. Two of
them have multigenes in all 22 strains with only one originally annotated ele-
ment. More precisely, these two connected components were contributed by genes
SAOUHSC 00630 and SAOUHSC 01489 annotated in NCTC 8325. Both these
genes are overlapped by genes which have original annotations in all remaining
strains, which suggests that these two genes were perhaps incorrectly annotated.

We also checked the structure of annotations for highly overlapping multigenes
as another source of possible inconsistencies in genome annotations. For each
strain, we searched for pairs of highly overlapping multigenes (after the closure
procedure) belonging to core anchors (i.e., anchors with elements in every strain).
Here, we define a pair of multigenes as highly overlapping when the length of the
overlap is at least 50% of the length of the shorter multigene in the pair.

The number of identified pairs of multigenes in one strain varies from 17 to 20,
depending on the strain. As it can be expected, strains with more liberal annota-
tions have higher number of annotated overlapping multigene pairs. In particular,
NCTC 8325 has 7 pairs of multigenes where both multigenes in the pair have at
least one original annotated element; ST398 has 5 such pairs; and ED98 has 4.
On the other hand, RF122, SA300 FPR3757, Newman, N315 and 8 other strains
do not have any such highly overlapping pair of annotated multigenes.

connected components before refinement after refinement

all 4737 5528
core 2156 2146
anchors 4464 5421
orphans 839 1373
non-anchors 273 107
core anchors 2115 2119

Table 2.6: Statistics for the number of connected components with respect to their types,
before and after the refinement procedure applied to the dataset of 22 S. aureus strains.

Table 2.6 presents statistics of the refinement procedure. After the closure pro-
cedure, we obtained 273 (around 5%) non-anchors in the multigene consolidation
graph, of which the refinement procedure split 210 and completely resolving 175
of them. The refinement procedure yielded 4 new anchors with multigenes in
all strains. Figure 2.13 gives another perspective on the refinement procedure
results.
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Figure 2.13: Histogram of the number of connected components (y-axis) shared by a
particular number of strains (x-axis) for the dataset of 22 S. aureus strains.

2.5.1.3 Escherichia coli

The strain K-12 MG1655 became the first fully sequenced E. coli genome in
1997 (Blattner et al., 1997).

We perform the analysis on E. coli to test scalability of CAMBer and check
stability of the results on a large dataset. In our case study, we use genome
sequences and annotations of 41 fully sequenced strains deposited in NCBI. At
the time of writing, these were the only available E. coli strains with “completed”
status. Table 2.7 presents details of the strains.

Figure 2.14 presents a distribution of gene (original annotation) and multigene
(after applying our closure procedure) counts for the 41 strains. Strains in this
plot occur (from left to right) in decreasing order of sizes of their genomes. We
observe that the curve based on the original annotations is quite bumpy, which
reflects incongruence of annotations made by different labs. This observation is
supported by computing an average absolute difference in counts coming from
two neighboring strains: it is 152.1 for the original annotation curve vs. 95.6 for
the curve constructed after the closure procedure; and it is only 64 after post-
processing removal of multigenes shorter than 200 nucleotides was applied.

We have also analyzed the distribution of sizes of the newly predicted multigene
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strain ID GenBank ID # of genes genome size lab.

O26:H11 11368 AP010953 5363(4) 5697240 University of Tokyo
O157:H7 EC4115 CP001164 5315(0) 5572075 J. Craig Venter Institute
O157:H7 EDL933 AE005174 5348(10) 5528445 University of Wisconsin
O157:H7 TW14359 CP001368 5263(6) 5528136 University of Washington
O157:H7 Sakai BA000007 5360(5) 5498450 GIRC
O103:H2 12009 AP010958 5053(4) 5449314 University of Tokyo
O55:H7 CB9615 CP001846 5014(0) 5386352 Nankai University
O111:H 11128 AP010960 4971(4) 5371077 University of Tokyo
042 FN554766 4792(18) 5241977 Welcome Trust Sanger Institute
CFT073 AE014075 5378(4) 5231428 University of Wisconsin
ED1a CU928162 4914(4) 5209548 Genoscope
UMN026 CU928163 4825(4) 5202090 Genoscope
55989 CU928145 4762(4) 5154862 Institute Pasteur and Genoscope
ETEC H10407 FN649414 4696(3) 5153435 Welcome Trust Sanger Institute
IAI39 CU928164 4731(7) 5132068 Genoscope
ABU 83972 CP001671 4793(6) 5131397 Georg-August-University
IHE3034 CP001969 4757(3) 5108383 IGS
APEC O1 CP000468 4467(3) 5082025 Iowa State University
SMS-3-5 CP000970 4742(3) 5068389 TIGR
UTI89 CP000243 5066(13) 5065741 Washington University
S88 CU928161 4695(3) 5032268 Genoscope
UM146 CP002167 4650(0) 4993013 MBRI
E24377A CP000800 4755(0) 4979619 TIGR
O127:H6 E2348/69 FM180568 4553(4) 4965553 Sanger Institute
536 CP000247 4629(2) 4938920 University of Goettingen
W CP002185 4478(4) 4900968 AIBN/KRIBB
SE11 AP009240 4679(0) 4887515 Kitasato Institute for Life Sciences
O83:H1 NRG 857C CP001855 4429(13) 4747819 Public Health Agency of Canada
ATCC 8739 CP000946 4180(7) 4746218 US DOE Joint Genome Institute
SE15 AP009378 4338(0) 4717338 Kitasato University
IAI1 CU928160 4353(4) 4700560 Genoscope
K-12 substr. DH10B CP000948 4125(5) 4686137 University of Wisconsin-Madison
K-12 substr. W3110 AP009048 4225(9) 4646332 Nara Institute
HS CP000802 4383(3) 4643538 TIGR
K-12 substr. MG1655 U00096 4144(7) 4639675 University of Wisconsin-Madison
DH1 CP001637 4159(4) 4630707 US DOE Joint Genome Institute
BL21-Gold(DE3)pLysS CP001665 4208(8) 4629812 US DOE Joint Genome Institute
BW2952 CP001396 4083(5) 4578159 TEDA School
BL21(DE3) BL21 AM946981 4227(4) 4570938 Austrian Center
B REL606 CP000819 4158(6) 4558953 International E. coli B Consortium
BL21(DE3) CP001509 4181(23) 4558947 Korea Research Institute

Table 2.7: Details for input strains for the E. coli case study. The first number in column
called “# of genes” corresponds to the number of annotated genes, the second (in brackets)
corresponds to the number of genes excluded in the study due to unusual start or stop
codons or sequence length not divisible by three.

annotations. Figure 2.15 presents these distributions for all E. coli strains taken
together. The striking feature is that most of the newly predicted multigenes
are pretty short, around 200 nucleotides. Of course each such newly predicted
multigene must have a witness coming from an original annotation in another
strain. This distribution suggests that annotations of short genes may be a pos-
sible source of annotation errors. It also suggests one should remove very short
multigenes from global considerations. The distribution after removal is flatter,
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Figure 2.14: This plot presents the impact of CAMBer on the number of annotated genes
in the dataset of 41 E. coli strains. On the x-axis strains are listed (from left to right)
in descending order of their genome size. The blue points and the red points present
respectively the number of originally annotated genes and the number of multigenes after
the closure procedure for each strain. The green points indicate the numbers of multigenes
after the closure procedure and after applied post-processing of removal multigenes shorter
than 200 nucleotides length.

resembling closer to the distribution for original annotated genes, as shown in
Figure 2.14.

It is also interesting to investigate which strains had the most liberal anno-
tations of genes. This can be seen by considering connected components which
have an element in each strain, but only one gene in such a component has origi-
nal annotation. Such a situation suggests that the lab which was annotating this
strain annotated the ORF as a gene, while other labs did not, even though the
corresponding ORF was present in genomes that the other labs were working on.
The top 5 most liberal annotations were obtained for CFT073 (37 components),
E24377A (22 components), O157-H7 EC4115 (13 components), UTI89 (12 com-
ponents), and IAI1 (10 components). For the rest of the strains, the number of
such components was smaller than 8. In total, there were 22 strains of E. coli
which contributed components described above.

Adopting a similar approach as in the S. aureus case study we performed
the analysis of annotations for highly overlapping multigenes viewed as another
source of inconsistencies in genome annotations. In the case of E. coli strains,
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Figure 2.15: Histograms of gene lengths in logarithmic scale (base = 10) for all the E. coli
strains taken together. The x-axis is quantified into ranges of length 0.1. Black points
presents the numbers of originally annotated genes, blue points indicate the numbers of
multigenes after applying CAMBer, red points indicate the numbers of multigenes formed
during the closure procedure.

the number of highly overlapping pairs of multigenes varies in strains from 167
to 172.

Again, strains with local maxima on the curve of annotated genes (see Fig-
ure 2.14) tend to have a higher number of pairs of highly overlapping multigenes
with both multigenes annotated. In particular, CFT073 has 86, UTI89 has 76,
and E24377A has 30. On the other hand, APECO1 has only one such pair.

Even though there are known cases of functional genes with atypical start
codons, we decided to restrict our attention to the three typical start codons
(ATG, GTG, CTG), hoping that it does not influence our results in a substantial
way. However, it is interesting to follow the fate of genes which have atypical start
codons in some strains. For example, the first fully sequenced E. coli strain (K-12
MG1655) has annotated two protein-coding genes with atypical start codons.

The first gene is infC , encoding IF3 translation initiation factor. As discussed
by Sacerdot et al. (1982), this atypical start codon (ATT) may be in use for self-
regulation. Interestingly, using CAMBer, we revealed that annotations for 25
(i.e., more than half) of the studied strains have annotated a shorter version of
the gene (435 nucleotides instead of 543) with the GTG start codon. The second
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# of multigenes with a given number of elements (TISs)
9 8 7 6 5 4 3 2 1 total

O26-H11-11368 7 7 4 20 57 213 631 1793 4310 7042
O157-H7-EC4115 13 13 7 14 62 157 624 1857 4226 6973
O157-H7-EDL933 10 13 5 18 46 143 617 1831 4242 6925

O157-H7-TW14359 14 12 7 13 58 151 616 1836 4195 6902
O157-H7-Sakai 14 8 5 16 49 152 600 1826 4198 6868
O103-H2-12009 0 28 3 16 53 162 583 1704 4078 6627
O55-H7-CB9615 0 4 10 12 44 156 564 1722 3950 6462
O111-H-11128 35 7 1 18 54 154 565 1686 3970 6490

042 0 2 2 11 28 138 538 1598 3791 6108
CFT073 6 2 4 8 33 161 534 1721 3836 6305

ED1a 1 4 0 11 24 144 524 1577 3957 6242
UMN026 0 3 7 9 29 139 539 1556 3719 6001

55989 0 2 3 11 37 146 559 1605 3766 6129
ETECH10407 1 3 2 11 36 143 549 1589 3809 6143

IAI39 22 5 2 4 43 149 508 1619 3566 5918
ABU83972 0 3 3 7 29 140 530 1662 3736 6110
IHE3034 0 1 2 9 32 144 563 1644 3712 6107
APECO1 0 1 2 12 29 145 542 1675 3705 6111
SMS-3-5 3 0 5 8 24 116 500 1515 3586 5757
UTI89 1 1 2 9 30 147 561 1655 3658 6064

S88 0 2 3 9 33 149 550 1658 3678 6082
UM146 1 1 1 8 28 137 528 1590 3640 5934

E24377A 0 1 2 6 31 125 516 1502 3656 5839
O127-H6-E234869 0 3 2 8 15 169 471 1474 3618 5760

536 1 0 2 8 21 135 510 1560 3546 5783
W 0 1 2 6 27 112 483 1492 3636 5759

SE11 0 3 0 9 32 119 505 1467 3625 5760
O83-H1-NRG857C 0 1 2 7 23 117 489 1503 3427 5569

ATCC8739 0 1 3 6 26 106 491 1431 3468 5532
SE15 0 1 1 10 22 111 467 1445 3366 5423
IAI1 0 1 1 5 29 121 484 1442 3428 5511

K12-DH10B 0 3 1 6 23 98 457 1475 3504 5567
K12-W3110 0 3 1 6 25 100 458 1467 3471 5531

HS 0 0 1 7 24 121 480 1439 3429 5501
K12-MG1655 0 3 1 6 25 97 463 1455 3473 5523

DH1 0 3 1 6 25 97 458 1453 3447 5490
B-REL606 0 3 2 5 24 99 511 1472 3389 5505
BW2952 0 3 1 7 25 97 453 1447 3421 5454

BL21-Gold-DE3 0 2 1 5 25 98 497 1460 3388 5476
BL21-DE3 0 2 1 5 25 100 497 1461 3362 5453

BL21-DE3-BL21 0 2 1 5 25 100 497 1461 3370 5461

Table 2.8: Statistics for the number of multigene start sites after applying the closure
procedure to the dataset of 41 E. coli strains.

gene, htgA (synonym htpY ), is involved in heat shock response. The possible
explanation for the atypical start codon (CTG) was discussed by Missiakas et al.
(1993). Using CAMBer, we identified 7 strains which annotated this gene with
a different TIS. Six of them have annotated 495 nucleotides as gene length and
one 486. In both cases, GTG was selected as the start codon. It is possible that
some other start codons may also be used in E. coli (Blattner et al., 1997).

In this case study the maximal number of TIS in a multigene is 9; see Table
2.8 for more details. Interestingly, it is less than for S. aureus— the medium-size
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case study; see Table 2.5.

connected components before refinement after refinement

all 13973 20257
core 3089 3084
anchors 12797 19694
orphans 3637 8380
non-anchors 1176 563
core anchors 2963 2979

Table 2.9: Statistics for the number of connected components with respect to their types,
before and after the refinement procedure applied to the dataset of 41 E. coli strains.

Table 2.9 presents statistics of the refinement procedure. After the closure
procedure we obtained 1176 non-anchors, of which we were able to split 934
using the refinement procedure, 689 of them we resolved completely into anchors.
The refinement procedure produced only two new anchors with multigenes in all
strains. Most of the connected components obtained were small, in particular,
the number of orphans doubled; see Figure 2.16.
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Figure 2.16: Histogram of the number of connected components (y-axis) shared by a
particular number of strains (x-axis).

Core genome vs. pangenome

Finally, we computed core genome and pangenome for the family of E. coli strains
using our concept of a multigene and compared the result to the core genome

53



and pangenome computed along the lines described in the work of Lukjancenko
et al. (2010), where the authors considered 61 strains, many of them not having
the sequencing status of “completed”. Our set of strains is not a subset of the
61 strains mentioned above since there were some newly published strains (e.g.,
E. coliUM146, published in January 2011). For this reason, we had to repeat the
computations for our set of strains.

Following the work of Lukjancenko et al. (2010), we call two genes homologous
if the percent of identity is at least 50% covering at least 50% of the longer gene.
We order all strains with respect to decreasing size of their genomes. We start
with the strain having the largest genome, initializing both the pangenome and
the core genome equal to the set of all genes of that strain. In the n-th step, we
put a gene of the n-th strain into the pangenome if it is not homologous toany of
the genes of the previously considered strains. We also remove a gene from the
core genome when it not homologous to any of the genes of the n-th strain.

●

●

● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

2000

2500

3000

3500

4000

4500

N
um

be
r 

of
 g

en
es

 o
r 

m
ul

tig
en

es

T
W

20

JK
D

60
08

JH
9

JH
1

M
R

S
A

25
2

M
u3

N
ew

m
an

M
u5

0

U
S

A
30

0−
T

C
H

15
16

U
S

A
30

0−
F

P
R

37
57

S
T

39
8

E
D

13
3

E
D

98

04
−

02
98

1

N
C

T
C

83
25

M
W

2

N
31

5

JK
D

61
59

C
O

L

T
C

H
60

M
S

S
A

47
6

R
F

12
2

●
●

● ●
● ●

● ●
● ●

●
●

● ●
● ● ● ● ●

●
●

●

●

●

● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ●

●

●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

Pan−genome for input annotations
Core−genome for input annotations
Pan−genome for CAMBer annotations
Core−genome for CAMBer annotations

Figure 2.17: Core vs. pangenome plots of 22 S. aureus strains calculated using original
annotations and multigene annotations, predicted by CAMBer. Strains are sorted (from left
to right) in descending order of their genome sizes. Violet and green and points indicate
cumulative numbers of core and pangenome sizes using annotated genes, while red and
blue and points indicate cumulative numbers of core and pangenome sizes using multigenes
after the closure procedure. The proportion of core genome to pangenome size has risen
from 42% to 52% after the closure procedure.

We run two experiments on our set of strains: one which relies on the original
genome annotations, as it was done in the work of Lukjancenko et al. (2010),
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and another one which relies on previously pre-computed multigene annotations.
Figure 2.18 shows the dynamics of change in gene numbers both for pangenome
and core genome. It shows that as the number of strains increases both methods
asymptotically converge to a pangenome size of around 13 000 genes. This sug-
gests that the notion of a pangenome is quite robust when considering a large
number of strains. On the other hand, there is a consistent difference between
sizes of the core genome computed for the original annotations vs. pre- computed
multigene annotations. For the latter method the core genome is substantially
larger than for the former, resulting in an increase of the percentage with respect
to pangenome from 18% to 25%. The analogous percentage for the 61 strains
considered by Lukjancenko et al. (2010) was reported in that work as only 6%,
but the computation was relying on original annotations.

●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
2000

4000

6000

8000

10000

12000

N
um

be
r 

of
 g

en
es

 o
r 

m
ul

tig
en

es

O
26

−
H

11
−

11
36

8
O

15
7−

H
7−

E
C

41
15

O
15

7−
H

7−
E

D
L9

33
O

15
7−

H
7−

T
W

14
35

9
O

15
7−

H
7−

S
ak

ai
O

10
3−

H
2−

12
00

9
O

55
−

H
7−

C
B

96
15

O
11

1−
H

−
11

12
8

04
2

C
F

T
07

3
E

D
1a

U
M

N
02

6
55

98
9

E
T

E
C

H
10

40
7

IA
I3

9
A

B
U

83
97

2
IH

E
30

34
A

P
E

C
O

1
S

M
S

−
3−

5
U

T
I8

9
S

88
U

M
14

6
E

24
37

7A
O

12
7−

H
6−

E
23

48
69 53
6 W

S
E

11
O

83
−

H
1−

N
R

G
85

7C
AT

C
C

87
39

S
E

15
IA

I1
K

12
−

D
H

10
B

K
12

−
W

31
10 H
S

K
12

−
M

G
16

55
D

H
1

B
−

R
E

L6
06

B
W

29
52

B
L2

1−
G

ol
d−

D
E

3
B

L2
1−

D
E

3
B

L2
1−

D
E

3−
B

L2
1

●

●
● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Pan−genome for input annotations
Core−genome for input annotations
Pan−genome for CAMBer annotations
Core−genome for CAMBer annotations

Figure 2.18: Core vs. pangenome plots for 41 E. coli strains calculated using original
annotations and multigene annotations, predicted by CAMBer. Strains are sorted (from left
to right) in descending order of their genome sizes. Violet and green and points indicate
cumulative numbers of core and pangenome sizes using annotated genes, while red and
blue and points indicate cumulative numbers of core and pangenome sizes using multigenes
after the closure procedure. The proportion of core genome to pangenome size has risen
from 18% to 25% after switching to multigene annotations resulting from CAMBer.

