
Geometria obliczeniowa 
Wykład 12 

Planowanie ruchu 

1. Najkrótsza ścieżka między dwoma punktami. 

2. Znajdywanie ścieżki między dwoma punktami. 

3. Ruch postępowy robota wielokątnego na płaszczyźnie. 

4. Ruch z możliwością obrotów. 

 

Algorytmy randomizowane 

1. Programowanie liniowe w R2. 

2. Minimalne koło opisane na zbiorze punktów. 

3. Lokalizacja punktu w siatce trapezów. 



Planowanie ruchu – najkrótsza ścieżka między dwoma punktami. 

 

Problem. 

Na płaszczyźnie dany jest obszar D (ograniczony lub nie) z dziurami 

(będącymi zbiorami otwartymi) mający w sumie n krawędzi oraz dwa 

wybrane punkty s i t. 

Znajdź najkrótszą ścieżkę łączącą s i t (o ile istnieje). 

 

Lemat. 

Najkrótsza ścieżka łącząca punkty s i t jest łamaną składającą się z krawędzi 

grafu widzialności dla zbioru krawędzi obszaru D oraz punktów s i t (tzn. 

najkrótsza ścieżka między punktami s i t może zmieniać kierunek jedynie w 

punktach będących wierzchołkami obszaru D). 

  



Algorytm. 

 

stwórz graf widzialności W dla zbioru 
krawędzi obszaru D oraz punktów s i t; 

if punkty s i t należą do tej samej spójnej  

    składowej grafu W 

    then zastosuj algorytm Dijkstry w celu  

            znalezienia najkrótszej ścieżki z s do t;  

return najkrótsza ścieżka; 

 

Twierdzenie. 

Algorytm działa w czasie O(n2). 

Dowód. 

Graf W tworzymy w czasie O(n2). Spójne 
składowe sprawdzamy w tym samym czasie. 
Jeśli s i t są w tej samej składowej to 
najkrótszą ścieżkę znajdujemy w czasie 
O(|V|log|V|+|E|).  



Twierdzenie (Hershberger, Suri 1997) 

Ścieżkę o minimalnej długości między dwoma danymi punktami w 

obszarze z dziurami na płaszczyźnie, którego rozmiar wynosi n, można 

znaleźć w czasie O(n log n) wykorzystując pamięć rozmiaru O(n log n). 

 



Znajdywanie ścieżki między dwoma punktami. 

 

Problem. 

Dany jest obszar z dziurami D na płaszczyźnie oraz dwa wyróżnione punkty s i 
t. Znajdź ścieżkę łączącą s i t (o ile istnieje).  

 

Zakładamy, że dziury są zbiorami otwartymi.  

Obszar D jest reprezentowany w postaci podwójnie łączonej listy krawędzi K. 

Orientacja krawędzi obszaru D określa jego wnętrze i zewnętrze.  

 

Mapa trapezowa. 

Wykorzystując metodę zamiatania dzielimy obszar D na trapezy o podstawach 
prostopadłych do kierunku zamiatania. Podział przechowujemy w strukturze K. 

Strukturą zdarzeń będzie lista Q wierzchołków obszaru D uporządkowana 
względem kierunku zamiatania (np. osi y-ów). 

Strukturą stanu będzie zrównoważone drzewo poszukiwań binarnych T za-
wierające aktywne krawędzie obszaru D uporządkowane względem kolejności 
ich przecięć z miotłą (wzdłuż osi x-ów).  



Algorytm. 

 

stwórz listę Q; 

while Q   do 

    q := POP(Q); 

    usuń z T krawędzie, których końcem  

    jest q i są za miotłą; 

    znajdź w T sąsiadów q; 

    for każdy sąsiad q w T do 

        if krawędź łącząca q z sąsiadem  

            należy do obszaru 

            then uaktualnij strukturę K;     

    dodaj do T krawędzie, których koń- 

    cem jest q i są przed miotłą; 

return K;   



Lemat. 

Mapę trapezową wielokąta z dziurami o rozmiarze n można skonstruować w 

czasie O(n log n) i pamięci O(n). 

Dowód. 