We also performed the analogous computations for M. tuberculosis and S. au-
reus. Figures 2.19 and 2.17 present results for M. tuberculosis and S. aureus,
respectively. The conclusions are similar as for E. coli. The size of pangenome
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Figure 2.19: Core vs. pangenome plots of 9 M. tuberculosis strains calculated using original
annotations and multigene annotations, predicted by CAMBer. Strains are sorted (from left
to right) in descending order of their genome sizes. Violet and green and points indicate
cumulative numbers of core and pangenome sizes using annotated genes, while red and blue
and points indicate cumulative numbers of core and pangenome sizes using multigenes after
the closure procedure. Here, the strain KZN V2475 was excluded due to wrong annotation,
caused by a shift in gene coordinates. The proportion of core genome to pangenome size
has risen from 88.5% to 96.1% after switching to multigene annotations resulting from
CAMBer.

computed using both methods converges, as the number of considered strains in-
creases. On the other hand, size of the core genome shows a consistent difference
for both methods. As a result, the proportion of the size of core genome with
respect to the pangenome substantially depends on the chosen method, yield-
ing higher score for the method based on pre-computed multigene annotations.
The increase is from 42% to 52% for S. aureus and from 88% to 96% for the
M. tuberculosis dataset.

2.5.2 Results for eCAMBer

In this section we present the results of our experiments, which demonstrate that:
(i) eCAMBer is much more efficient than CAMBer, Mugsy-Annotator and the
GMV pipeline; (ii) it scales well to large datasets; (iii) it improves annotation
consistency; (iv) it improves annotation accuracy; and (v) eCAMBer outperforms
Mugsy-Annotator and the GMV pipeline in terms of accuracy.
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2.5.2.1 Comparison of running times

First, we compare the efficiency of eCAMBer and CAMBer by running the clo-
sure procedure for both tools on four datasets from our previous work on CAM-
Ber (Woźniak et al., 2011a). All computations in the first experiment were per-
formed on the same desktop machine with 4 processor cores being used. In this
experiment, eCAMBer significantly outperforms CAMBer (Table 2.10). For ex-
ample, the running time of the closure procedure on 9 strains of M. tuberculosis
was reduced from about 1 hour 27 minutes to only 41 seconds.

CAMBer eCAMBer
Dataset BLASTs closure BLASTs closure

2 strains of S. aureus 1 m 47 s 2 m 5 s 8 s 18 s
9 strains of M. tuberculosis 1 h 22 m 1 h 27 m 27 s 41 s
22 strains of S. aureus 6 h 6.5 h 3 m 15 s 4 m
41 strains of E. coli 42 h 48.5 h 22 m 25 m

Table 2.10: Comparison of running times between eCAMBer and CAMBer on four datasets
considered in our precious work on CAMBer. Here, all the computations were performed
on the same desktop machine with 4 processor cores being used.

Second, we also compare the running time of eCAMBer against CAMBer,
Mugsy-Annotator and the GMV pipeline by running them on the four datasets
from our previous work on CAMBer (Woźniak et al., 2011a). Since Mugsy-
Annotator does not support multi-thread processing, in this experiment we use
only one processor core for the computations. Table 2.11 presents running times
in this experiment. It is clear from this table that the running time speedup
achieved by eCAMBer is much more pronounced for larger datasets. This is an
expected phenomenon since the other tools have quadratic running times with
respect to the number of strains included.

The above results also suggest that eCAMBer scales well to larger datasets.

2.5.2.2 Large case studies

We examine the scalability of eCAMBer to large datasets by running it on 10
datasets for the 10 species with the highest number of sequenced strains in the
PATRIC database (Gillespie et al., 2011), in the 16 March 2013 release. All
datasets consist of genome sequences and annotations for the sets of strains
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Dataset CAMBer eCAMBer Mugsy-Ann. GMV

2 strains of S. aureus 7 m 31 s 26 s 2 m 21 m
9 strains of M. tuberculosis 4 h 12 m 2 m 37 s 1 h 25 m 13 h 53 m
22 strains of S. aureus 37 h 5 m 16 m 30 s 4 h 11 m 28 h 36 m
41 strains of E. coli 273 h 22 m 1 h 48 m 19 h 21 m 368 h 31 m

Table 2.11: Comparison of running times between eCAMBer, CAMBer, Mugsy-Annotator
and the GMV pipeline on four datasets from our previous work on CAMBer. All compu-
tations were executed on a machine with 1 processor core being used. The machine used
in this computational experiment was different than the one used in the previous experi-
ment. Columns correspond, in left-to-right order, to: short detaset description, total time
consumed by the closure procedure in CAMBer, total time consumed by eCAMBer, total
time consumed by Mugsy-Annotator, total time consumed the GMV pipeline.

within the same species. Experiments for all of these datasets were conducted on
a machine with 24 processor cores, out of which 20 were used.

Table 2.12 shows a distribution of running times of all procedures of eCAMBer.
The reader may observe that the running times are not necessarily monotoni-
cally increasing with the number of strains. For example, the closure procedure
computations for the dataset of 162 strains of H. pylori took longer than the
larger dataset of 195 strains of S. aureus. This may be explained by the fact that
the total number of distinct sequences for annotated genes in S. aureus (98562)
is much smaller than in H. pylori (208790).

In order to further investigate the scalability of eCAMBer, we check how the
number of distinct gene sequences increases, when more strains are included. For
this experiment, we chose the largest dataset of 569 strains of E. coli. Next, we
sorted all genomes from the smallest to the largest. The plots (Figure 2.5) present
the number of annotated genes and the number of gene sequences in a cumula-
tive manner. We observe that the total number of distinct sequences grows much
slower than the total number of gene annotations, suggesting sub-linear growth
of the number of distinct gene sequences. Thus, according to our theoretical con-
siderations, the algorithm implemented in eCAMBer for computing the closure
procedure is sub- quadratic with respect to the number of strains included.

This experiment also shows that the strategy applied in eCAMBer to work
with unique ORF sequences, rather than ORF annotations, leads to a sequence
consolidation graph that is significantly smaller than the corresponding ORF con-
solidation graph. For example, in the largest dataset for 569 strains of E. coli,
there are about 12.4mln nodes (ORF annotations) and 2.8bln edges in the ORF
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Detaset description Running times
Species name Strains Genes Distinct seq. Closure Graph Refine. TIS v. Clean up

E. coli 569 2923165 487141 (0.17) 12 h 59 m 2 h 51 m 14 m 10 m
S. enterica 293 1366439 244450 (0.18) 3 h 56 m 18 m 36 m 4 m 4 m
S. agalactiae 250 517648 56215 (0.11) 29 m 2 m 5 m 37 s 53 s
S. pneumoniae 238 529076 99578 (0.19) 2 h 29 m 5 m 9 m 1 m 30 s 1 m 10 s
S. aureus 195 523557 98562 (0.19) 1 h 7 m 3 m 4 m 1 m50 s 1 m
H. pylori 163 267302 208790 (0.78) 1 h 42 m 12 m 5 m 5 m 10 s 2 m 10 s
L. interrogans 139 649916 175899 (0.27) 1 h 30 m 4 m 7 m 1 m 30 s 1 m 50 s
V. cholerae 130 467413 97258 (0.21) 24 m 2 m 2 m 20 s 35 s 51 s
A. baumannii 131 487775 129089 (0.27) 34 m 3 m 2 m 30 s 52 s 58 s
B. cereus 104 602986 395477 (0.66) 1 h 13 m 6 m 3 m 50 s 2 m 57 s 1 m 52 s

Table 2.12: Running times of eCAMBer on the 10 large datasets. All experiments were
performed on the same machine with 24 processor cores, where 20 of them were used. The
columns correspond in left-to-right order to: the species name, the number of sequenced
strains within the species, the total number of annotated genes, the number of distinct
sequences for the set of annotated genes (in the brackets we also provide the ratio between
the number of distinct sequences to the total number of annotated genes), running time to
compute all BLASTs for the closure procedure, total running time to compute the closure
procedure (including BLAST computations), the running time to construct the sequence
consolidation graph, the running time to compute the refinement procedure, the running
time for the TIS voting procedure, and the running time for the clean up procedure.

consolidation graph, whereas there are only about 1.6mln nodes (unique ORF
sequences), 1.3mln shared-end edges, and 55.9mln BLAST-hit edges in the se-
quence consolidation graph.

2.5.2.3 Annotation consistency

We also investigate ability of eCAMBer to identify annotation inconsistencies
and to improve the consistency of annotations. As a case-study, we use the set
of 20 E. coli strains with manually curated annotations, deposited in the ColiS-
cope database (Touchon et al., 2009), available through the web-based interface
MaGe (Vallenet et al., 2006). Pseudogenes were excluded from the analysis. On
this dataset we run the closure procedure, followed by: the refinement procedure,
the TIS voting procedure, and the clean up procedure. For comparison we also in-
clude annotations for the same set of strains, but downloaded from the PATRIC
database (Gillespie et al., 2011).

In order to assess the improvement of annotation consistency, after running
eCAMBer, we calculated the mean absolute difference in the number of annotated
multigenes between two neighbour strains. It is 311 for the original annotations
from ColiScope vs. 159 after applying eCAMBer. Analogous statistics on the
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dataset from PATRIC are 409 for the original annotations and 311 after applying
eCAMBer.

In the dataset of 20 E. coli strains from ColiScope database, after the closure
procedure, eCAMBer identifies 73 gene families which have the following prop-
erty: each family has a member in every strain, and for each family exactly one
strain has a missing original annotation in that family. The top three strains
with the highest number of missing gene annotations of that type are: Sd197
(13), 2a 2457T (8) and 536 (7). The most well-studied strain K-12 MG1655 has
four missing annotations of the above described type. These annotations were
added by eCAMBer during the closure procedure.

Based on this case-study, we also investigate how eCAMBer improves consis-
tency of TISs. There are 8038 pairs of originally annotated genes with different
TISs, but with identical sequence (including 100bp. upstream region from the
TIS of the longer annotation). This number was reduced to 4230 after applying
the TIS majority voting procedure and the clean up procedure.

This case study also shows that inconsistencies, which come from annotation
errors, are present even for a very well-studied bacterial organism like E. coli.
Note also that the discussed annotation inconsistencies were identified among
strains with annotations curated by the same laboratory.

2.5.2.4 Comparison of other features

CAMBer, eCAMBer, Mugsy-Annotator and the GMV pipeline aim to improve
annotation consistency and accuracy. But there are some important differences
between these approaches and their features (Table 2.13). For example, CAM-
Ber and Mugsy-Annotator require gene annotations to be provided, whereas the
GMV pipeline generates the input annotations using Prodigal and there is no
straightforward way to substitute these annotations with any other. Thus, in all
computational experiments involving the GMV pipeline were run only on Prodi-
gal annotations. eCAMBer also integrates Prodigal as a tool to generate input
annotations; however, it also allows the user to provide any other annotations as
the input. All the tools require genome sequences at the input.

Different tools also aim at solving different annotation problems. For exam-
ple, the GMV pipeline only identifies and solves TIS annotation inconsistencies,
whereas Mugsy-Annotator also tries to identify missing genes. Our new tool,
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CAMBer eCAMBer Mugsy-Annotator GMV

Input data GS, GA GS, optional GA GS, GA GS
Mapping of similar sequences BLAST BLAST Multiple WGA BLAST
Detection of gene presence inconsistencies Yes Yes Yes No
Detection of gene start inconsistencies Yes Yes Yes Yes
Correction of gene presence annotations No Yes (add. and rem.) Yes (only add.) No
Correction of gene start annotations No Yes Yes Yes
Multithreading Partial Yes No Partial

Table 2.13: Qualitative comparison of different tools. Columns correspond to the tools,
whereas rows correpond to different qualitative features of these tools. Acronyms “GS” and
“GA” denote genome sequences and genome annotations, respectively. Acronym “WGA”
stands for whole genome alignment. Both CAMBer and the GMV pipeline have partial
support for multithreading computations since only BLAST computations can be executed
in parallel.

eCAMBer, is capable of resolving TIS inconsistencies, as well as removal of over-
annotated genes and addition of missing genes (Table 2.13). Our previous tool
only identifies annotation inconsistencies, but it does not propose corrections.

Notably, Mugsy-Annotator, GMV pipeline, CAMBer and eCAMBer do not
make any assumption about the reference strain. However, Mugsy-Annotator,
GMV pipeline and CAMBer suffer from the quadratic time complexity with re-
spect to the number of strains since they use pairwise all-against-all comparisons.
However, unlike the other tools, eCAMBer avoids redundant BLAST queries.
This strategy gives especially good results when working with highly similar
genome sequences.

Support for multithreading is a valuable feature for computationally demand-
ing problems. Thus, it should be noted that eCAMBer has the most compre-
hensive support for multithreading among the tools considered. It allows the use
of multiple threads for each of its steps. The GMV pipeline and CAMBer sup-
port multithreading only for BLAST computations. Mugsy-Annotator does not
support it (Table 2.13).

2.5.2.5 Evaluation of annotation accuracy

In order to evaluate accuracy of annotations produced by eCAMBer, Mugsy-
Annotator and the GMV pipeline, we apply the tools to annotations produced
by the automatic annotation pipeline in PATRIC (Gillespie et al., 2011) for the
set of 20 E. coli strains with manually curated annotations in the ColiScope
database (Touchon et al., 2009). As an alternative dataset of input annotations
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for the same set of strains we use annotations generated using Prodigal (Hyatt
et al., 2010).

In all our comparative experiments we run Mugsy-Annotator and the GMV
pipeline with default parameters. It should also be mentioned that both Mugsy-
Annotator and the GMV pipeline output lists of suggestions of changes to input
annotations, rather than actually output the corrected annotations. We post-
processed these proposed lists of changes to generate the output annotations
used for the comparative experiments.

First, we assess the correctness of the changes introduced to the input an-
notations based on the dataset of gene annotations with experimental support
available in the EcoGene 3 database, developed by (Zhou and Rudd, 2013). This
dataset consists of 922 gene annotations for the K-12 MG1655 strain. From this
set we excluded four genes: fdhF, prfB, rph’, insN’; since their sequences corre-
sponding to the annotated coordinates are disrupted (the length of the sequence
from the start codon to the stop codon is not divisible by 3). Additionally, we
ran one iteration of the eCAMBer closure procedure to transfer the set of 918
gene annotations on the remaining 19 strains. The transferred gene annotations
share at least 80% of sequence identity with original annotations for strain K-
12 MG1655.

Table 2.14 presents statistics for the TIS changes introduced by different tools
compared against the dataset described above. There are three different scenar-
ios: (i) a correct TIS annotation is changed to an incorrect one (orange); (ii) an
incorrect TIS annotation is changed to another incorrect TIS (yellow); (iii) an
incorrect TIS is changed to the correct one (green). Since for each gene, there
is only one TIS annotation considered as correct, there is no possible change
from one correct TIS to another one. For each strain the majority of TIS changes
introduced by eCAMBer is correct. In this experiment eCAMBer made 89 TIS
changes from incorrect to correct and only 12 TIS changes from correct to in-
correct on the dataset of Prodigal annotations. For comparison, GMV made 47
incorrect-to-correct TIS changes and 8 correct-to-incorrect TIS changes, on the
same dataset. Thus, the number of correct TIS annotations has increased by 77
in case of eCAMBer and by 39 in case of GMV. Application of Mugsy-Annotator
made more wrong changes than correct.

Since the extended dataset of annotations from Ecogene 3 constitutes only
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PATRIC Prodigal
Statistic MA eCAMBer GMV MA eCAMBer

# of incorrect→correct TIS changes 839 392 47 132 89
# of incorrect→incorrect TIS changes 215 50 5 96 8
# of correct→incorrect TIS changes 892 92 8 672 12

Table 2.14: Overall statistics for TIS changes introduced by eCAMBer, Mugsy-Annotator
(MA) and the GMV pipeline. The tools were run on the dataset of 20 E. coli with annota-
tions from the PATRIC database (columns 2 to 3) and generated using Prodigal (columns
4 to 6). Correctness of the changes introduced was assessed by comparison them against
the set of experimentally verified gene annotations available in the EcoGene 3 database
for the K-12 MG1655 strain. Gold standard annotations for the remaining 19 strains were
obtained by homology transfer of that set of 918 annotations. Statistic presented in this
table include only that subset of genes which share the same stop codon as any of the
genes in the gold standard.

about 20% of all genes in the 20 strains of E. coli, it is not sufficient for direct
assessment of overall quality of changes introduced by eCAMBer and other tools.
In particular, we cannot conclude if a gene annotation is correct or not based on
its absence in this dataset (so that there is no gene annotations in the dataset
sharing the same stop codon). Thus, we perform further assessment of the quality
of changes introduced relying on manually curated annotations for the set of 20
E. coli strains in the ColiScope dataset (Touchon et al., 2009). It is a reasonable
choice as a gold standard, since many of the annotations have experimental
support. In particular, the annotation for the strain K-12 MG1655 contains 901
out of 918 gene annotations present in the dataset described previously. For
comparison, for this strain, there are only 841 and 883 such gene annotations for
PATRIC and Prodigal, respectively.

Next, Figure 2.20 presents the assessment of TIS changes introduced during
the TIS voting procedure based on the ColiScope dataset. It shows the assessment
of the TIS changes introduced to the input PATRIC annotations, with respect
to each of the 20 E. coli strains. Statistic presented in this figure distinguishes
three different scenarios: (i) a correct TIS annotation is changed to an incorrect
one (orange); (ii) an incorrect TIS annotation is changed to another incorrect
TIS (yellow); (iii) an incorrect TIS is changed to the correct one (green). Since
for each gene, there is only one TIS annotation considered as correct, there is no
possible change from one correct TIS to another one. For each strain the majority
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Assessment of the correctness of TIS changes based on ColiScope

Figure 2.20: Impact of the TIS voting procedure of eCAMBer on annotations from the
PATRIC database. Annotations from the ColiScope database were used to assess correct-
ness of TIS changes. Note, that since for each gene, there is only one TIS annotation
considered as correct, thus there is no possible change from one correct TIS to another
one.