W danym położeniu miotły operacja znalezienia sąsiadów badanego punktu 

w T wymaga czasu O(log n). Sprawdzenie należenia badanej podstawy 

trapezu do wnętrza obszaru D oraz aktualizacja struktury K wymagają czasu 

stałego. 

Liczba nowych wierzchołków i krawędzi w mapie trapezowej jest proporcjo-

nalna do rozmiaru obszaru D. Rozmiary struktur zdarzeń i stanu są liniowe 

względem rozmiaru obszaru D. 

 

Mapa drogowa. 

Na podstawie mapy trapezowej tworzymy graf, który umożliwi nam stwier-

dzenie, czy dane dwa punkty p1, p2 można połączyć ścieżką. 



Algorytm. 

 

stwórz mapę trapezową; 

for każdy trapez do 

    wyznacz punkt wewnątrz trapezu i  

    połącz środki krawędzi tworzących     

    podstawy trapezu z tym punktem; 

for i=1 to 2 do 

    połącz pi z wyznaczonym punktem  

    wewnątrz trapezu zawierającego pi ; 

sprawdź, czy w powstałym grafie p1 i p2 

należą do tej samej spójnej składowej;  

     



Lemat. 

Mapę drogową w obszarze z dziurami o rozmiarze n możemy obliczyć w 

czasie O(n log n) i wymaga ona O(n) pamięci. 

Dowód. 

Mapę trapezową obliczamy w czasie O(n log n). Korzystając z podwójnie 

łączonych list krawędzi tworzymy mapę drogową w czasie proporcjonal-

nym do rozmiaru mapy trapezowej, czyli O(n). Zatem jej rozmiar jest 

również O(n). 

 

Twierdzenie. 

Ścieżkę między dwoma danymi punktami w obszarze z dziurami o 

rozmiarze n możemy znaleźć lub stwierdzić jej brak w czasie O(n log n). 

Dowód. 

W czasie O(n log n) tworzymy mapę drogową. Zbadanie jej spójnych 

składowych i sprawdzenie, czy dane punkty należą do tej samej 

składowej, wymaga czasu O(n).   



Ruch postępowy robota wielokątnego na 
płaszczyźnie. 

 

Problem. 

Dany jest robot, którego rzut na podłoże jest 
wielokątem (zazwyczaj wypukłym). Czy może 
on przemieścić się ruchem postępowym między 
dwoma danymi punktami w obszarze z 
przeszkodami, tzn. każdy z punktów robota 
porusza się po takim samym torze w tym samym 
czasie (robot nie obraca się) ? 

 

Definicja. 

Załóżmy, że środek układu współrzędnych 
należy do wnętrza robota.  

Ruch tego punktu opisuje ruch całego robota. 
Nazywamy go punktem odniesienia.  

Niech R(0,0) oznacza listę położeń 
wierzchołków robota w chwili startu. 

Wtedy R(x,y) := R(0,0) + (x,y) 

R(0,0) 

R(x,y) 



R(0,0) 

R(x,y) 

Przestrzeń rzeczywista Definicja. 

Przestrzeń, w której porusza się robot 

nazywamy przestrzenią rzeczywistą. 

Przestrzeń parametrów robota nazywamy 

przestrzenią konfiguracji.W przestrzeni 

tej robot przyjmuje postać jednopunktową 

odpowiadającą jego punktowi odniesienia. 

 

Jak wyglądają przeszkody (obszary za-

bronione) w przestrzeni konfiguracji ? 

Przestrzeń konfiguracji 



Przykład. 

Gdy przesuwany obiekt jest kołem, to 

przeszkody należy rozszerzyć w każym 

kierunku o promień koła. 

Gdy środek koła będzie leżeć poza po-

większonymi przeszkodami, to jego 

brzeg nie będzie nachodzić na żadną z 

rzeczywistych przeszkód.  



Suma Minkowskiego. 

 

Definicja. 

Rozpatrzmy wielokąty A i B jako zbiory 
wektorów o współrzędnych odpowiada-
jących współrzędnym punktów 
należących do tych wielokątów. Sumą 
Minkowskiego wielokątów A i B jest  

A + B := {x + y : x  A  y  B}.  

 

Fakt. 

Suma Minkowskiego dwóch wielokątów 
zależy od ich położenia, ale jej kształt 
nie. 

 

Załóżmy, że w położeniu początkowym 
środek układu współrzędnych znajduje 
się wewnątrz robota.  



Fakt. 

Zauważmy, że jeśli obiekt styka się z 

brzegiem obszaru lub dziury, to punkt 

odniesienia obiektu jest odległy od 

punktu styczności o wektor przeciwny 

do wektora łączącego punkt odniesienia 

z punktem styczności.  

 

Zatem powiększone przeszkody okreś-

lane są przez sumę Minkowskiego D-R. 

 

Algorytm. 

oblicz sumę Minkowskiego D-R; 

sprawdź, czy istnieje ścieżka między 

położeniem początkowym i końcowym; 

R(0,0) 

R(x,y) 



Złożoność algorytmu zależy od kształtu robota i przeszkód. 

Załóżmy, że robot R ma stałą liczbę wierzchołków, a obszar D ma n wierz-
chołków. 

 

R                        D               Rozmiar sumy    Złożoność czasowa konstrukcji 

wypukły        wypukły               O(n)                              O(n) 

wypukły        niewypukły          O(n)                              O(n log n) 

niewypukły   niewypukły          O(n2 )                            O(n2 log n) 

 

Twierdzenie. 

W obszarze D z dziurami o łącznie n wierzchołkach czas znalezienia ścieżki, 
wzdłuż której można przesunąć wypukłego robota R o stałym rozmiarze między 
dwoma danymi położeniami bez kolizji z żadną przeszkodą (lub stwierdzić, że 
jest to niemożliwe), wynosi O(n log n). 

Dowód. 

Sumę Minkowskiego D-R znajdujemy w czasie O(n log n). Następnie znaj-
dujemy ścieżkę między danymi punktami (jeśli istnieje) w czasie O(n log n). 



Twierdzenie. 

Niech D i R będą wielokątami o odpowiednio n i m wierzchołkach. 

Złożoność sumy Minkowskiego wielokątów D i R ma następujące 

ograniczenia: 

- O(n+m), jeśli oba wielokąty są wypukłe, 

- O(nm), jeśli jeden z wielokątów jest wypukły, a drugi nie, 

- O(n2m2), jeśli oba wielokąty nie są wypukłe. 

Ograniczenia są ścisłe w pesymistycznym przypadku. 



Ruch z możliwością obrotów. 

 

W przypadku poruszania się robota, który może się obracać, mamy jeden 

stopień swobody więcej. Dlatego przestrzeń konfiguracji jest trójwymiarowa 

(trzeci wymiar odpowiada kątowi obrotu). 

Sposób planowania ruchu robota jest podobny jak w poprzednim przypadku, 

choć nieco bardziej skomplikowany (ściany w przestrzeni konfiguracji nie są 

płaskie i wygodniej jest je przybliżyć, poza tym wraz ze wzrostem wymiaru 

rośnie też złożoność obliczeniowa zadania). 

 

Twierdzenie (Canny, 1987) 

Problem planowania ruchu, w którym robot ma d stopni swobody można 

rozwiązać w czasie O(nd log n).    



Podstawowe metody stosowane w algorytmach randomizowanych. 
 
Metoda Las Vegas.  
Metoda ta zawsze daje poprawne rozwiązanie. Natomiast czas trwania algo-
rytmu może być zmienny w zależności od układu danych. Przykładem takie-
go algorytmu może być np. Quickhull lub dowolny algorytm przyrostowy z 
losowo uporządkowanymi danymi.  
 
Metoda Monte Carlo.  
Metoda ta zawsze kończy się w ustalonym czasie, ale może z pewnym praw-
dopodobieństwem zwrócić zły wynik bądź zwraca wynik tylko z pewną do-
kładnością. Przykładem takiego algorytmu może być np. szukanie ścieżki łą-
czącej dwa punkty w labiryncie przy losowym wyborze kierunku poruszania 
się lub losowe próby lokalizacji punktu na płaszczyźnie podzielonej na 
obszary.  
 