PATRIC Prodigal
Statistic Input MA eCAMBer Input GMV MA eCAMBer

# of incorrectly removed genes NA 0 1224 NA 0 0 388
# of incorrectly added genes NA 1177 792 NA 0 344 331
# of correctly removed genes NA 0 3993 NA 0 0 1185
# of correctly added genes NA 410 701 NA 0 210 1447

# of incorrect→correct TIS changes NA 4812 1591 NA 149 1015 290
# of incorrect→incorrect TIS changes NA 2223 747 NA 28 1018 113
# of correct→incorrect TIS changes NA 4279 669 NA 78 3618 170

Precision for gene starts 0.665 0.663 0.699 0.764 0.764 0.734 0.775
Recall for gene starts 0.695 0.702 0.703 0.752 0.753 0.727 0.765
f1 for gene starts 0.680 0.682 0.701 0.758 0.759 0.731 0.770

Precision for gene ends 0.892 0.882 0.920 0.931 0.931 0.928 0.940
Recall for gene ends 0.931 0.935 0.926 0.917 0.917 0.919 0.927
f1 for gene ends 0.911 0.908 0.923 0.924 0.924 0.923 0.934

Table 2.15: Overall statistics for accuracy of changes introduced by eCAMBer, Mugsy-
Annotator (MA) and the GMV pipeline. The tools were run on the dataset of 20 E. coli
with annotations from the PATRIC database (columns 2 to 4) and generated using Prodigal
(columns 5 to 8). Correctness of the changes introduced was assessed by comparison
with annotations from the Coliscope database. Columns Input correspond to the original
annotations. “NA” stands for not applicable. Rows correspond to different statistics of
running each tool.

of TIS changes introduced by eCAMBer is correct.
Rows 5 to 8 of Table 2.15 summarize the overall impact of eCAMBer and
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Mugsy-Annotator on TIS annotations. Remarkably, 70% (1591 out of 2260) of
TIS changes introduced by eCAMBer to PATRIC annotations were correct. For
comparison, only 43% of the TIS changes introduced by Mugsy-Annotator were
correct.

Figure 2.21 presents the assessment of gene additions and removals introduced
during the closure and the clean up procedures, respectively. It shows the assess-
ment of the changes introduced to the input PATRIC annotations, with respect
to each of the 20 E. coli strains. Statistic presented in this figure distinguishes
four different scenarios: (i) a missing genome annotation is correctly added during
the closure procedure (blue); (ii) a wrong gene annotation is correctly removed
during the clean up procedure (green); (iii) a wrong gene annotation is incorrectly
added during the closure procedure (red); and (iv) a correct gene annotation is
incorrectly removed during the clean up procedure (orange). It can be seen that,
for each strain, the majority of changes introduced by eCAMBer is correct.

The first four rows of Table 2.15 summarize the overall impact of eCAM-
Ber and Mugsy-Annotator on gene presence. The results show that eCAMBer
outperforms Mugsy-Annotator in this aspect. For example, 70% of the changes
introduced by eCAMBer to PATRIC annotations were correct, whereas it was
only 26% for Mugsy-Annotator.
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Figure 2.21: Impact of the closure and clean up procedures of eCAMBer on the annotations
from the PATRIC database. Annotations from the ColiScope database were used to assess
correctness of gene removals and additions introduced by eCAMBer.
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Finally, we investigate how the whole pipelines implemented in eCAMBer,
Mugsy-Annotator and GMV improve the overall annotation accuracy. Here,
the accuracy is measured by f1 statistic, defined as 2 · precision·recall

precision+recall
, where

precision = TP
TP+FP

and recall = TP
TP+FN

. Here, TP , FP and FN denote true
positive, false positive and false negative prediction, respectively. Since a pair
of gene annotations may have the same stop codon, but different TISs, we keep
track on the results for both stop codon predictions and for the TIS predictions.

Results of eCAMBer on PATRIC annotations in this experiment are presented
in Figure 2.22. Note that each correctly identified TIS determines also its cor-
rectly identified stop codon, but not the other way round. Thus, the accuracy
for the TIS prediction is lower than for the stop codons. As the figure shows,
eCAMBer improves annotation accuracy, for each strain, both in terms of TIS
annotations and stop codon annotations.

Rows 9 and 12 of Table 2.15 summarize the change in accuracy when run-
ning different tools on PATRIC and Prodigal annotations. It is clear from this
table that eCAMBer outperforms other tools. For example, eCAMBer increased
the f1 statistic of initial annotations of Prodigal (for gene starts) from 0.764
to 0.775, whereas the application of GMV improved it only by 0.001 and the
application of Mugsy-Annotator decreased it by 0.027. In the case of PATRIC
annotations, application of Mugsy-Annotator improved the accuracy from 0.680
to 0.682. However, the accuracy of annotations after eCAMBer increased to 0.703.

2.6 Summary

In this chapter we presented our work and tools we have developed to support
comparative analysis of multiple bacterial strains. In particular, in section 2.2
we presented details of CAMBer — the first tool we have developed to support
comparative analysis of multiple bacterial strains. In section 2.3 we presented
details on eCAMBer, which is a highly optimized version of CAMBer. Finally, in
section 2.4 we presented CAMBerVis.

The presented results for CAMBer suggest, that it can be successfully used to
improve consistency of the input annotations for small datasets.

However, despite its usefulness on small datasets, the main drawback of CAM-
Ber is efficiency. Similarly as Mugsy-Annotator and the GMV pipeline, it suffers
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Figure 2.22: Comparison of annotation accuracy before and after applying eCAMBer
on the dataset of 20 E. coli strains with annotations from PATRIC. Manually curated
annotations from ColiScope were used as a gold standard.

from the quadratic time complexity with respect to the number of strains. This
makes the tools rather unusable for datasets comprising hundreds of bacterial
strains.

This was the main problem we addressed by developing eCAMBer. The un-
derlying idea behind the efficient implementation of the procedure is to avoid
redundant BLAST queries. This approach greatly reduces the computational
complexity, thus leading to much shorter running time than other tools.

For example, on the dataset of 41 strains of E. coli, computations took less
than two hours (using only one processing thread), whereas Mugsy-Annotator
(the fastest competitor) took more than 19 hours. Moreover, eCAMBer supports
multithreading for all its procedures. This allows eCAMBer to be used on much
larger datasets comprising hundreds of bacterial strains. A dramatic speed up
offered by eCAMBer can be seen when working with a large number of bacterial
strains. The running time is reduced (for 41 strains of E. coli) from 2 days, in
the case of CAMBer, to less than half an hour, in the case of eCAMBer.

Since the approach of avoiding redundant BLAST queries for identical gene
sequences turned out so useful, it might also be fruitful to investigate the idea of
relaxing the condition of avoiding redundancy from identical sequences to just
highly similar sequences. This approach could further lower the running time
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of the tool without significant drop in accuracy. However, we leave this as a
potential future direction of research.

Furthermore, eCAMBer tries to resolve annotation inconsistencies in order to
produce more accurate annotations. For this purpose, it implements a major-
ity voting-like approach for selecting the most reliable TISs and implements a
procedure for identification and removal of gene families which are likely to be
propagated annotation errors.

The presented results show, that eCAMBer outperforms its competitors, Mugsy-
Annotator and the GMV pipeline, in terms of improving quality of annotations.
In particular, when run on genome annotations generated by Prodigal for the set
of 20 E. coli strains, eCAMBer increased the f1 statistic of initial annotations
from 0.764 to 0.775, whereas the application of GMV improved it only by 0.001
and the application of Mugsy-Annotator even decreased it.

Of course, eCAMBer also has some limitations. One is that it purely relies on
the quality of original annotations. Thus, for example, eCAMBer cannot iden-
tify genes, whose annotations are missing for all strains. Another limitation of
eCAMBer is that pseudogenes and non-protein coding genes are excluded from
the analysis. This follows from the assumption that eCAMBer considers only
genes of length divisible by 3, start with start codon, and end with stop codon.

Lastly, the tools we developed to improve the overall accuracy and consistency
of bacterial genome annotations are of general applicability and can be used for
other purposes than studying drug resistance.

The tools, case-study input data and the obtained results are available at the
website of this project, http://bioputer.mimuw.edu.pl/ecamber.
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“Owing to this struggle for life, any variation, however
slight and from whatever cause proceeding, if it be in any
degree profitable to an individual of any species, in its in-
finitely complex relations to other organic beings and to
external nature, will tend to the preservation of that indi-
vidual, and will generally be inherited by its offspring. (...)
I have called this principle, by which each slight variation,
if useful, is preserved, by the term of Natural Selection, in
order to mark its relation to man’s power of selection.”

Charles Darwin, On the Origin of Species, 1859 3
Drug resistance-associated mutations

In this chapter we present our work on identifying drug resistance-associated
mutations based on comparative analysis of whole-genome sequences of closely
related bacterial strains. In particular, we present GWAMAR, the tool we have
developed to support this type of analysis. In section 3.1, we describe the idea
behind our approach and review some related work. We also introduce the basic
concepts and notations. In section 3.2, we describe in detail the methodology
of GWAMAR. Notably, it uses eCAMBer, described in chapter 2, for identifica-
tion of genetic variations (mutations) among the set of considered strains, which
constitute the genotype data. As a part of this section, we also present weighted
support (WS) and tree-generalized hypergeometric (TGH) score — two statistics
we propose for identifying of drug resistance associations. Additionally, we pro-
pose a Rank-based metascore (RBM) for combining multiple scores into one in
order to compromise between different approaches used to define different scores.
In section 3.3, we present and discuss results obtained by applying GWAMAR
to three datasets — one for S. aureus and two for M. tuberculosis. The presented
results show that GWAMAR can be successfully used for identification of drug
resistance-associated mutations.
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3.1 Introduction

Genome-Wide Association Studies (GWAS) have been successfully applied to
associate human mutations with phenotype of various human diseases and traits
(Manolio, 2010; Stadler et al., 2010; Davies et al., 2011).

The recent progress in genome-sequencing technologies, continuously decreas-
ing the cost of sequencing of bacterial genomes (Loman et al., 2012), enables the
use of similar approaches for genotype-phenotype mapping in bacteria.

The potential of the use of whole-genome comparative approaches to study
drug resistance and host-pathogen interactions in bacteria has been recently pro-
posed (Khor and Hibberd, 2012; Read and Massey, 2014).

3.1.1 Genotype data

The input genotype data for these studies usually comes from in-house sequenc-
ing, rather than publicly available data. This might be caused by the problematic
use of the publicly available data. First, as we noticed in the previous chapter,
the inconsistent and poor-quality annotations of publicly available strains may
complicate that analysis. Second, the phenotype data with respect to drug sus-
ceptibility tests are spread throughout the literature and are not easy to collect.

In the previous chapter of this work, we presented CAMBer and eCAMBer —
the tools to support comparative analysis of multiple bacterial strains — thus
addressing the first issue. In order to overcome the second issue, we have to
perform a careful search of the literature for results of drug susceptibility tests
of the strains considered.

3.1.2 Phenotype data

Minimum Inhibitory Concentration (MIC) is the most commonly used measure
to quantify drug resistance in bacteria. It is the lowest concentration of an antibi-
otic which inhibits visible growth of a colony of bacteria after overnight incuba-
tion. The detailed guidelines for the procedure of drug susceptibility testing are
published by bodies such as Clinical and Laboratory Standards Institute (CLSI),
British Society for Antimicrobial Chemotherapy (BSAC), and The European
Committee on Antimicrobial Susceptibility Testing (EUCAST). The guidelines
also contain information on MIC breakpoints to assign drug resistance or drug
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susceptibility. Sometimes also the third class of intermediate resistance is distin-
guished.

Most of the sources reporting results of drug susceptibility testing provide only
information on the outcome status, rather than particular MIC values. Thus, in
our study we use only three classes of drug resistance: drug susceptible, interme-
diate drug resistant and drug resistant.

For the purpose of this work, we have collected the phenotype data for drug
resistance from the following sources: (i) publications issued together with the
fully sequenced genomes; (ii) NARSA project (http://www.narsa.net); (iii) email
exchange with the authors of some publications; and (iv) other publications found
by searching of the related literature.

3.1.3 Gold standard associations

One problem we faced during the project was caused by the relatively small
number of positive associations available in the databases, which would constitute
the gold standard data to assess the accuracy of our method.

Nevertheless, there are known genes and point mutations responsible for some
of the drug resistance mechanisms. However, these are spread over various studies
and are therefore not easy to gather.

One attempt to collect the information on genetic changes associated with drug
resistance into a database is the Antibiotic Drug Resistance Database (ARDB)
developed by Liu and Pop (2009). However, this database focuses on genes asso-
ciated with drug resistance rather than particular point mutations within them.
We use data available in this database as our gold standard for the case study
on the S. aureus dataset, presented in the results section of the chapter.

Another species-specific database of drug resistance-associated mutations in
M. tuberculosis is the Tuberculosis Drug Resistance Mutation Database (TB-
DReaMDB) developed by Sandgren et al. (2009). This database provides detailed
information on a set of 1230 associations between drugs and point mutations.
Furthermore, it distinguishes a subset of high-confidence mutations which were
often reported in the literature. We use data available in this database as our
gold standard for the case study on the two M. tuberculosis datasets, presented
in the results section of the chapter.
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3.1.4 Phylogenetic information

In this work we investigate the potential of the use of phylogenetic information in
identifying drug resistance-associated mutations. In particular, we propose two
association scores, called TGH and WS, based on the phylogenetic information.

The rationale for our approach is based on two known phenomena. First, the
bacteria isolated from close-distance locations of each other tend to have sim-
ilar genome sequences. As a result, subtrees of the phylogenetic trees tend to
correspond to geographic locations (Daubin et al., 2003).

Second, although the phenomenon of genomic convergence is unlikely in gen-
eral, it is rather common in case of mutations which are subject to evolutionary
pressure caused by drug treatment (Hazbón et al., 2008; Farhat et al., 2013).
Thus, drug resistance-associated mutations tend to be independent of geographic
location and therefore more widely distributed over the tree, as opposed to mu-
tations driven by other environmental factors which tend to concentrate in small
subtrees.

Hence, mutations predicted to occur independently multiple times in the evolu-
tionary history of the bacterial strains are more likely to be associated with drug
resistance, rather than with other environmental factors (Hazbón et al., 2008).
A conceptually similar approach has been taken by Dutheil (2012) to identify
co-evolving mutations in protein sequences.

We note however, it is only an approximation to represent the evolutionary
history of bacteria as a tree. It has been debated that, in the presence of HGT
mechanisms in bacteria, their evolutionary history may be better represented as
a network rather than a tree (Philippe and Douady, 2003). On the other hand,
some estimations show that the effect of HGT on the overall evolution is limited
and does not preclude the use of phylogenetic trees (Daubin et al., 2003; Boto,
2010). We leave the possibility of using other representations of the evolutionary
history of bacteria as a subject of further research.

3.1.5 Basic definitions

In this work, we consider a set S of closely related bacterial genomes. Typically,
this is a set of strains within the same species of bacteria.

Then, we represent the available drug resistance information as a set of drug
resistance profiles R, where each drug resistance profile r ∈ R is represented as
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a vector:

r : S → {’S’, ’I’, ’R’, ’?’}. (3.1)

Here, ’S’, ’I’, ’R’ denote that a given strain is known to be drug susceptible,
intermediate-resistant, or resistant, respectively. We indicate, using question
mark ’?’, that the drug resistance status of a strain is unknown. We call a drug
resistance profile complete if it does not contain question marks.

The genotype data consists of a set of genetic mutations of three types:

• point mutations (in amino-acid sequences),

• gene gain/losses,

• promoter mutations.

In our approach we exclude synonymous SNPs as, according to our knowledge,
there are no known examples of synonymous mutations associated with drug
resistance.

Each mutation is represented as a piece of information adequate for the type
of the mutation (such as gene identifier of the corresponding gene family) and a
vector called mutation profile:

v : S → Σ. (3.2)

Here, for each point mutation, we keep the information on its position in
the multiple alignment of its corresponding gene family and the information
on the gene family identifier. The mutation profile for each point mutation is
determined based on its corresponding column in the multiple alignment. In
that case Σ = ΣAA denotes the set of twenty amino acids. We also assume ΣAA

contains the ’-’, symbol for the gap in the corresponding multiple alignment and
the ’?’ symbol if the gene sequence is unknown for a given strain. We take into
account only columns which contain at least two different characters (ignoring
’?’).

Next, for each gene gain/loss, we keep the information on its corresponding
gene family identifier. For such a mutation, its mutation profile is determined
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based on the presence or absence of a gene in the corresponding gene family for
a given strain. Thus, Σ = {’L’, ’G’}, where v(S) = ’L’ means that the gene is
absent in strain S, whereas v(S) = ’G’ means that the gene is present in strain
S.

Finally, for each promoter mutation, we keep the information on its position in
the multiple alignment of promoter sequences for the corresponding gene family
and the information on the gene family identifier. The mutation profile for each
promoter mutation is determined based on its corresponding column in the multi-
ple alignment. In that case Σ = ΣNT denotes the set of four different nucleotides
together with the ’-’ symbol for gaps in the corresponding multiple alignment
and the ’?’ symbol if the gene promoter sequence is unknown for a given strain.

Analogously, we call a mutation profile complete if it does not contain question
marks.

It should be noted that potentially multiple mutations (for example point mu-
tations at different positions in the genome) may have identical mutation pro-
files. In that situation the mutations would essentially carry the same information
about their mutation profiles. Thus, we also introduce an auxiliary concept called
binary mutation profile. Let S∗ ∈ S denote the reference strain and S ∈ S de-
note any strain. Then, for a given mutation profile v, its corresponding binary
mutation profile

bv : S → {’0’, ’1’, ’?’}, (3.3)

is defined as follows:

bv(S) =


’?’ if v(S) = ’?’
’0’ if v(S) = v(S∗)

’1’ otherwise
(3.4)

Analogous to mutation profiles, we call a binary mutation profile complete if it
does not contain question marks.

We say that a genetic change (mutation) m is present in strain S ∈ S if for its
corresponding mutation profile v, bv(S) = ’1’; otherwise we say that the mutation
m is absent in strain S.
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3.1.6 Problem setting

Finally, we define the problem which we address here: given a list of mutations
and a list of drug resistance profiles, produce an ordered list of associations
between the phenotype and genotype data (represented as drug resistance and
mutation profiles) such that the top-scored associations are the most likely to be
real.

3.2 GWAMAR: Genome-wide assessment of mutations
associated with drug resistance in bacteria

In this section, we present details of GWAMAR, the tool we have developed for
genome-wide assessment of mutations associated with drug resistance. The pre-
sentation includes the preprocessing of input data; computation of the association
scores and results obtained by applying the tool to datasets for M. tuberculosis
and S. aureus.

3.2.1 The pipeline of GWAMAR

GWAMAR is designed as a pipeline. It first employs eCAMBer, the tool described
in the previous chapter, to perform three preliminary steps: (i) downloading
of genome sequences and annotations for the set of multiple bacterial strains
in question, (ii) consolidation of the genome annotations, (iii) identification of
homologous gene families; see Figure 3.1.

In the next step eCAMBer identifies the set of genetic variations and repre-
sents them as mutations profiles. As described in section 3.1.5, three types of
mutations are considered: (i) point mutations in amino-acid sequences, (ii) point
mutations in promoter regions (-50bp downstream the corresponding TIS), (iii)
gene gain/losses.

Here, each gene gain/loss mutation profile is determined based on the pres-
ence/absence of elements of the corresponding gene family among the strains.

For each identified gene family, eCAMBer employs MUSCLE (Edgar, 2004), to
compute its multiple sequence alignment for the set of corresponding amino-acid
sequences. Similarly, it uses MUSCLE to compute a multiple sequence alignment
for the set of corresponding promoter sequences.
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Next, eCAMBer transforms each column in the computed multiple alignment
into a mutation profile, as long as at least one character in that column differs
(there is a mutation present); see Figure 3.1.

Also, eCAMBer supports use of PHYLIP (Felsenstein, 2005) and PhyML (Guin-
don et al., 2010) — the software for reconstruction of the phylogenetic tree based
on the maximal-likelihood approach.

In the next step, for the selected reference strain, GWAMAR computes binary
mutation profiles for each mutation profile, based on formula 3.4. Since multiple
mutation profiles may correspond to a binary mutation profile, this step signifi-
cantly reduces the number of pairs of profiles (resistance and mutation profiles)
to be scored.

Finally, GWAMAR computes several statistical scores to associate drug resis-
tance profiles to the mutation profiles, including mutual information (MI), odds
ratio (OR), hypergeometric (H) score, weighted support (WS), and the tree-
generalized hypergeometric (TGH) score. Additionally, it implements a score we
called Rank-based metascore (RBM) which for combining multiple scores into
one in order to compensate for weaknesses of different individual scores.

Figure 3.1 illustrates the overall data-processing flow implemented in GWA-
MAR.

3.2.2 Association scores

Here we present the association scores implemented in GWAMAR to score pairs
of binary mutation and drug-resistance profiles. These scores include statistics
commonly used in various associations studies, such as mutual information (Wu
et al., 2012), odds ratio (Clarke et al., 2011), hypergeometric test (Cabrera et al.,
2012). It also computes weighted support and tree-generalized hypergeometric
score — the newly proposed statistics to incorporate the phylogenetic informa-
tion. Moreover, it implements the Rank-based metascore for combining multiple
scores into one.

For a given binary mutation profile bB and a given drug resistance profile rR,
we introduce the following auxiliary notations:

• SR
1 = {S ∈ S : b(S) = ’1’ ∧ r(S) = ’R’},

• SR
0 = {S ∈ S : b(S) = ’0’ ∧ r(S) = ’R’},
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Scoring of the mutation 
Profiles 

(multiprocessing)

Genotype data 
(a set of mutations)

Scored list of putative associations
of drug resistance with mutations 

The pipeline of GWAMAR

Phenotype data collected
from literature or databases

(a set of drug resistance profiles)

Phylogenetic tree for the set of
bacterial strains 

Consolidation of genome 
annotations for multiple bacterial strains

and identification of gene families

Preprocessing steps done by eCAMBer 
(this step may potentially be replaced by other tools)

Multiple alignments of identified
gene families computed using MUSCLE

Download of genome sequences and
annotations for a set of bacterial strains

Identification of point 
mutations

Reconstruction of the 
phylogenetic tree employing 

 PHYLIP or PhyML

Binarization of mutation 
profiles into binary mutation

profiles
The reference strain

Figure 3.1: Schema of the pipeline of GWAMAR. For a set of considered bacterial strains,
the input data for GWAMAR consists of (i) a set of mutations; (ii) a set of drug resistance
profiles; and (iii) optional, phylogenetic tree for the set of bacterial strains. Typically the set
of mutation profiles is generated using eCAMBer, which is able to download the genome
sequences and annotations for the set of bacterial strains, identify point mutations based
on multiple alignments, and reconstruct the phylogenetic tree of the considered bacterial
strains. Assuming the genotype data is preprocessed, the first step of GWAMAR is to
compute binary mutation profiles for all the mutations. This step significantly reduces the
number of profiles considered. Finally, GWAMAR implements several statistical scores to
associate drug resistance profiles with mutation profiles. These include: mutual informa-
tion, odds ratio, hypergeometric score, weighted support, tree-generalized hypergeometric
and the Rank-based metascore. As a result, we obtain ordered lists of drug resistance
associations, where the top-scored associations are the most likely to be real.

• SI
1 = {S ∈ S : b(S) = ’1’ ∧ r(S) = ’I’},
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• SI
0 = {S ∈ S : b(S) = ’0’ ∧ r(S) = ’I’},

• SS
1 = {S ∈ S : b(S) = ’1’ ∧ r(S) = ’S’},

• SS
0 = {S ∈ S : b(S) = ’0’ ∧ r(S) = ’S’},

• SS = {S ∈ S : r(S) = ’S’},

• SR = {S ∈ S : r(S) = ’R’}.

• SI = {S ∈ S : r(S) = ’I’}.

• S0 = {S ∈ S : b(S) = ’0’},

• S1 = {S ∈ S : b(S) = ’1’}.

Note that, instead of using mutation profiles, we use binary mutation profiles.

3.2.2.1 Odds ratio

For a given binary mutation profile b and drug resistance profile r, we calculate
odds ratio (OR) score using the following formula:

OR(b, r) =
|SR

1 | · |SS
0 |

max(1, |SR
0 |) ·max(1, |SS

1 |)
(3.5)

Here, we use the max function in the denominator to ensure there is no problem
with divisibility by 0.

3.2.2.2 Mutual information

For a given binary mutation profile b and a given drug resistance profile r, we
calculate mutual information (MI) score using the following formula:

MI(b, r) =
∑

x∈{’0’,’1’}

∑
y∈{’S’,’I’,’R’}

|Sy
x |
|S|
· log( |S

y
x | · |S|

|Sx| · |Sy|
) (3.6)
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3.2.2.3 Hypergeometric score

For a given binary mutation profile b and a given drug resistance profile r, we
calculate hypergeometric (H) score using the following formula:

H(b, r) = −log
( |S|∑
i=|SR|

H(|S|, |SR|, |S1|, i)
)

(3.7)

where:

H(N,K, n, k) =

(
K
k

)
·
(
N−K
n−k

)(
N
n

) (3.8)

Here, we define the hypergeometric score as a minus logarithm of the value
typically used in the definition of the hypergeometric test. We use this approach
in order to have consistent property for all considered scoring methods, such
that the higher the score the more likely drug resistance profile is associated
with binary mutation profile.

3.2.2.4 Support

For a given binary mutation b and a given drug resistance profile r, we define
support (S) as the number of drug-resistant strains with the mutation present
minus the number of drug-susceptible strains with the mutation present:

S(b, r) = |SR
1 | − α(r)|SS

1 |, (3.9)

where:

α(r) =
|SR|
|SS|

(3.10)

Here α(r) is a weight which we use to punish mutations for their presence in drug-
susceptible strains. It is defined as the proportion of the number of drug-resistant
to the number of drug-susceptible strains, so that occurrences of a mutation are
given equal emphasis in drug-resistant and drug-susceptible strains.
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3.2.2.5 Weighted support

Although the support is a simple and intuitive score, it does not incorporate
any phylogenetic information. For example, let us assume there are two point
mutations with the same support 3, where the first mutation covers only drug-
resistant strains within one subtree of the phylogenetic tree, whereas the second
mutation covers the same number of strains but spread throughout the whole
tree. The first mutation is likely to be associated with the phylogeny, driven
by some environmental changes. This suggests that the second mutation should
have a greater score as it has to be acquired a few times independently during
the evolution process.

We propose weighted support (WS) as a score to account for the above sit-
uation. For a given phylogenetic tree T , drug resistance profile b, and binary
mutation profile b, WS is defined as follows:

WST (b, r) =
∑
S∈S

wT (b, r, S)[b(S) = ’1’] (3.11)

where wT (b, r, S) is a weight assigned to each cell in a given drug resistance
profile.

The weights are assigned in the following way: all drug-susceptible strains
are assigned weight −α(r) (defined as above); each drug-resistant strain S is
assigned a weight 1

n
, where n is the number of drug-resistant strains in the subtree

(containing strain S) determined by its highest parental node, such that the
subtree does not contain any drug-susceptible strain in its leaves. All strains
without drug resistance information are assigned weights 0.

Note that the support score can also be expressed as weighted support, where
wT (b, r, S) are assigned as −α(r), 1, 0 for drug-susceptible, drug-resistant and
strains without drug resistance information, respectively.

Figure 3.2 illustrates the concept of support and weighted support.
In order to make the support scores more comparable between drugs, we in-

troduce normalized versions of the scores, normalized support and normalized
weighted support which denote the respective support value divided by the max-
imal possible support or weighted support, respectively.
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Figure 3.2: A schematic example of several mutation profiles and computation of their
supports. Light blue circles mark nodes which appear in the definition of weighted support.
These are nodes the highest parental nodes (for the leaf nodes corresponding to drug-
resistant strains), that their subtrees do not contain any drug-susceptible strains in leaves.
The scores (a) support and (b) weighted support are assigned to these mutations. For this
drug-resistance profile, the ratio α(r) equals 5

3 .

Statistical significance for WS In order to assess statistical significance
of the associations we calculate their p-values.

More precisely, for a given drug resistance profile v, let X be the random vari-
able giving support of a random mutation. Then, for a given observed mutation
with Support = c, its p-value is defined by the following formula:

P(X ≥ c) =

|S|∑
n=1

P(X ≥ c|N = n) · P(N = n) (3.12)

Here, N is a random variable which denotes the number of mutated strains
in a random mutation. For each n the probability P(N = n) of observing a
mutation present in n strains is estimated (as the number of mutations present
in n strains to the total number of considered mutations) from the data for point
mutation and gene gain/loss profiles separately. The details follow. Assume that
weights, for a given drug resistance profile v, take k different values: l1, l2, . . . , lk.
For 1 ≤ j ≤ k, let mj be the number of strains which take value lj. Clearly we
have m1 + m2 + . . . + mk = |S|. Then, the probability P(X ≥ c|N = n) (from

81



the equation 3.12) is given by the formula:

∑
0≤n1≤m1
0≤n2≤m2

...
0≤nk≤mk

n1+n2+...+nk=n

∏k
j=1

(
mj

nj

)(|S|
n

) [ k∑
j=1

nj · lj ≥ c
]

(3.13)

Here we describe our algorithm for calculating the p-value. It should be clear
that the problem reduces to computing P(X ≥ c|N = n) = tc(n)

(|S|
n )

for each 0 ≤
n ≤ |S|, where tc(n) denotes the number of ways for distributing n ones over |S|
strains, such that the corresponding sum of weights is greater or equal than c.
The term

(|S|
n

)
is the total number of possible ways for distributing n ones over

|S| strains. Thus, the problem reduces to calculating tc(n) for each 0 ≤ n ≤ |S|.
Additionally, without any loss of generality, we may assume that the weight levels
are strictly decreasing: l1 > l2 > . . . > lk, where lk < 0 and lk−1 ≥ 0.

The algorithm iteratively generates partial combinations (without nk) start-
ing from the partial combination (n1 = m1, . . . , nk−1 = mk−1) in the follow-
ing manner: if j is the highest index of the non-zero ni in the current par-
tial combination, the next partial combination will be (n1, . . . , nj − 1, nj+1 =

mj+1, . . . , nk−1 = mk−1). The algorithm terminates generating partial combina-
tions when two 1following partial combinations have their corresponding sum
of weights below the level of c. At each step of the algorithm, all possible full
combinations (n1, . . . nk−1, nk) are generated from the current partial combina-
tion (n1, . . . nk−1). If for the full combination its corresponding sum of weights
is greater or equal c (

∑k
i=1 ni · li ≥ c), then we increment the value tc(n) by∏

i = 1k
(
mi

ni

)
, where n = n1 + . . . + nk. As the outcome, we obtain tc(n) and,

thus, also P(X ≥ c|N = n) for each n.
The last step is to calculate formula 3.12 using these calculated probabilities.
Note that, since support is a special case of weighted support, the same formula

and algorithm can be used to compute its corresponding p-values.

3.2.2.6 Tree-generalized hypergeometric score

As a part of this work, we also introduce a new association score, called tree-
generalized hypergeometric (TGH) score, which is conceptually similar to the
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CCTSWEEP score proposed by Habib et al. (2007).
We consider a set of bacterial strains S with its rooted phylogenetic tree T ,

whose leaves correspond to the strains in S. Let VT denote the set of all nodes
(internal and leaves) in T . Let additionally, function PT : VT ⇒ VT ∪{null}, for a
given ω ∈ VT , return its parent node; or null for the root node. Let also function
CT , for a given node ω ∈ VT , return the set of its immediate child nodes.

We also introduce function LT which, for each node ω in T , returns the subtree
of descendants of the node, including the node itself. We say these nodes are
visible from ω. Additionally, the function LT applied to any subset c of VT returns
the union of all nodes visible from nodes in the set. More formally, LT (c) =∪

ω∈VT
LT (ω).

In order to present the formal definition of TGH, we first define some auxiliary
concepts.

Let r : VT → {’?’, ’S’, ’R’} denote the tree-extended resistance profile defined
recursively as follows:

r(ω) =


r(S) if ω is a leaf node corresponding to strain S

’S’ ∃ω′∈CT (ω)r(ω
′) = ’S’

’R’ ¬∃ω′∈CT (ω)r(ω
′) = ’S’ ∧ ∃ω′∈CT (ω)r(ω

′) = ’R’
’?’ otherwise

(3.14)

Analogously, let b̂ : VT → {’?’, ’0’, ’1’} denote the tree-extended binary muta-
tion profile defined recursively as follows:

b̂(ω) =


b(S) if ω is a leaf node corresponding to strain S

’0’ ∃ω′∈CT (ω)b̂(ω
′) = ’0’

’1’ ¬∃ω′∈CT (ω)b̂(ω
′) = ’0’ ∧ ∃ω′∈CT (ω)b̂(ω

′) = ’1’
’?’ otherwise

(3.15)

For a given tree T , we call a subset c of its nodes a coloring, if it satisfies the
following two conditions:

(A) each path from a leaf to the root contains at most one node from c,

(B) each internal node in T has at least one immediate child node which does
not belong to c.
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We call a coloring c induced by a given drug resistance profile r, if it contains
the set of nodes in which drug resistance was acquired. More formally, we define
a coloring induced by a drug resistance profile r, using its corresponding tree-
extended resistance profile r, as:

c = {ω ∈ VT : r(ω) = ’R’ ∧
(
PT (ω) = null ∨ r(PT (ω)) = ’S’

)
}. (3.16)

Analogously, we call a coloring ĉ induced by a given binary mutation profile
b, if it contains the set of nodes in which the mutation was acquired. More
formally, we define a coloring induced by a binary mutation profile b, using its
corresponding tree-extended mutation profile b̂, as:

ĉ = {ω ∈ VT : b̂(ω) = ’1’ ∧
(
PT (ω) = null ∨ b̂(PT (ω)) = ’0’

)
}. (3.17)

Figure 3.3 (A) presents an example of colorings induced by a given drug resis-
tance profile (large red nodes) and a given binary mutation profile (small orange
nodes) for a flat tree. Figure 3.3 (B) presents another example of colorings in-
duced by the same pair of profiles, but for a tree which is not flat. In this model
the dependencies between different strains are captured by the topology of the
tree.

Wω(n) = #{c ∈ CT (ω) : |c| = n} (3.18)

Here, CT (ω) denotes the set of all colorings of LT (ω). We denote by WT (n), the
value of Wω(n) for the root node ω in T .

We also define Bω,c(k, n) as the number of colorings of size n, such that exactly
k nodes of that coloring are visible from nodes of coloring c. More formally,

Bω,c(k, n) = #{c ∈ CT (ω) : |LT (c) ∩ c| = k ∧ |c| = n} (3.19)

We denote by BT,c(k, n) the value of Bω,c(k, n) for the root node ω in T .
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Drug resistance profile R R R S S R R

Binary mutation profile 1 1 0 0 0 0 1

A)

B)

Drug resistance profile R R R S S R R

Binary mutation profile 1 1 0 0 0 0 1

S,0

R,1 S,0 R,0

S,0

Figure 3.3: (A) an example of a pair of a drug resistance profile and a binary muta-
tion profile. Values of the corresponding tree-extended binary mutation profile, and the
corresponding tree-extended drug resistance profile are shown next to the nodes. Nodes
belonging to the coloring induced by the drug resistance profile c are indicated by large red
nodes, whereas nodes belonging to the coloring induced by the binary mutation profile ĉ
are indicated by small orange nodes. In this example |c| = 5, |ĉ| = 3 and |LT (c) ∩ ĉ| = 3.
(B) colorings c and ĉ induced by the same pair of profiles but for a different tree. In this
example |c| = 3, |ĉ| = 2 and |LT (c) ∩ ĉ| = 2.

Finally, for a drug resistance profile r and a binary mutation profile b, we denote
the colorings induced by the profiles as c and ĉ, respectively. Let additionally,
n = |c| and k = |L(c) ∩ ĉ|. Then, we finally define the TGH score, as follows:

TGHT (r, b) = −log
(∑n

i=k BT,c(i, n)

WT (n)

)
. (3.20)

We take the negative logarithm to have consistent property, with other scoring
methods, such that the higher the score the more likely drug resistance profile r

is associated with binary mutation profile b.

The algorithm for TGH Here we describe the algorithm we use to compute
the TGH score for a set of pairs of drug resistance profiles and binary mutation
profiles.
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Naturally, for each leaf node ω in T , two colorings exist: c1 = {ω}, c2 = ∅. The
following lemma 1 characterizes colorings for internal nodes of T .