Formalnie efektywność takiego algorytmu jest zmienną losową określoną na 
zbiorze możliwych losowych ciągów danych. Wartość oczekiwana takiej 
zmiennej nazywana jest oczekiwanym czasem działania. 



Przykład. 

Pole koła o promieniu 1 (wartość ). 

421/27 = 3,111 

4221/289 = 3,059 



Programowanie liniowe w R2. 

 

Problem. 

Dana jest liniowa funkcja celu c (postaci 

ax+by ) oraz n warunków brzegowych 

(zbiór H nierówności liniowych aix + biy 

+ ci  0, dla i = 1,2, ... , n) opisujących 

obszar dopuszczalny D, w którym 

poszukujemy punktu maksymalizującego 

(minimalizującego) wartość funkcji c. 

 



Algorytm 

if obszar wyznaczany przez półpłaszczyzny 

    z H jest ograniczony w kierunku wzrostu 

    wartości funkcji c i nie jest pusty  

    then określ półpłaszczyzny h1, h2 ograni- 

             czające wzrost wartości funkcji c,  

             punkt przecięcia ich brzegów  

             x:= (h1)(h2) i D:= h1  h2  

    else return(„Brak rozwiązania”); 

for h  H-{h1,h2} do 

    if x  h then D := D  h;  

    if D    

        then x := {q: c(q) = max p(h)D c(p)} 

        else return(„Brak rozwiązania”); 

return(x, c(x)); 

Funkcja celu: 

max 3x+2y 

Warunki brzegowe: 

y - 0,5x - 3  0  y - 5  0 

y + 2x - 17  0  -y + 0,5x - 3  0 

-y + x - 7  0  y + x - 10  0 

 



Twierdzenie 

Problem programowania liniowego w R2 dla n warunków brzegowych można 
rozwiązać w czasie oczekiwanym O(n) z wykorzystaniem O(n) pamięci.  

Dowód. 

Niech vk będzie punktem, w którym funkcja c przyjmuje maksimum (minimum) 
w obszarze wyznaczanym przez k półpłaszczyzn, a hk będzie k-tą półpłaszczyzną. 

Zdefiniujmy zmienną losową Xk przyjmującą wartość 1, gdy vk-1  hk oraz 0 w 
przeciwnym przypadku. 

Ponieważ znalezienie nowego maksimum (rozwiązanie problemu jednowymiaro-
wego programowania liniowego), wymaga czasu O(n), więc oczekiwany czas 
działania algorytmu wynosi E(n

k=3 O(k)Xk) = n
k=3 O(k)E(Xk) . 

Wartość E(Xk) szacujemy stosując tzw. analizę wsteczną. W tym celu badamy, 
jak zmienia się problem, gdy mając k warunków brzegowych, odejmiemy jedną z 
półpłaszczyzn. Punkt, w którym funkcja c ma maksimum (minimum) może ulec 
zmianie, gdy odejmiemy co najwyżej dwie spośród półpłaszczyzn 
wyznaczających obszar (wyznaczają one wierzchołek, w którym przyjmowane 
jest maksimum (minimum) - jeśli przez ten punkt przechodzi więcej prostych 
będących brzegami danych półpłaszczyzn, to może się zdarzyć, że usunięcie 
dowolnej półpłaszczyzny nie wpływa na wartość funkcji celu). Zatem E(Xk)  
2/(k-2) . Stąd n

k=3 O(k)E(Xk) = n
k=3 O(1) = O(n) .  



Minimalne koło opisane na zbiorze punktów. 

 

Problem. 

Dla danego zbioru punktów na płaszczyźnie P 

znajdź minimalne koło zawierające wszystkie 

punkty z P.   

 

Weźmy losową permutację punktów z P. 

Niech Pi := {p1, ... , pi} a Di będzie minimal-

nym kołem zawierającym Pi. 

 

Lemat . 

Dla 2 < i < n mamy: 

- jeśli pi  Di-1, to Di = Di-1, 

- jeśli pi  Di-1, to pi leży na brzegu Di.  