Lemma 1. Let ω be an internal node in T with l immediate child nodes (ω1, . . . ωl).
Let c be a subset of VT . Then, c is a coloring of LT (ω) if and only if c = {ω} or(
ω /∈ c and c ̸= {ω1, . . . ωl} and c∩LT (ωi) is a coloring of LT (ωi), for each ωi

)
.

Proof. ⇒: Proof by contradiction. Let us assume c ̸= {ω}. If c = {ω1, . . . ωl},
then c contradicts with the (B) condition of the definition of a coloring. Thus,
there exists ωi, such that, c∩LT (ωi) does not satisfy (A) or (B). Since c∩LT (ωi)

is a subset of c, c also violates the corresponding (A) or (B) condition. Hence, it
contradicts with our assumption that c is a coloring.
⇐: naturally, {ω} satisfies both (A) and (B). Otherwise, ince ω /∈ c, c =

∪
ωi
c ∩

LT (ωi). Thus, c satisfies (A). The condition (B) is satisfied unless c ∩ LT (ωi) =

{ωi}, but this case is excluded as a separate case.

Based on the proposition 1 we can derive the following recursive formulas for
Wω(n). If ω is a leaf node in T , then:

Wω(n) = [n = 0] + [n = 1] (3.21)

If ω is an internal node in T , then:

Wω(n) = [n = 1]︸ ︷︷ ︸
c={ω}

− [n = l]︸ ︷︷ ︸
{ω1,...,ωl} is not a coloring

+
∑

0≤n1≤n,...,0≤nl≤n
n1+...+nl=n

l∏
i=1

Wωi
(ni) (3.22)

Similarly, we can derive the recursive formulas for Bω,c(k, n). If ω is a leaf node
in T , then:

Bω,c(k, n) = [n = 1 ∧ k = 1 ∧ c = {ω}]
+[n = 1 ∧ k = 0 ∧ c ̸= {ω}]
−[n = l ∧ k = |L(c) ∩ {ω1, . . . , ωl}|]

(3.23)
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If ω is an internal node in T , then:

Bω,c(k, n) = [n = 1 ∧ k = 1 ∧ c = {ω}]
+[n = 1 ∧ k = 0 ∧ c ̸= {ω}]
−[n = l ∧ k = |L(c) ∩ {ω1, . . . , ωl}|]
+
∑

0≤n1≤n,...,0≤nl≤n
n1+...+nl=n

0≤k1≤n1,...,0≤kl≤nl
k1+...+kl=k

∏l
i=1 Bωi,c(ki, ni)

(3.24)

The pseudocode 3 presents the following steps of the algorithm to compute the
TGH score for each pair of drug resistance profile and binary mutation profile.
These steps, for a given drug resistance profile r, comprise: (i) simplification of
the input tree T ′ to T by removal of the leaves corresponding to the strains with
unknown drug resistance status (according to r); (ii) computation of the tree-
extended resistance profile r and its corresponding coloring c; (iii) computation
of the values of Wω(n) for each n and ω ∈ VT , following the recursive formulas
3.21 and 3.22 from the leaves to the root (dynamic programming technique);
(iv) computation of the values of Bω,c(k, n) for each k, n and ω ∈ VT , follow-
ing the recursive formulas 3.23 and 3.24, from the leaves to the root (dynamic
programming technique); (from leaves to the root); (v) for each binary mutation
profile b ∈ B, computation of the tree-extended binary mutation profile b̂ and its
corresponding coloring ĉ; and finally (vi) computation of the TGH score based
on formula 3.20.

Additionally, in order to speed up the computations of the and WT (n) and
BT,c(k, n) values we use the memorization technique to cache results depending
on the topology of a subtree. The subtree topologies, used as hashes, are repre-
sented as strings in the Nawick tree format enriched by the additional information
of belonging to c, for each node.

Also, due to high time complexity of the score with respect to the maximal
number of immediate children of a node, in all computational experiments we
calculate the actual TGH score as an average over TGH scores obtained for trees
generated by randomly binarizing the input tree.
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Algorithm 3 Pseudocode for computing the TGH score
Require: A set S of bacterial strains; with a phylogenetic tree T ′, a set of binary

resistance profiles R, and a set of binary mutation profiles B. The function
simplify removes a node ω from the tree T ′ if the strains corresponding to
the set of leaves visible from ω have all unknown drug resistance status in r.
After this step, it removes all internal nodes of degree one.

1: for all r ∈ R do
2: T ← simplify(r, T ′)
3: compute the tree-extended resistance profile r for r in T
4: compute the coloring c induced for r in T
5: compute Wω(n) bottom-up for every n and ω ∈ VT , following the 3.21 and

3.22 formulas
6: compute Bω,c(k, n) bottom-up for every k, n and ω ∈ VT , following the

3.23 and 3.24 formulas
7: for all b ∈ B do
8: compute the tree-extended mutation profile b̂ for b in T
9: compute the coloring ĉ for b̂ in T

10: n← |ĉ|
11: k ← |LT (c) ∩ ĉ|
12: TGH← −log

(∑n
i=k BT,c(i,n)

WT (n)

)
13: end for
14: end for{These computations are done in parallel for each drug resistance

profile r ∈ R}
15: return TGH score for each pair r ∈ R and b ∈ B.

3.2.2.7 Rank-based metascore

Finally, we introduce an association score, called Rank-based metascore (RBM),
which combines a set of scores into a new score. This approach is based on the
natural assumption that each individual score has its own good and weak points.
Thus, RBM tries to compromise between the different approaches used to define
different scores. This score is based on rankings after sorting with accordance to
the scores being combined, rather than the absolute values of the scores.

Let S1, S2, . . . , Sk denote the set of different scores to be combined with RBM.
Then, for a given binary mutation profile b ∈ B and resistance profile r ∈ R, the
score is defined as the sum of average rankings of b with accordance to scores in
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question. More formally,

RBM(S1, . . . , Sk)(b, r) =
k∑

i=1

rankSi
u (b, r) + rankSi

d (b, r)

2
. (3.25)

Here, rankSi
u (b, r) denote the highest ranking of the binary mutation profile

with the same Si score as b, which is the number of binary mutation profiles with
the Si score higher than b plus 1, more formally:

rankSi
u (b, r) = #{b′ ∈ B : Si(b

′, r) > Si(b, r)}+ 1. (3.26)

Analogously, we define rankSi
d (b, r) as the lowest ranking of the binary mutation

profile with the same Si score as b, which is the number of binary mutation profiles
with the Si score higher or equal than b, more formally:

rankSi
d (b, r) = #{b′ ∈ B : Si(b

′, r) ≥ Si(b, r)}. (3.27)

Note that, if each binary mutation profile has a different score, the formula
rankSi

u (b,r)+rankSi
d (b,r)

2
simplifies to return the ranking of b on the sorted list of binary

mutation profiles with respect to the score Si.

In order to compute the RBM, assuming all the individual scores are already
computed, we sort the lists of mutations for each individual score and drug
resistance profile r, separately. Then we compute the ranku and rankd mappings.
Finally, we compute the actual RBM.

Note that, unlike the other scores presented in this work, here, the lower the
value of the score the higher the chance the association is real. This definition of
RBM is consistent with the current implementation of the score.

In the thesis we consider three versions of the score: (i) combining all the
tree-ignorant scores, denoted: RBM (MI,OR,H); (ii) combining WS and TGH,
denoted RBM (WS,TGH); and combining (iii) all the five individual scores, de-
noted RBM (MI,OR,H,WS,TGH) and also shortly RBM (ALL). Note that RBM
(MI,OR,H) can be categorized as tree-ignorant score, whereas RBM (WS,TGH)
and RBM (ALL) as tree-aware.
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3.2.3 Time complexity

Let D denote the number of drug resistance profiles considered. Additionally,
let N denote the number of considered strains and M denote the number of
binary mutation profiles. Finally, let K denote the maximal number of children
of an internal node in the tree. Then, the time complexity of the algorithms we
implemented to compute the hypergeometric score, the mutual information, odds
ratio, and weighted support is O(D ·N ·M).

In order to compute the TGH score for the input tree T , based on the formulas
3.23 and 3.24, we implement the dynamic programming algorithm to compute
bottom-up the values Bω,c(k, n) for each internal node ω in T , k and n. The
time complexity of computing these values for all the nodes is O(·N2·(K−1) ·
N). Similarly, based on the recursive formulas 3.21 and 3.22,we implement the
dynamic programming algorithm to compute bottom-up the values Wω(n) for all
nodes in T and n. The time complexity of this step is O(·N ·(K−1) ·N).

This strategy gives the algorithm to compute the TGH score with time com-
plexity O(D ·N2·(K−1) ·N +D ·N ·M) which simplifies to O(D ·N · (M +N2))

for binary trees.
The time complexity of the algorithm to compute the RBM for a set of E

individual scores, assuming the scores are already computed, is O(D · E ·M).
Note that the time complexity does not depend on the number of strains N .

3.3 Results and Discussion

Here we present the results of applying GWAMAR to three datasets. One for
S. aureus and two for M. tuberculosis.

3.3.1 S. aureus dataset

We first discuss the computational experiment on the dataset of 100 S. aureus
strains. We use this case study to show the usability of GWAMAR to identify
genes associated with drug resistance.

3.3.1.1 Genotype data

We collected genotype data (genome sequences and annotations) for 100 fully se-
quenced strains of S. aureus from the GenBank (Benson et al., 2013) and PATRIC
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databases (Gillespie et al., 2011). Additionally, genotype data for strain EMRSA-
15 were downloaded from the Wellcome Trust Sanger Institute website. At the
time of writing, 31 out of the 100 S. aureus strains had the sequencing status
“completed”. For the remaining strains whose genomes were still being assem-
bled, contig sequences (covering around 90% of the genomes) and annotations
were used.

We unified the original genome annotations employing CAMBer. However, in
order to determine gene families we additionally extended the multigene consol-
idation graph by edges coming from BLAST amino-acid queries. More formally,
we added an edge between a pair of genes to the consolidation graph if the per-
cent of identity (calculated as the number of identities over the length of the
longer gene) of the BLAST hit between them exceeded a threshold P (L) given
by the HSSP curve formula (Rost, 1999):

P (L) =


100 L≤11

c+480·L−0.32·(1+e−L/1000) 11<L≤450

c+19.5 L>450

(3.28)

Here, c was set to 40.5 and L is the number of aligned amino-acid residues.
Then, each connected component in the multigene consolidation graph corre-

sponds to a gene family. We computed multiple alignments using MUSCLE (Edgar,
2004) for all these gene families.

In this work, unlike in the current version of GWAMAR, we considered two
kinds of genetic variations (mutations):

• gene gain/losses,

• point mutations (in amino-acid sequences).

In comparison to the current version of GWAMAR, we did not take into ac-
count mutations in gene promoter regions. Here, point-mutation profiles are
transformed from columns in multiple alignments computed for gene families
with elements present in at least |S| − 1 strains.
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3.3.1.2 Phylogenetic tree of the strains

We computed the phylogenetic tree of the input strains using a consensus method
with majority rule implemented in the PHYLIP package, developed by Felsen-
stein (2005). We applied the consensus method to trees constructed for all gene
families with exactly one element in each strain. The trees were constructed using
the maximum likelihood approach implemented in the PHYLIP package.

3.3.1.3 Phenotype data (drug susceptibility)

We performed a careful search of the literature for results of drug susceptibility
tests of the strains considered. The drug susceptibility data were collected from
the following sources: (i) 25 publications issued together with the fully sequenced
genomes; (ii) NARSA project (http://www.narsa.net); (iii) email exchange with
the authors of publications related to strains ST398 and TW20; and (iv) other
publications found by searching related literature. In total we used 71 publica-
tions to retrieve the drug resistance information.

3.3.1.4 Assessment of accuracy

We verified the usability of our approach by trying to re-identify known drug
resistance determinants. In this experiment, we compared the proposed scoring
— support and weighted support— to odds ratio, which is a popular measure
used in genome-wide association studies. Table 3.1 shows rankings of the gene-
gain/-loss profiles for genes which are known drug resistance determinants. The
experiment suggests that weighted support outperforms both: support and odds
ratio. The latter two scores do not incorporate additional information about
phylogeny

3.3.1.5 Prediction of resistance

This experiment also reveals that the amount of the collected drug resistance
information is not sufficient to correctly identify drug resistance-associated genes.
However, the high consistency of drug resistance profiles corresponding to the
collected information and the presence of drug resistance determinants (summing
over drugs, there are 117 drug-resistant strains, where only 4 of them do not
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Rankings before prediction Rankings after prediction

gene id. drug name S WS OR S WS OR

tet tetracycline 54.5 2.5 43.7 1.5 1.5 1.5
tetM tetracycline 14.5 11.5 7.5 4 4 4
mecA methicillin 1 1 1 1 1 1
mecA oxacillin 3 4 2 1 2 1
ermA1 clindamycin 5.5 5.5 5.5 1 1 1
ermC clindamycin 907 471 907 414.5 11 191.5
ermA1 erythromycin 3 3 4 1 1 1
ermC erythromycin 1527 3994.5 1006.5 413.5 28 214.5

aacA-aphD gentamicin 72 34 34 1 1 1
blaZ penicillin 163 66 223 1.5 1 2.5
mecA penicillin 163 8 223 11 5 52

Average ranking (excluding ermC): 53.27 15.05 60.411 2.55 1.94 7.22

Table 3.1: Rankings of the known drug resistance determinants obtained by employing
three different methods to score gene-gain/-loss profiles: support (S), weighted support
(WS) and odds ratio (OR). Since some of the gene-gain/-loss profiles are assigned with
the same score, we calculate their rankings as the arithmetic mean of positions of the profiles
with the same score on the list sorted according to the scores; thus some of the rankings
are not round numbers. The rankings were computed before and after prediction of drug
resistance, which is based on the presence of drug resistance determinants. We excluded
the gene ermC from the calculations of average rankings since none of the methods were
able to pull it out into the top 100 before prediction.

have any known drug resistance determinants; and there are 112 drug-susceptible
strains, where only 8 of them have at least one drug resistance determinant)
suggests that we can use the determinants to predict drug resistance in the
strains without drug resistance information available.

It is perhaps questionable to predict drug resistance in those strains for which
the whole-genome sequence is not determined yet. So we did prediction only for
those strains with completed sequencing or at least information on their plasmids
(which often carry the drug resistance determinants). Nevertheless, we predicted
drug resistance also for those strains that were not yet fully sequenced, provided
the presence of drug resistance-determining genes had been confirmed for them.
Moreover, we predicted drug resistance to rifampicin and ciprofloxacin for all 100
strains, as the drug resistance for rifampicin and ciprofloxacin is determined by
point mutations in genes rpoB, gyrA and grlA (synonymous name to parC), which
were sequenced in all strains. More precisely, we predicted as rifampicin-resistant
all strains with any mutation present in the rifampicin resistance determining re-
gion (RRDR). We defined the RRDR as the amino-acid range from 463 to 530
in the rpoB gene sequence (according to (O’Neill et al., 2006)). Analogously,
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we predicted as ciprofloxacin-resistant all strains with any point mutation in
the quinolone resistance determining region (QRDR). We defined QRDR as the
amino-acid ranges from position 68 to 107 and from position 64 to 103 in the
grlA and parC gene sequences, respectively (according to (Ferrero et al., 1995)).
Figure 3.4 shows the complete information about drug susceptibility after pre-
diction.

Figure 3.4: The collected dataset of phenotypes put together with results of our drug re-
sistance predictions based on the presence of known drug resistance determinants. Due to
the high number of strains the table is split into two panels. Columns represent drugs, rows
represent S. aureus strains included in the study in the order corresponding to the recon-
structed phylogenetic tree of strains. Green, yellow and red cell colors represent susceptible,
intermediate resistant and resistant phenotypes, respectively. Analogously, light green and
light red cell colors represent predicted susceptible and resistant phenotypes, respectively.
White cell color represents unknown (not determined by experiments or prediction) drug
resistance phenotypes.
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3.3.1.6 Essential mutations

Here, we distinguish two categories of gene-gain/-loss and point-mutation pro-
files depending on how they correspond to a given drug resistance profile. We
categorize a given mutation profile m as:

• Essential mutation, when m is absent in all drug-susceptible strains,

• Conflict mutation, when m is present in at least one drug-susceptible strain.

Further, we distinguish neutral mutations as a subclass of essential mutations,
these are essential mutations that are not present in any of drug-resistant strains.
Thus, neutral mutations may only be present in strains with unknown drug-
resistance status.

Analogously, we transfer the above introduced concepts to gene-gain/-loss pro-
files, defining essential, neutral and conflict gene-gain/-loss profiles.

3.3.1.7 Detection of drug resistance-associated mutations

Then, we applied our approach to the dataset supplemented by the predicted
information about drug susceptibility for the following drugs: tetracycline, β-
lactams (penicillin, oxacillin, methicillin), erythromycin, gentamicin, vancomycin,
ciprofloxacin and rifampicin.

Below we discuss the results of our approach applied separately to the following
drugs: tetracycline, β-lactams (penicillin, methicillin), erythromycin, gentamicin,
vancomycin, ciprofloxacin. We do not discuss here results for oxacillin and clin-
damycin, since they have very similar drug resistance profiles to methicillin and
erythromycin, respectively. All other drugs were excluded from the analysis due
to low number of strains with available drug resistance information on these
drugs.