Załóżmy, że znane są dwa punkty z P 

leżące na brzegu minimalnego koła. 

 

MinDisc2P(P, q1, q2) 

D0 := najmniejsze koło z q1, q2 na brzegu; 

for k:=1 to n do 

if pk  Dk-1 

    then Dk := Dk-1  

    else Dk := koło z q1, q2, pk na brzegu; 

return Dn; 

 

  

  



Załóżmy teraz, że znamy jeden punkt z P 

leżący na brzegu minimalnego koła. 

 

MinDisc1P(P, q) 

Oblicz losową permutację p1, ... , pn punk-

tów z P;  

D1 := najmniejsze koło z p1, q na brzegu; 

for j:=2 to n do 

if pj  Dj-1 

    then Dj := Dj-1  

    else Dj := MinDisc2P({p1,..., pj-1}, pj, q); 

return Dn; 

 



Ostatecznie nasz program wygląda nastę-

pująco. 

 

MinDisc(P) 

Oblicz losową permutację p1, ... , pn punk-

tów z P;  

D2 := najmniejsze koło zawierające {p1, p2}; 

for i:=3 to n do 

if pi  Di-1 

    then Di := Di-1  

    else Di := MinDisc1P({p1,..., pi-1}, pi); 

return Dn; 

 



Lemat. 

Niech P będzie zbiorem punktów w R2, a Q, być może pustym, zbiorem 
punktów w R2, dla których P  Q =  oraz p  P. Wtedy zachodzą 
następujące warunki: 

- Jeśli istnieje koło, które zawiera P i wszystkie punkty z Q są na jego 
brzegu, to najmniejsze takie koło jest wyznaczone jednoznacznie (oznaczmy 
je przez md(P,Q)). 

- Jeśli p  md(P-{p},Q), to md(P,Q) = md(P-{p},Q). 

- Jeśli p  md(P-{p},Q), to md(P,Q) = md(P-{p},Q{p}). 

 

Wniosek. 

MinDisc poprawnie oblicza minimalne koło zawierające zbiór punktów. 

 

Twierdzenie. 

Minimalne koło zawierające zbiór n punktów na płaszczyźnie można 
obliczyć w oczekiwanym czasie O(n), używając w pesymistycznym 
przypadku pamięć rozmiaru O(n).  

 



Dowód. 

Oszacowanie rozmiaru pamięci wynika z faktu, że wszystkie trzy algorytmy 

MinDisc , MinDisc1P i MinDisc2P potrzebują O(n) pamięci. 

Czas działania MinDisc2P wynosi O(n). MinDisc1P działa w czasie 

liniowym dopóki nie zachodzi konieczność wywołania MinDisc2P. 

Prawdopodobieństwo takiego zdarzenia liczymy wykorzystując analizę 

wsteczną. Ustalmy zbiór {p1,..., pi}. Niech Di będzie minimalnym kołem 

zawierającym {p1,..., pi}, które ma q na swoim brzegu. Załóżmy, że 

usuwamy jeden z punktów z {p1,..., pi}. Koło Di ulega zmianie, gdy 

usuwamy jeden z trzech (lub dwóch) punktów na brzegu (gdy punktów jest 

więcej, usunięcie niektórych z nich nic nie zmienia). Jednym z tych punktów 

jest q, więc usunięcie co najwyżej dwóch punktów powoduje zmniejszenie 

koła. Prawdopodobieństwo, że pi jest jednym z tych punktów wynosi 2/i. 

Zatem możemy oszacować oczekiwany czas działania MinDisc1P przez  

O(n) + n
i=2O(i)2/i = O(n). 

Stosując identyczne rozumowanie dla MinDisc stwierdzamy, że oczekiwany 

czas działania tego algorytmu wynosi O(n).    



Lokalizacja punktu w siatce trapezów. 

 

Problem 

Dany jest prostokątny obszar oraz n zawar-
tych w nim rozłącznych odcinków. Odcinki 
są w położeniu ogólnym, tzn. żadne dwa 
końce nie mają tej samej współrzędnej x-owej 
ani y-owej (w szczególności, żaden nie jest 
pionowy ani poziomy).  