Tables 3.2 and 3.3 present the top-scored gene-gain/-loss, and point-mutation
profiles for the discussed drugs, respectively. The genes presented in the tables
were selected according to the following procedure: for each drug we construct
a function, which gives for each gene (listed in descending order with respect to
normalized weighted support) minus logarithm of p-value (−log(p-value)) of this
score. Then, we report genes which correspond to the portion of the graph of
this function before it gets flattened.
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Gene identifier NS NWS OR p-value Gene functional annotation

Penicillin (NWS-threshold: 0.58)

⋆ SAR1831(blaZ) 0.84 0.81 37.15 1.15e-06 beta-lactamase
SAR1829(blaI) 0.84 0.74 37.15 5.24e-06 transcriptional repressor

SAR1830(blaR1) 0.82 0.73 31.27 7.09e-06 beta-lactamase regulatory protein blar1
SAR0056 0.63 0.71 12.13 1.03e-05 conserved hypothetical protein

⋆ SAR0039(mecA) 0.61 0.70 10.94 1.28e-05 methicillin resistance determinant mecA
SAR0060(ccrA) 0.61 0.63 10.94 4.40e-05 resolvase, n-terminal domain protein
SAR0061(yycG) 0.61 0.63 10.94 4.40e-05 putative membrane protein

NWMN 0025 0.57 0.63 9.40 4.41e-05 conserved domain protein
SAR0037(ugpQ) 0.60 0.63 10.39 5.08e-05 glycerophosphoryldiester phosphodiesterase
SAR0038(maoC) 0.60 0.63 10.39 5.08e-05 dehydratase

SAR0057 0.57 0.59 9.40 9.78e-05 conserved hypothetical protein

Methicillin (NWS-threshold: 0.68)

⋆ SAR0039(mecA) 1.00 1.00 950.00 4.48e-20 methicillin resistance determinant mecA
SAR0037(ugpQ) 0.98 0.94 931.00 6.77e-15 glycerophosphoryldiester phosphodiesterase
SAR0038(maoC) 0.98 0.94 931.00 6.77e-15 dehydratase

SAR0056 0.95 0.85 900.00 7.55e-12 conserved hypothetical protein
SAR0036 0.64 0.80 33.78 5.77e-11 putative membrane protein
SAR0057 0.85 0.75 162.00 6.47e-10 conserved hypothetical protein

SAR0060(ccrA) 0.91 0.73 432.00 1.40e-09 resolvase, n-terminal domain protein
SAR0061(yycG) 0.91 0.73 432.00 1.40e-09 putative membrane protein
MW0028(ebpS) 0.54 0.71 22.30 2.76e-09 hmg-coa synthase

Tetracycline (NWS-threshold: 0.32)

SAAV b3(repC) 0.54 0.64 27.69 5.70e-08 plasmid replication protein
⋆ SATW20 00660(tet) 0.54 0.64 27.69 5.70e-08 tetracycline resistance protein
SATW20 00670(pre) 0.50 0.50 24.00 3.51e-06 plasmid recombination enzyme type 3

⋆ SATW20 04620(tetM) 0.46 0.37 20.80 7.54e-05 tetracycline resistance protein tetM
SATW20 08990(virE) 0.42 0.37 19.93 7.67e-05 pathogenicity island protein

SATW20 09000 0.42 0.37 19.93 7.67e-05 pathogenicity island protein
SATW20 09010(lipA) 0.42 0.37 19.93 7.67e-05 superantigen-encoding pathogenicity islands
SATW20 04610(thiI) 0.43 0.35 18.00 1.32e-04 putative transcriptional regulator

MW0745(int) 0.25 0.32 8.00 2.28e-04 site-specific recombinase, phage integrase
MW0747 0.25 0.32 8.00 2.28e-04 DNA-binding helix-turn-helix protein

Erythromycin (NWS-threshold: 0.27)

⋆ SAR0050(ermA1) 0.80 0.58 76.00 1.36e-06 rRNA adenine n-6-methyltransferase
CGSSa03 12660 0.47 0.44 17.19 2.98e-05 conserved hypothetical protein

SAR0054(tnpA1) 0.75 0.39 72.00 8.12e-05 transposase for transposon
SAR1734 0.75 0.39 72.00 8.12e-05 methylase

SAR1736(spc2) 0.75 0.39 72.00 8.12e-05 spectinomycin 9-o-adenylyltransferase
SaurJH9 1711(radC) 0.72 0.38 62.00 8.83e-05 predicted protein

SAUSA300 pUSA030006 0.20 0.35 4.75 1.65e-04 replication and maintenance protein
SAR1737(tnpC2) 0.72 0.34 62.00 1.89e-04 Unknown

SAR1529 0.33 0.33 9.15 2.43e-04 conserved hypothetical protein
SATW20 04860(recF 1) 0.23 0.30 5.52 3.67e-04 recombinational DNA repair ATPase

SAR1738(tnpB2) 0.70 0.29 54.00 4.39e-04 transposase B from transposon Tn554
SauraJ 010100009720 0.23 0.27 5.52 6.60e-04 conserved domain protein

Gentamicin (NWS-threshold: 0.83)

⋆ SaurJH1 2806(aacA-aphD) 0.83 0.90 150.00 9.38e-11 bifunc. acetyltransferase/phosphotransferase
SaurJH1 2805 0.75 0.83 90.00 2.95e-09 GNAT family acetyltransferase

Ciprofloxacin (NWS-threshold: 0.4)

SATW20 04610(thiI) 0.35 0.45 36.00 1.33e-07 putative transcriptional regulator
SATW20 04650(cap8J) 0.32 0.40 31.57 8.25e-07 lipoprotein
SATW20 04670(capL) 0.32 0.40 31.57 8.25e-07 putative ATP/GTP-binding protein

SATW20 04780 0.32 0.40 31.57 8.25e-07 conjugation related protein
SATW20 04800 0.32 0.40 31.57 8.25e-07 replication initiation factor
SATW20 04810 0.32 0.40 31.57 8.25e-07 DNA segregation ATPase FtsK/SpoIIIE
SATW20 04830 0.32 0.40 31.57 8.25e-07 conjugative transposon protein

Table 3.2: Summarizing information for the top scored gene-gain/-loss profiles. The con-
sequent columns refer to: gene identifier of the corresponding gene family; normalized
support (NS); normalized weighted support (NWS); odds ratio (OR); p-value and the
gene functional annotation. Thresholds for weighted support are provided in brackets for
each drug.

Tetracycline Tetracycline acts by binding to the 30S ribosomal subunit (16S
rRNA and the protein encoded by the gene rpsS are its direct targets), preventing
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Gene identifier desc. NS NWS OR p-value Gene functional annotation

Penicillin (NWS-threshold: 0.4)

SAR0023(sasH) G723D 0.55 0.63 8.51 1.87e-05 virulence-associated cell-wall-anchored protein
SAR0023(sasH) T725A 0.54 0.62 8.11 2.23e-05 virulence-associated cell-wall-anchored protein

SAR0304 V295I 0.39 0.49 4.48 3.25e-04 acid phosphatase
SAR2791 V182M 0.46 0.46 6.05 5.41e-04 transcriptional regulator, Xre family
SAR2700 N493KD 0.52 0.45 7.72 6.16e-04 ABC transporter permease protein

SAR0233(hmp) Q333K 0.44 0.44 5.48 7.21e-04 flavohemoprotein
SAR0318(sbnA) N25HK 0.44 0.43 5.48 8.36e-04 alpha/beta family hydrolase

SAR2664 V282AT 0.44 0.43 5.48 8.36e-04 probable monooxygenase
SAR2779 S48G 0.44 0.43 5.48 8.36e-04 n-hydroxyarylamine o-acetyltransferase

SAR0318(sbnA) T138IM 0.43 0.43 5.21 8.36e-04 alpha/beta family hydrolase
SAR0318(sbnA) T139AQ 0.43 0.43 5.21 8.36e-04 alpha/beta family hydrolase
SAR0023(sasH) A749TG 0.41 0.43 4.96 8.44e-04 virulence-associated cell-wall-anchored protein
SAR0318(sbnA) R130CG 0.41 0.43 4.96 8.72e-04 alpha/beta family hydrolase
SAR0322(folC) H201YQE 0.41 0.43 4.96 8.72e-04 possibly adp-ribose binding module
SAR0233(hmp) K323ET 0.40 0.42 4.71 9.08e-04 flavohemoprotein
SAR2750(icaC) I21V 0.40 0.42 4.71 9.46e-04 polysaccharide intercellular adhesin biosynthesis
SAR0233(hmp) S309RN 0.39 0.42 4.48 9.46e-04 flavohemoprotein

Methicillin (NWS-threshold: 0.25)

SAR0198(oppF) T287IK 0.10 0.29 2.11 1.41e-04 putative glutathione transporter, ATP-binding
SAR0420 I72F 0.10 0.29 2.11 1.41e-04 membrane protein

SAR2508(sbi) S219AT 0.10 0.29 2.11 1.41e-04 IgG-binding protein Sbi
SAR2508(sbi) N222QK 0.10 0.29 2.11 1.41e-04 IgG-binding protein Sbi
SAR2508(sbi) K224SDN 0.10 0.29 2.11 1.41e-04 IgG-binding protein Sbi

Tetracycline (NWS-threshold: 0.2)

SAR1840 D291YS 0.18 0.23 5.22 7.09e-04 NAD(FAD)-utilizing dehydrogenases
SAR2336(rpsJ) K57M 0.29 0.23 9.60 7.32e-04 SSU ribosomal protein S10P (S20E)
SAR0550(rpsL) K113R 0.36 0.20 13.33 1.14e-03 SSU ribosomal protein S12P (S23E)

Erythromycin (NWS-threshold: 0.2)

SAR0576 A68EV 0.07 0.21 1.54 8.89e-04 phosphoglycolate phosphatase

Gentamicin (NWS-threshold: 0.21)

SAR1840 L289IW 0.33 0.29 15.00 1.43e-03 NAD(FAD)-utilizing dehydrogenases
SAR1840 D291YS 0.33 0.29 15.00 1.43e-03 NAD(FAD)-utilizing dehydrogenases
SAR1840 H327RF 0.33 0.29 15.00 1.43e-03 NAD(FAD)-utilizing dehydrogenases

SAR1167(ylmH) K215N 0.25 0.29 10.00 1.43e-03 RNA-binding S4 domain-containing protein
SAR1167(ylmH) R216V 0.25 0.29 10.00 1.43e-03 RNA-binding S4 domain-containing protein
SAR1167(ylmH) V217L 0.25 0.29 10.00 1.43e-03 RNA-binding S4 domain-containing protein
SAR0547(rpoB) D471YG 0.17 0.21 6.00 4.61e-03 DNA-directed RNA polymerase beta subunit
SAR1833(trmB) T54IK 0.17 0.21 6.00 4.61e-03 tRNA (guanine46-n7-)-methyltransferase

Ciprofloxacin (NWS-threshold: 0.12)

SAR1367(grlA) S80YF 1.00 1.00 2244.00 6.03e-30 topoisomerase IV subunit a
SAR0006(gyrA) S90AL 0.94 0.88 1056.00 1.92e-18 DNA gyrase subunit a
SAR2449(lytT) V45I 0.21 0.20 17.11 2.06e-04 transcriptional regulator

SAR1840 L289IW 0.12 0.20 8.80 4.56e-04 NAD(FAD)-utilizing dehydrogenases
SAR1793(thiI) A92ET 0.09 0.20 6.39 2.06e-04 thiamine biosynthesis protein thiI

SAR2212(murA2) A102T 0.06 0.20 4.12 2.06e-04 UDP-n-acetylglucosamine 1-carboxyvinyltransferase
SAR1367(grlA) E84KG 0.26 0.15 23.76 9.40e-04 topoisomerase IV subunit a

SAR0235(pstG_1) F401LV 0.09 0.13 6.39 2.21e-03 PTS system, maltose and glucose-specific
SAR0400(nfrA) R194H 0.09 0.13 6.39 2.21e-03 nitroreductase family protein

Table 3.3: Summarizing information for the top scored point mutation profiles, only for
essential mutations. The conflict mutations were removed from the table for: tetracycline,
erythromycin and gentamicin (for the rest of drugs there were no conflict mutations above
the set thresholds). The consequent columns refer to: gene identifier of the corresponding
gene family; corresponding position in the multiple alignment and changed amino acids;
normalized support (NS); normalized weighted support (NWS); odds ratio (OR); p-value
(computed as described in section 3.2.2.5) and the gene functional annotation. Thresholds
for weighted support are provided in brackets for each drug.

binding of tRNA to the mRNA-ribosome complex, and thus inhibiting protein
synthesis (Knox et al., 2011).

The most common drug resistance mechanism to tetracycline in S. aureus is
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mediated by ribosome protection proteins (RPPs) such as tet and tetM , which
bind to the ribosome complex, thus preventing the binding of tetracycline (Chopra
and Roberts, 2001; Connell et al., 2003).

Genes tet and tetM , mediating this mechanism, cover all tetracycline-resistant
strains, except MW2. The drug resistance status pf MW2 may be caused by errors
in the drug susceptibility test, errors in sequencing, or by some not-yet-known
drug resistance mechanism. The inconsistent information about strain MW2’s
tetracycline susceptibility and the lack of identified drug resistance determinants
suggest that the strain is possibly drug susceptible. In our experiment we initially
assumed that the tetracycline resistance information is not available for strain
MW2.

Our method shows that, besides tet and tetM , there are a few more genes
that have highly scored gene-gain/-loss profiles. Especially interesting are the
following genes which are not gained by any of the drug susceptible strains: repC ,
pre, thiI , int, clfB (see Table 3.2). There are studies reporting the significance
of these clfB and repC genes in drug resistance (McAleese and Foster, 2003;
Werckenthin et al., 1996). Interestingly, the gene repC seems to co-evolve with
tet (highly correlated gene-gain/-loss profiles).

Applying our method to point mutations, we have identified two highly scored
(and essential) point mutations in ribosomal complex proteins: K101R in rpsL
and K57M in rpsJ . According to our knowledge, this is the first report on the
significance of the point mutations for drug resistance in S. aureus. However,
mutations in rpsJ have been associated with tetracycline resistance in another
bacteria Neisseria gonorrhoeae (Hu et al., 2005).

Beta-lactams Beta-lactams are a broad class of antibiotics, which possess
(by definition) the β-lactam ring in their structure. The ring is capable of binding
transpeptidase proteins (also known as Penicillin Binding Proteins — PBPs) (Knox
et al., 2011), which are important for synthesis of the peptidoglycan layer of bac-
terial cell wall. PBPs with attached drug molecules are no longer able to synthe-
size peptidoglycan, leading to bacterial death (Sabath, 1982). In our case study,
we consider three β-lactam antibiotics: penicillin, oxacillin and methicillin. How-
ever, since the drug resistance profile and drug resistance mechanisms for oxacillin
and methicillin are very similar we discuss results only for methicillin.

There are two common resistance mechanisms to β-lactams in S. aureus (Sabath,
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1982; Drawz and Bonomo, 2010). The first one is mediated by β-lactamase en-
zymes, which bind drug molecules and break the β-lactam ring, thus deactivating
the drug molecules. This mechanism is effective against penicillin (which is β-
lactamase sensitive) and not effective against methicillin and oxacillin (which
are β-lactamase resistant) (WHO, 2010). The second β-lactam resistance mech-
anism is mediated by proteins which are capable of functionally substituting for
PBPs, but have much smaller affinity to β-lactam molecules. This mechanism is
effective against penicillin, methicillin and oxacillin.

Penicillin In our dataset, all strains resistant to penicillin possess proteins
responsible for one of the two mechanisms. More precisely, there are 69 drug-
resistant strains (with available drug resistance information), which possess blaZ—
the standard β-lactamase protein (note that its regulators blaR1 and blaI do not
always co-occur). All the remaining penicillin-resistant strains have mecA, which
is an altered PBP. Table 3.2 provides information about the top-scoring gene-
gain/-loss profiles.

Applying our method we, have also identified the uncategorized putative pro-
tein, SAR0056, as putatively associated with penicillin resistance (see Table 3.2).

Methicillin Applying our approach to gene-gain/-loss profiles we identified
(beside mecA) genes ugpQ and maoC . The correlation of gene profiles to the
profile of mecA and their close proximity on the genomes suggests that these
genes co-evolve (see Figure 3.5 for more details). This co-evolution may reflect
some important role played by these genes in methicillin resistance. This calls
for further study of the role of these two genes in methicillin resistance.

We have also identified a few point mutations that are putatively associ-
ated with methicillin resistance. Interestingly, two of the mutations in the top
10 essential mutations according to weighted support (I72F in SAR0420 and
E208Q/K/D in SAR0436) are present in cell membrane proteins. This suggests
some compensatory mechanism to the presence of mecA.

Ciprofloxacin Ciprofloxacin belongs to a broad class of antibiotics, called
fluoroquinolones, which are functional against bacteria by binding DNA gyrase
subunit A (encoded by gyrA) and DNA topoisomerase 4 subunit A (encoded by
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Figure 3.5: Presence and relative genome coordinates of genes related to methicillin re-
sistance (mecA, mecR1, mecI, ccrA, ccrB, ccrC), put together with the identified genes:
ugpQ and maoC. The gene presence profiles are clustered with respect to the genes order.
In this figure we include only these methicillin-resistant strains for which all the genes where
located on the main genome and within the same sequence contig (in order to determine
the relative positions).

parC), which are enzymes necessary to separate bacterial DNA, thereby inhibit-
ing cell division (Knox et al., 2011). The most common ciprofloxacin-resistance
mechanism is mediated by point mutations in the drug targets, parC and gyrA.
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Applying our approach we identified (by highest weighted support) two point
mutations in ciprofloxacin target genes — S80F/Y in parC and S90A/L in
gyrA— which are located in QRDR and known to be responsible for the first
mechanism of ciprofloxacin resistance (Ferrero et al., 1995). The presence of these
mutations is correlated with the ciprofloxacin resistance profile for strains with
available drug resistance information. However, they differ for two strains ED98
and 16K (only the mutation in parC is present). This may suggest intermedi-
ate drug resistance level for these strains. Unfortunately ciprofloxacin resistance
information is not available for these strains.

Erythromycin Erythromycin acts by binding the 23S rRNA molecule (in the
50S subunit) of the bacterial ribosome complex, leading to inhibition of protein
synthesis (Knox et al., 2011).

There are three known erythromycin resistance mechanisms (Schmitz et al.,
2000). First — the most common mechanism — is by methylation (addition of
two residues to the domain V of 23S rRNA) of the 23S rRNA molecule, which
prevents the ribosome from binding with erythromycin. This methylation is me-
diated by enzymes from the erm gene family, the most common are ermA and
ermC . The second mechanism is mediated by the presence of macrolide efflux
pumps (encoded by msrA and msrB). The third mechanism is the inactivation
of drug molecules by specialized enzymes such as ereA or msrB (Schmitz et al.,
2000).

We found that none of the strains in our case study possess genes ereA or
ereB. Genes encoding efflux pumps (msrA and msrB) are present also in drug-
susceptible strains (for example, NCTC 8325 and Newman), which may suggest
that the mechanism is inactive for the considered strains of S. aureus or the
enzyme production rates are too small, which we are not able to account by
our method. Using our approach we identified (by the highest support) the gene
ermA responsible for the most common drug resistance mechanism.

Here, there is one erythromycin-susceptible strain, USA300 TCH959, which
harbours the ermA gene. This may suggest disruption of the drug resistance
mechanism in that strain, errors in drug susceptibility testing or errors in se-
quencing.

Interestingly, we identified gene SAR1736(spc2) (which is a known spectino-
mycin resistance determinant) as potentially associated with erythromycin re-
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sistance. This suggests that drug resistance to spectinomycin and erythromycin
co-evolved, despite these two drugs belonging to different classes according to
the ATC drug classification system (WHO, 2010).

Gentamicin Gentamicin works by inhibition of protein synthesis by binding
the 30S subunit of the ribosome complex (Shakil et al., 2008).

Interestingly, strain USA300 FPR3757 exhibits intermediate drug resistance,
which is correlated with the absence of aacA-aphD gene in its genome sequence.
Since our method requires binary information on drug susceptibility, we marked
this strain as drug-susceptible for experiments.

The most common resistance mechanism responsible for high levels of gentam-
icin resistance is mediated by the drug-modifying enzyme SaurJH1 2806(aacA-
aphD). Applying our methodology we identified the gene encoding it as likely to
be associated with drug resistance (maximal support). Moreover, we identified
also the gene SaurJH1 2805 as putatively associated with gentamicin resistance.
The close proximity of these two genes in the genomes and their highly corre-
lated gene-gain/-loss profiles suggest co-evolution. We hypothesize that the gene
SaurJH1 2805 plays some role in drug resistance for gentamicin.

3.3.2 M. tuberculosis datasets

Here we present results obtained by applying GWAMAR to two large datasets for
M. tuberculosis. We use these case studies to present the usability of GWAMAR to
identify chromosomal mutations associated with drug resistance. The first dataset
is prepared for the set of 173 strains with genome sequences and annotations
publicly available in the PATRIC database, developed by Wattam et al. (2014).
For this set of strains, we collected drug resistance information from over 20
publications. The genotype and phenotype data for the second dataset comes
from the M. tuberculosis Drug Resistance Directed Sequencing Database at http:
//www.broadinstitute.org/annotation/genome/mtb_drug_resistance.

3.3.2.1 First case study

The first case study is based on the set of 173 fully sequenced strains of M. tu-
berculosis with publicly available data.
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The preprocessing steps of preparing the genotype data were performed us-
ing eCAMBer, our tool to support comparative analysis of multiple bacterial
strains (Woźniak et al., 2012).

In particular, first, we used eCAMBer to download the genome sequences and
annotations from the PATRIC database (Wattam et al., 2014). Next, we applied
eCAMBer to unify the genome annotations of protein-coding genes and to iden-
tify the clusters of genes with high sequence similarity. Then, for the subset of
4379 such identified gene clusters with genes present in at least 90% of the strains,
we computed multiple alignments using MUSCLE (Edgar, 2004). The multiple
alignments were computed for amino acid sequences of protein coding genes, as
well as nucleotide sequences of their promoter regions (-50bp upstream), and
rRNA genes. In total, based on the computed multiple alignments, we identified
118913 mutations, which constituted the input genotype data for GWAMAR. Af-
ter the procedure of binarization in GWAMAR we ended up with 18635 binary
mutation profiles.

The input phenotype data was collected from over 20 publications issued to-
gether with the fully sequenced genomes. Based on the drug resistance informa-
tion collected for ciprofloxacin and ofloxacin, we introduced a new drug resistance
profile for the drug family of fluoroquinolones. A strain was categorized as sus-
ceptible to fluoroquinolones if it was susceptible to at least one of the drugs, but
not resistant to any of them. Similarly, a strain was categorized as resistant to
fluoroquinolones if it was resistant to at least one of the drugs, but not suscepti-
ble to any of them. If none of the cases was satisfied for a strain, then the drug
resistance status of the strain was categorized as unknown. We restrict analysis
to the set of six drugs or drug families: fluoroquinolones, ethambutol, isoniazid,
pyrazinamide, rifampicin and streptomycin.

The input phylogenetic tree was reconstructed using the maximum likelihood
approach implemented in the PhyML, developed by (Guindon et al., 2010). As
for the input for the tool we used the set of all the identified point mutations
concatenated into one multiple alignment file. This input was prepared by an
additional feature of eCAMBer.

Having prepared the set of binary mutation profiles and drug resistance pro-
files, together with the phylogenetic tree, we applied GWAMAR to compute MI,
OR, H, WS, TGH and RBM association scores. However, in order to compute
TGH score efficiently, we averaged three TGH scores obtained over three random
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binary trees we obtained from the original tree by splitting its nodes with multi-
furcations. This step of computations, ran using 6 processors, took around 6s for
MI, OR, H and WS; around 34s for TGH; and around 3s for all the considered
variants of the RBM score.

drug name gene id gene name mutation all h.c. TGH

Fluoroquinolones Rv0006 gyrA D94H1A5N2Y2G12 Y Y 14.184
Isoniazid Rv1908c katG S315N1G2T75 Y Y 9.045
Rifampicin Rv0667 rpoB S450L71 Y Y 8.602
Streptomycin Rv0682 rpsL K43R15 Y Y 8.323
Ethambutol Rv3795 embB M306L1I32V18 Y Y 8.250
Isoniazid Rv1483 fabG1 C-15T30 Y Y 5.845
Rifampicin Rv0667 rpoB D435Y2F5V11G3A1 Y Y 5.040
Streptomycin Rv0682 rpsL K88R5M1 Y Y 4.164
Ethambutol Rv3795 embB E504G1D1 N N 3.331
Pyrazinamide Rv2043c pncA H51P1 Y Y 2.708
Pyrazinamide Rv2043c pncA W68L1 Y Y 2.708
Rifampicin Rv0667 rpoB H445D8Y2R1 Y Y 2.530
Streptomycin Rvnr01 rrs G1108C2 N N 1.717
Ethambutol Rv3795 embB D869G1 N N 1.688
Ethambutol Rv3795 embB A505T1 N N 1.688
Ethambutol Rv3795 embB D1024N1 Y N 1.688
Fluoroquinolones Rv0005 gyrB N538T1 Y Y 1.685
Fluoroquinolones Rv0006 gyrA S91P1 Y Y 1.685
Fluoroquinolones Rv0005 gyrB T539I1 N N 1.685
Streptomycin Rvnr01 rrs A1401G17 Y N 1.288
Ethambutol Rv3795 embB Y334H2 Y N 1.054
Ethambutol Rv3795 embB Q497R2 Y Y 1.054
Rifampicin Rv0667 rpoB E250G3 N N 1.047
Fluoroquinolones Rv0006 gyrA A90V6G3 Y Y 1.035
Streptomycin Rvnr01 rrs C517T33 Y Y 0.915

Table 3.4: 25 top-scoring associations between drug resistance profiles and point mutations
in the case study on 173 fully sequenced M. tuberculosis strains, when restricted to only
these genes which are associated with drug resistance to the corresponding drugs
. Each row corresponds to one association, whereas the consecutive columns describe: drug name, gene identifier,
gene name, mutation, association presence in the TBDReaMDB database, status indicating whether the associ-
ation is categorized as high-confidence in TBDReaMDB, TGH score. Lower indexes in the mutation descriptions
indicate the numbers of strains possessing the corresponding amino acid or nucleotide variant.

We took a closer look at the top-scoring mutations returned by the scores,
but restricting our analysis to only these associations which involve genes which
are known to be associated with drug resistance for the corresponding drug —
possessing at least one point mutation annotated as high-confidence in the TB-
DReaMDB database. Table 3.4 presents the list of top 25 associations ordered
according to TGH score. In the set of 25 top-scored associations, 19 are present
in the TBDReaMDB database and 16 of them are categorized as high-confidence
mutations. A closer look at the mutations which are not present in TBDReaMDB
revealed that some of them can be supported by literature. In particular, muta-
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tion E504G/D in embB has recently been reported as associated with resistance
to ethambutol (Bakuła et al., 2013). The close proximity of this mutation to
A505T in embB may also suggest that the latter is associated with ethambu-
tol resistance. Similarly, the mutation T539I has already been associated with
resistance to fluoroquinolones (Malik et al., 2012).

Literature search did not provide us any additional support for the remaining
three mutations (D869G in embB and G1108C in rrs), which haven’t been also
reported in TBDReaMDB.

3.3.2.2 Second case study

The second case study, mtu_broad, is based on the data available in the Broad In-
stitute database http://www.broadinstitute.org/annotation/genome/mtb_drug_
resistance. This database contains sequencing data and drug resistance infor-
mation for 1398 strains of M. tuberculosis. However, it should be noted that only
genes of interest were sequenced; Table 3.5 presents the list of 28 sequenced genes
for each strain. Additionally 12 promoter sequences were sequenced. In total, this
database contains 1067 mutations (non-synonymous amino-acid changes or nu-
cleotide changes in promoters), which constituted the input genotype data for
GWAMAR. After the procedure of binarization in GWAMAR we ended up 850
binary mutation profiles.

Similar to the previous case study, based on the drug resistance informa-
tion available in the database for ciprofloxacin, ofloxacin, levofloxacin and mox-
ifloxacin, we introduced a new drug resistance profile for the drug family of
fluoroquinolones. A strain was categorized as susceptible to fluoroquinolones if
it was susceptible to at least one of the drugs, but not resistant to any of them.
Similarly, a strain was categorized as resistant to fluoroquinolones if it was resis-
tant to at least one of the drugs, but not susceptible to any of them. If none of the
cases was satisfied for a strain, then the drug resistance status of the strain was
categorized as unknown. We restrict further analysis to the set of six drugs or
drug families: fluoroquinolones, ethambutol, isoniazid, pyrazinamide, rifampicin
and streptomycin.

In these experiments the phylogenetic tree was reconstructed using the maxi-
mum likelihood approach implemented in the PhyML package, developed by Guin-
don et al. (2010). As an input for the tool we used the set of all available mutations
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gene id gene name description prom. sequenced?

Rv0005 gyrB DNA gyrase subunit B yes
Rv0006 gyrA DNA gyrase subunit A yes
Rv0341 iniB isoniazid inductible gene protein yes
Rv0342 iniA isoniazid inductible gene protein yes
Rv0343 iniC isoniazid inductible gene protein yes
Rv0667 rpoB DNA-directed RNA polymerase beta chain yes
Rv0682 rpsL 30S ribosomal protein S12 yes
Rv1483 fabG1 3-oxoacyl-[acyl-carrier protein] reductase yes
Rv1484 inhA NADH-dependent enoyl-[acyl-carrier-protein] reductase yes
Rv1694 tlyA cytotoxin|haemolysin no
Rv1854c ndh NADH dehydrogenase yes
Rv1908c katG catalase-peroxidase-peroxynitritase T no
Rv2043c pncA pyrazinamidase/nicotinamidas yes
Rv2245 kasA 3-oxoacyl-[acyl-carrier protein] synthase 1 no
Rv2427Ac oxyR’ hypothetical protein no
Rv2428 ahpC alkyl hydroperoxide reductase C protein yes
Rv2764c thyA thymidylate synthase yes
Rv2764c ddl D-alanine-D-alanine ligase ddlA no
Rv3423c alr alanine racemase no
Rv3793 embC membrane indolylacetylinositol arabinosyltransferase yes
Rv3794 embA membrane indolylacetylinositol arabinosyltransferase yes
Rv3795 embB membrane indolylacetylinositol arabinosyltransferase yes
Rv3854c ethA monooxygenase yes
Rv3919c gid glucose-inhibited division protein B yes
Rvnr01 rrs ribosomal RNA 16S no
Rvnr02 rrl ribosomal RNA 23S no

Table 3.5: List of sequenced genes and promoters available at the Broad Institute database,
http://www.broadinstitute.org/annotation/genome/mtb_drug_resistance.

concatenated into one multiple alignment file. The preparation of the multiple
alignment file as well as running PhyML was done with the use of eCAMBer.

Similarly, as in the mtu173 dataset, we applied GWAMAR to compute MI,
OR, H, WS, TGH and RBM association scores. As in the previously described
case study, in order to compute TGH score efficiently, we averaged three TGH
scores obtained over three random binary trees we obtained from the original
tree by splitting its nodes with multifurcations. This step of computations, ran
using 6 processors, took around 5s for MI, OR, H and WS; around 2h for TGH;
and around 2s for all the considered variants of the RBM score. It took relatively
long time to compute TGH score due to its high time complexity with respect
to the numbers of strains considered 3.2.3.

Similarly as for the mtu173 dataset, we sort the set of putative associations
according to the TGH score, but restricting our analysis to only these associations
which involve genes which are known to be associated with drug resistance for
the corresponding drug — possessing at least one point mutation annotated as
high-confidence in the TBDReaMDB database. Table 3.6 presents the list of the
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drug name gene id gene name mutation all h.c. TGH

Fluoroquinolones Rv0006 gyrA D94Y6H2A26G78N14 Y Y 128.323
Rifampicin Rv0667 rpoB S450L743W22 Y Y 72.284
Ethambutol Rv3795 embB M306T1L16V290I313 Y Y 70.217
Fluoroquinolones Rv0006 gyrA A90G2V46 Y Y 41.699
Streptomycin Rv0682 rpsL K43R228 Y Y 30.012
Isoniazid Rv1908c katG S315T895G2I3R3N27 Y Y 27.966
Ethambutol Rv3795 embB Q497H5K18P10R43 Y Y 17.081
Streptomycin Rv0682 rpsL K88Q1R28T32M7 Y Y 16.327
Fluoroquinolones Rv0005 gyrB N538K1S1T9D2 Y Y 12.605
Rifampicin Rv0667 rpoB H445P2Q2L27Y53R42D25N7 Y Y 12.252
Streptomycin Rvnr01 rrs A1401G254 Y N 9.509
Streptomycin Rvnr01 rrs A514C90 Y Y 8.940
Pyrazinamide Rv2043c pncA T135A1P22 Y N 8.814
Fluoroquinolones Rv0006 gyrA S91P9 Y Y 7.557
Rifampicin Rv0667 rpoB D435H1N2A2Y27G3V140 Y Y 7.480
Ethambutol Rv3795 embB G406C3A68D52S43 Y Y 7.057
Pyrazinamide Rv2043c pncA T-11G3C24 Y Y 6.766
Fluoroquinolones Rv0006 gyrA D89G2N4 Y N 6.253
Pyrazinamide Rv2043c pncA L120P20R5 Y N 6.146
Streptomycin Rvnr01 rrs C517T26 Y Y 5.169
Pyrazinamide Rv2043c pncA Q10H3R10P12 Y Y 5.053
Pyrazinamide Rv2043c pncA V139M3G2A7L1 Y Y 5.053
Ethambutol Rv3795 embB D328G5H1Y9 Y N 5.032
Streptomycin Rvnr01 rrs A908C7G1 Y N 4.779
Pyrazinamide Rv2043c pncA D12E1G5N1A12 Y Y 4.725

Table 3.6: 25 top-scored associations between drug resistance profiles and point mutations
in the case study for 1398 partially sequenced M. tuberculosis strains, when restricted to
only these genes which are associated with drug resistance to the corresponding drugs.
This dataset is provided by The Broad Institute. Each row corresponds to one association,
whereas the consecutive columns describe: drug name, gene identifier, gene name, descrip-
tion of the mutation, association presence in the TBDReaMDB database, status indicating
whether the association is categorized as high-confidence in TBDReaMDB, TGH score.
Lower indexes in the mutation descriptions indicate the numbers of strains possessing the
corresponding amino acid or nucleotide variant.

top 25 associations ordered according to TGH score. In the set of 25 top-scored
associations, all are present in TBDReaMDB and 19 of them are categorized as
high-confidence mutations. The presence in the TBDReaMDB database provides
some additional support for the six associations which are categorized as high-
confidence.

3.3.2.3 Assessment of accuracy

Here we use the two datasets described above to assess the accuracy of the various
association scores, viz: mutual information, odds ratio, hypergeometric, weighted
support, TGH and RBM.

We considered to use for comparison CCTSWEEP, proposed by Habib et al.
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(2007) — a score conceptually similar to the TGH score. However, we failed to run
its implementation, probably, due to rather poor documentation. Its authors had
not responded to our queries in time. Thus, we omitted it from our experiments.

In order to assess the accuracy of different association scores we need a reliable
dataset of known drug resistance associations. Here, we test two approaches
to define our gold standard. In the first, we take all 607 associations from the
Tuberculosis Drug Resistance Mutation Database (TBDReaMDB), developed
by Sandgren et al. (2009). In the second, we use the subset of 81 drug resistance
associations classified as high-confidence in the database. Table 3.6 presents the
list of the mutations in TBDReaMDB with the distinguished subset of high-
confidence associations. In all comparative experiments we assume a putative
association to be a positive if it is present in the gold standard.

In both case studies, as the set of positives, we assume the subset of muta-
tions present in our gold standard, also present in the available genotype data.
This is the set of mutations which may be potentially detected (we say they
are “detectable”) using the available datasets. Thus, in the case when all TB-
DReaMDB associations constitute the gold standard, there are 94 and 212 of such
“detectable” associations for the mtu173 and mtu_broad datasets, respectively.
Likewise, if only high-confidence associations are considered as gold standard,
then 39 and 74 of such “detectable” associations for the mtu173 and mtu_broad
datasets, respectively

The set of negatives is constructed by random sampling from the whole set of
identified putative associations except for the associations which are classified as
positives. The number of sampled negatives equals the total number of mutations
present in the genes which have at least one mutation in the gold standard. It
should be noted that, among the mutations present within the genes which are
associated with drug resistance, many can be real positives (associated with
drug resistance), but lacking the annotation in TBDReaMDB. Thus, we use this
approach of sampling from all mutations in order to significantly reduce the
probability of classifying as negatives associations which are real but not present
in the database.

Figure 3.7 presents statistics for the Area Under the Curve (AUC) for the
precision and recall curves for different association scores. The results come from
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drug name gene id gene name positions
TBDReaMDB (high-conf.) TBDReaMDB (all)

Ethambutol Rv0340 173
Rv0341 iniB -89,47
Rv0342 iniA 308,501
Rv0343 iniC 248,351
Rv1267c embR 7,32,53... (24 in total)
Rv3124 moaR1 -16
Rv3125 54
Rv3126 276
Rv3264c manB 152
Rv3266c rmlD -71,257,284
Rv3793 embC 5,244,247... (25 in total)
Rv3794 embA -16,-12,-11... (10 in total)
Rv3795 embB 306,406,497 128,221,225... (85 in total)

Fluoroquinolones Rv0005 gyrB 538 457,458,472... (9 in total)
Rv0006 gyrA 90,91,94,102,126 74,80,88... (10 in total)

Isoniazid Rv0129c fbpC -63,-23,158
Rv0340 163
Rv0342 iniA 3,537
Rv0343 iniC 83
Rv1483 fabG1 -15,-8 -92,-67,-24... (10 in total)
Rv1484 inhA 8,16,21... (10 in total)
Rv1592c -29,42,430
Rv1772 4
Rv1854c ndh 13,18,110,239,268
Rv1908c katG 279,315 1,2,11... (171 in total)
Rv1909c furA 5
Rv2243 fabD 275
Rv2245 kasA 269 66,77,121... (7 in total)
Rv2247 accD6 229
Rv2428 ahpC -46,-39,21 -66,-49,-46... (21 in total)
Rv2846c efpA 73
Rv3566c nat 67,207
Rv3795 embB 333

Pyrazinamide Rv2043c pncA -11,7,10... (51 in total) -12,-11,-7... (103 in total)

Rifampicin Rv0667 rpoB 432,435,441,445,450,452 65,300,409... (38 in total)

Streptomycin Rv0682 rpsL 43,88 9,40,41... (11 in total)
Rv3919c gidB 16,40,45... (19 in total)
Rvnr01 rrs 492,513,514,517,907 190,427,462... (17 in total)

Figure 3.6: The list of drug resistance associations in the TBDReaMDB database. The
first three columns correspond to the drug name, gene identifier and gene name of the
gene corresponding to the point mutation. The next column lists the positions of the
mutations corresponding to associations classified as high-confidence in the TBDReaMDB
database. The last column lists positions of all the mutations present in the database.
Each positive number indicates the position of the mutation in the amino acid sequence
of the corresponding gene. Each negative number indicates the position of the mutation
in the nucleotide sequence of the promoter of the gene, counting upstream its TIS. In
some cases (if there are too many mutation to fit them within the table width) we do
not list them all here — the complete list might be accessed at the project website,
http://bioputer.mimuw.edu.pl/gwamar.
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Figure 3.7: Comparison of different association scores implemented in GWAMAR based
on the Area Under the Curve (AUC) statistic for the precision-recall curves. Left panels
present the results for the mtu173 dataset; right for the mtu_broad dataset. The first row
of panels corresponds to the experiments in which all associations present in TBDReaMDB
were used as the gold standard, whereas the second row corresponds to the experiments
in which only high-confidence associations were used as the gold standard. The process of
sampling the set of negatives was repeated 1000 times. The barplots for tree-ignorant and
tree-aware scores are shown green and blue, respectively.

sampling the set of negatives and calculating the AUC, repeated 1000 times.
The results show that on average, the tree-aware statistics (WS, TGH) per-
formed slightly better than the tree ignorant scores on the mtu173 dataset.
They also show that, TGH performed best on the large mtu_broad dataset,
but was slightly worse on the relatively small mtu173 dataset. The presented
results also show, that the Rank-based metascore performs consistently better
than individual scores in most of the settings. For example, the RBM (MI,OR,H)
outperformed all individual scores it combines in all the settings. Notably, the
RBM(ALL) score, outperformed consistently all tree-ignorant scores in all the
settings.
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We conclude that, the tree-aware association scores outperform the tree-ignorant
methods. In particular, the Rank-based metascore performed consistently better
than the individual scores. However, the advantage is rather small and depen-
dent on a setting. The performance may be influenced by the tree topology, the
strains number or the small number of positives.

3.3.2.4 Compensatory mutations

The most common mechanism of rifampicin resistance in M. tuberculosis is ac-
quired by point mutations within the rifampicin resistance determining region
(RRDR) in the rpoB gene, which corresponds to the rifampicin binding spot (Pa-
tra et al., 2010).

Since the rpoB gene is essential for bacteria, mutations present in this gene,
due to altering its structure, have often deleterious effect on the bacterial fitness
in the drug-free environment (Brandis and Hughes, 2013). This effect may be
potentially reversed by compensatory mutations. Thus, compensatory mutations
tend to appear later, in the evolutionary history, than the mutations directly
responsible for drug resistance. Hence, for a given compensatory mutation, we
expect to observe it in a subset of strains which correspond to the mutation
directly responsible for drug resistance.

Based on the above described assumption, we identify putative compensatory
mutations using the following procedure applied to the mtu_broad and mtu173
datasets. First, we identify the set of mutations within RRDR. Here, RRDR is
defined as a region of 27 amino acids between positions 426 and 452 in the rpoB
gene. Mutations from this region constitute the set of putative primary (directly
responsible for drug resistance) mutations. For the mtu173 dataset we obtained
the following list of putative primary mutations:

• L430P1

• D435Y2F5V11G3A1

• H445D8Y2R1

• S450L71

• L452P2
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Here, the description of each mutation comprises of the reference amino acid,
the position of the mutation in the gene, and different amino-acid variants of
the mutation among the strains. For each mutation, the lower indexes indicate
the number of strains possessing the corresponding amino-acid variant of the
mutation within the 173 strains in the mtu173 dataset.

Applying the same method to the mtu_broad dataset we obtained the following
list of putative primary mutations:

• S428R2

• Q429P1H1

• L430P3R9

• S431G1

• Q432P5E2L1K5H5

• M434I2

• D435H1N2A2Y27G3V140

• N437H1K1

• N438H1

• P439S1

• S441L4

• H445P2Q2L27Y53R42D25N7

• R448Q7

• S450L743W22

• L452V1P24

Here, similarly, as for the previously described list of mutations, for each muta-
tion, the lower indexes indicate the number of strains possessing the correspond-
ing amino-acid variant of the mutation within the 173 strains in the mtu_broad
dataset.
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Interestingly, in both case studies the sets of strains possessing the primary
mutations tend to be disjoint. For example, for the mtu173 dataset, the sets of
strains possessing mutations at positions 450 and 435 are disjoint (hypergeomet-
ric test p-value=2.302 · 10−8). The sets of strains possessing the mutations at
positions 450 and 445 are also disjoint (hypergeometric test p-value=0.00026).
Similarly, for the mtu_broad dataset, the sets of strains possessing mutations
at positions 450 and 445 are disjoint (hypergeometric test p-value=2.62 · 10−63).
The sets of strains possessing mutations at positions 450 and 435 overlap by only
three elements (hypergeometric test p-value=3.87 · 10−64). We hypothesize that
this phenomenon may be caused by the negative epistatic interactions between
mutations from RRDR (Khan et al., 2011).

Finally, we identify a set of putative compensatory mutations, applying the
following simple rule: a mutation is classified as a putative compensatory muta-
tion if the set of strains possessing the mutation is contained within the set of
strains corresponding to one of the mutations identified as primary mutations
(from RRDR).

rpoA
0 100 200 300347

rpoB
0 100 200 300 400 500 600 700 800 900 1000 1100 1172

rpoC
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1314

R
R
D
R

casali evolution 2014

mtu broad

de vos putative 2013
comas whole-genome 2012

mtu173

1Figure 3.8: Comparison of the sets of putative compensatory mutations within the rpoA,
rpoB and rpoC genes, reported in various sources and detected in our two datasets. Each
mutation’s position is indicated by a vertical line of the color corresponding to the source
it was reported in. In particular orange and violet lines indicate positions of mutations
identified by our approach applied to the mtu173 and mtu_broad datasets, respectively.
The other lines indicate mutations reported in the recent articles by Comas et al. (2012)
(red), de Vos et al. (2013) (blue) and Casali et al. (2014) (black).

Here, we compare the sets of putative compensatory mutations for rifampicin
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within the rpoA, rpoB and rpoC genes, identified by our approach with the
mutations reported in other recent articles by Comas et al. (2012), de Vos et al.
(2013), and Casali et al. (2014).

Figure 3.8 presents the distribution of the putative compensatory mutations
identified in these recent studies, put together with the set of putative compen-
satory mutations identified based on our two case studies. Note that the identified
putative compensatory mutations tend to cluster within the region of the rpoC
gene from 430 to 530.

Table 3.7 presents another view on the list of putative compensatory muta-
tions identified by our approach with comparison with those reported in the
other recent articles. However, due to space limitation, in this table, we only list
a subset of such mutations. A mutation is listed in the table, if it was identi-
fied in one of our two datasets and also reported in at least one of the three
recent articles, or reported in at least two of the articles. The complete list
of putative compensatory mutations is available on the website of our project.
http://bioputer.mimuw.edu.pl/gwamar.

We conclude that using our approach we were able to re-identify most of the
putative compensatory mutations identified previously. Moreover, in contrast to
the other research groups, which used in house sequenced bacteria, we achieved
our results by analysis on freely and publicly available data.

3.4 Summary

In this chapter, we presented GWAMAR, a tool we have developed for identifying
of drug resistance-associated mutations based on comparative analysis of whole-
genome sequences in bacterial strains.

The tool is designed as an automatic pipeline which employs eCAMBer for
preprocessing of the genotype data. This preprocessing includes: (i) download-
ing of genome sequences and gene annotations, (ii) unification of gene annota-
tions among the set of considered strains, (iii) identification of gene families, (iv)
computation of multiple alignments and identification of point mutations which
constitute the input genotype data.

GWAMAR implements various statistical methods — such as mutual infor-
mation, odds ratio, hypergeometric score — to associate the drug resistance phe-
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gene position ref aa comas 2012 de vos 2013 casali 2014 mtu173 mtu broad

rpoA 31 G A1S1 A1S1
rpoA 181 T I1 A1
rpoA 183 V A1G1 G1
rpoA 187 T A3P1 A1P1
rpoA 190 D G1 G1

rpoB 45 P S1 L1 A3L9S7T2
rpoB 399 T A1 A5I4
rpoB 491 I V1 L1
rpoB 496 V L1M1 G1M3
rpoB 503 F S1 S3
rpoB 731 L P1 P1 P8
rpoB 761 E D1 D1
rpoB 827 R C1 C3
rpoB 835 H P1R1 R1 P1R3

rpoC 332 G R2 C1R1S1 S7
rpoC 431 V M1 M1
rpoC 433 G S1 C1S1 S1
rpoC 434 P A1R1 Q1R1
rpoC 449 L V1 V1
rpoC 452 F C1 C1
rpoC 483 V A3G3 A1G3 A1G1 A1G5
rpoC 484 W G2 G1 G1
rpoC 485 D H1N1 Y1 N1Y1
rpoC 491 I T1V2 T2 T1V1 T2
rpoC 516 L P2 P1
rpoC 519 G D1 D1 V1
rpoC 521 A D1 D1
rpoC 525 H N1 Q1 Q1
rpoC 527 L V1 V1 V8
rpoC 698 N H1K1S1 H1S1 H1K1S1 K1
rpoC 734 A V1 V2
rpoC 1040 P R1 R1S1T1
rpoC 1252 V L1 M4

Table 3.7: The list of putative compensatory mutations identified by our approach applied
to the mtu_broad and mtu173 datasets, identified in one of our two datasets and also
reported in at least one of the three recent articles, or reported in at least two of the
articles. The first two columns correspond to the gene name, and the reference amino acid,
respectively. The next three columns provide brief descriptions of the mutations identified
in the three recent studies: by Comas et al. (2012), de Vos et al. (2013) and Casali et al.
(2014), respectively. The last two columns list the mutations identified based on our two
case studies. Each mutation’s description comprises of the reference amino acid, the posi-
tion of the mutation in the gene, and different amino-acid variants of the mutation among
the strains. For each mutation, the lower indexes indicate the number of strains, in the
corresponding dataset, possessing the corresponding amino-acid variant of the mutation.

notypes with point mutations. In this work, we also present weighted support
(WS) and tree-generalized hypergeometric (TGH) score — two new statistical
scores — which employ phylogenetic information. As a part of this work, we
also present yet another score, called Rank-based metascore (RBM) to combine
multiple scores, thus compromising for weak points of the individual scores being
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combined.
In order to test our approach, we prepared one dataset for S. aureus and

two datasets for M. tuberculosis. The presented results demonstrate usefulness
of our approach to identify drug-resistance associated mutations based on pub-
licly available sequencing data. In particular, we were able to re-identify most of
the known drug-resistance associations. Our results also support the phenomena
previously reported in the literature, such as: (i) drug resistance-associated mu-
tations tend to have multiple variants observed; or (ii) drug resistance associated
mutations tend to cluster together in close genomic proximity.

Moreover, since most of the recent studies on the subject of compensatory
mutations and in general drug resistance-associated mutations used in-house se-
quenced bacteria, we achieved our promising results basing our analysis solely
on freely available public data.

The presented results also suggest that tree-aware methods (WS and TGH)
perform better than methods which do not incorporate phylogenetic information.
The results also show that the RBM score outperforms the individual scores in
most of the settings. In particular, the RBM (ALL) score performed better than
any tree-ignorant score in all the experiments.

Finally, despite some promising results, the presented tool has some limita-
tions. First, it does not take into account epistatic interactions between muta-
tions. Second, it takes into account only genomic changes, ignoring levels of gene
expression. Thirdly, it provides putative in silico associations which should be
subjected to further investigation in wet lab experiments.

The tools, case-study input data and the obtained results are available at the
website of this project, http://bioputer.mimuw.edu.pl/gwamar.
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“Science knows no country because knowledge belongs to
humanity, and is the torch which illuminates the world.
Science is the highest personification of the nation because
that nation will remain the first which carries the furthest
the works of thought and intelligence.”

Louis Pasteur, Toast at banquet of the International
Congress of Sericulture, 1876

4
Conclusions

This thesis is devoted to our work on exploring the potential of using whole-
genome comparative analysis to deepen our knowledge on drug resistance mech-
anisms at the molecular level. In particular, we approach the problem of identi-
fying drug resistance-associated mutations by comparative analysis of multiple
bacterial genomes.

The continuous progress in whole-genome sequencing technologies makes the
bacterial genome sequencing more affordable. As a consequence, large amount of
genomic information is being generated and made publicly available. This allows
for studying the genomic basis for different aspects of bacterial phenotype, such
as drug resistance, virulence, and interactions with the host.

However, one issue we faced using publicly available genomes of bacterial
strains is that their annotations are often inconsistent and of poor quality. This
phenomenon has also been reported previously as a potential cause of bias for
various analysis of the genome. For example, in the context of drug resistance, a
missing gene annotation, may lead to a wrong conclusion, that the correspond-
ing drug resistance mechanism, encoded by the gene, is absent in the bacteria. It
has been shown also that the inconsistent genome annotations result from using
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different annotations strategies in different sequencing laboratories.

4.1 Comparative genome annotations

In chapter 2, we present our work addressing this issue. In particular, we describe
CAMBer and its highly optimized version, eCAMBer. These are tools that we
have developed to improve the consistency and overall quality of bacterial genome
annotations by comparative genome annotation. In its key step, called the clo-
sure procedure, eCAMBer tries to transfer gene annotations among all considered
bacterial strains. The underlying idea behind the efficient implementation of the
procedure in eCAMBer is to avoid redundant BLAST queries. Moreover, eCAM-
Ber supports multiple-threading for all its procedures. This allows eCAMBer to
be much faster than CAMBer and its other competitors — Mugsy-Annotator
and the GMV pipeline — making it applicable to datasets comprising hundreds
of bacterial strains.

In order to assess the impact of using eCAMBer on the quality of annotations,
we applied it on the dataset of 20 E. coli strains, comprising genome sequences
and annotations from the PATRIC database. As a gold standard for this dataset
we used genome annotations manually curated by biologists. The results showed
that eCAMBer improved the quality of the input annotations.

Although the development of eCAMBer was motivated by our research on
identifying genetic variations associated with drug resistance, it may be used in
other contexts where high-quality annotations of bacterial strains are needed.
We expect eCAMBer to be a valuable tool for the research community working
on comparative analysis of multiple bacterial strains.

We expect that, with the increasing amount of genomic data being generated,
the need for similar tools will continue to grow. For example, to date, there are
already about three thousand sequenced S. aureus genomes. Comparative anal-
ysis of such large datasets may be difficult for all currently available tools. One
promising approach to achieve higher efficiency may rely on the idea of compres-
sive genomics, which can greatly speed up running time of BLAST queries when
the target genome sequences are highly similar, as in the case of closely related
bacterial strains. We leave this, however, as one of the potential directions for
further research.
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4.2 Drug resistance-associated mutations

In chapter 3, we present our work on identifying the mutations associated with
drug resistance based on comparative analysis of multiple bacterial strains. Thus,
we tackle a general problem of associating genotype with phenotype. We describe
GWAMAR, the tool we have developed to support this type of analysis.

The tool is designed as a pipeline. The input genomic data comprises genome
sequences and annotations for a set of bacterial strains. The input phenotype
data consists of information on drug susceptibility collected for the set of strains
in question.

Then, in its first step, it employs eCAMBer to pre-process the genomic data,
and to generate the set of genetic variations (mutations) among the set of con-
sidered strains, which could potentially be associated with drug resistance. This
includes, the point amino-acid mutations, point promoter mutations (-50bp up-
stream the corresponding TIS) and gene gain/losses. In the default setting, we
exclude from the analysis synonymous mutations, since, according to our knowl-
edge, there is no evidence they may be related to drug resistance in bacteria.

The essential step of GWAMAR is scoring of the set of mutations with regard
to the phenotype data. The goal of this procedure is to achieve a sorted list
of mutations, such that, the mutations with the highest score are most likely
to be associated with drug resistance. GWAMAR implements several statistics,
such as mutual information, hypergeometric score, and odds ratio. As a part
of this work we investigate the potential of scoring which employs phylogenetic
information, represented as a tree, to strengthen the signal in data, which comes
from the presence of the underlying association. We propose two such statistics,
weighted support (WS) and the tree-generalized hypergeometric (TGH) score.
Since it is not clear that trees are the best data structures to represent the
phylogenetic information, one potential direction of the research could be to
test the usability of other data structures, such as networks, to represent the
phylogenetic information.

Furthermore, we introduced Rank-based metascore (RBM) for combining mul-
tiple scores into one in order to compromise between different approaches used
to define different individual scores being combined. Our results demonstrate
that, the RBM score outperform the individual scores in most of the settings.
Specifically, the RBM (ALL) score, which combines all the scores considered in
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this work, outperformed all the tree-ignorant scores considered separately.
We demonstrate the usability of the tool based on three datasets we prepared,

one for S. aureus and two for M. tuberculosis. Applying GWAMAR to these
dataset we show its ability to re-identify the known, gold standard associations.
Moreover, we identify some putative associations, which haven’t been yet re-
ported. These in silico predictions may attract the attention of the experimental
research community to test them experimentally in the labs.

Even though, in this work we focus solely on the problem of identifying drug
resistance-associated mutations in bacteria, very similar approaches can be de-
veloped to study drug resistance in viruses, parasites or cancer. Moreover, in our
opinion, the tool could be successfully applied to other types of phenotype data,
such as virulence.

Finally, we expect that, with the increasing amount of genomic data being gen-
erated, more studies on whole-genome comparative approaches will be published
in the context of drug resistance.
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