Chcemy odpowiadać na pytanie: Miedzy 
którymi dwoma odcinkami (od góry i od 
dołu) znajduje się dany punkt ?  

 

Przedstawimy algorytm  przyrostowy znaj-
dujący podział obszaru na trapezy (mapę 
trapezową). 

Równocześnie skonstruujemy strukturę 
danych umożliwiającą odpowiedź na 
zapytania o położenie punktów, 
wykorzystującą podział obszaru na trapezy .  



Struktura jest grafem skierowanym, którego 
wierzchołki odpowiadają trapezom podziału, 
końcom odcinków i samym odcinkom. 
Wierzchołki odpowiadające odcinkom mogą 
występować wielokrotnie. Wierzchołki od-
powiadające trapezom są liśćmi (wierzchoł-
kami o zerowym stopniu wyjściowym). 

Niech pi i qi oznaczają odpowiednio począ-
tek i koniec i-tego odcinka si.  

Gdy odcinek si zawiera się w jednym z już 
istniejących trapezów, to w miejsce odpo-
wiadającego mu wierzchołka wstawiamy 
wierzchołek pi, którego lewym synem jest 
wierzchołek odpowiadający trapezowi pow-
stającemu po lewej stronie pi a prawym sy-
nem jest qi. Prawym synem qi jest wierzcho-
łek odpowiadający trapezowi powstającemu 
po prawej stronie qi a lewym synem jest si. 
Lewy i prawy syn si odpowiadają odpowied-
nio trapezowi powyżej i poniżej odcinka si.   

sk 

sm 

A 

DS(Si-1) 

A 

si 
E 

D 

C 

B 

qi 

si 

pi 

B 

C D 

E 



C B A 

Gdy odcinek si przecina wiele istniejących 
już trapezów, to w miejsce wierzchołka 
odpowiadającego skrajnie lewemu trape-
zowi wstawiamy pi, którego lewym synem 
jest wierzchołek odpowiadający trapezowi 
powstającemu po lewej stronie pi a pra-
wym synem jest si.  

W miejsce wierzchołka odpowiadającego 
skrajnie prawemu trapezowi wstawiamy 
qi, którego prawym synem jest wierzcho-
łek odpowiadający trapezowi powstają-
cemu po prawej stronie qi a lewym synem 
jest si.  

Pozostałym trapezom odpowiadają wierz-
chołki si. Lewy i prawy syn dowolnego 
wierzchołka si odpowiada odpowiednio 
trapezowi powstałemu powyżej i poniżej 
odcinka si w miejscu poprzedniego 
trapezu.  

C 
A B 

sd 

sc 

sb 

sa 

DS(Si-1) 

I 
si H 

G 

F 

E 
D 

pi qi si 

si si G D 

E F H 

I 



Algorytm  

inicjalizuj strukturę DS ; 

for i:=1 to n do 

    z pomocą struktury DS znajdź trapezy 

    przecinane przez odcinek si ; 

    zastąp w strukturze DS wierzchołki 

odpowiadające tym trapezom nowym 

układem wierzchołków; 

E 
D 

C 

B 

A J 

I 

H 

G 

F 

E 

D 

C 

B 

A J 
I 

H 

G 

F 



Twierdzenie 

Algorytm oblicza mapę trapezową T(S) dla zbioru n odcinków S i tworzy 
strukturę danych DS(S) dla mapy T(S) w oczekiwanym czasie O(n log n). 
Oczekiwany rozmiar struktury wynosi O(n), a lokalizacja punktu wymaga 
oczekiwanego czasu O(log n). 

Dowód. 

Zmiana wierzchołka odpowiadającego trapezowi zwiększa długość ścieżki 
wyszukującej punkt o co najwyżej 3 wierzchołki. Jednak szacowanie 
długości ścieżki wyszukiwań w ten sposób jest zbyt grube. 

Rozważmy ścieżkę wyszukiwań punktu q w strukturze danych DS.  

Niech Xi oznacza dla 1  i  n liczbę wierzchołków na ścieżce wyszukiwań 
dodanych w i-tej iteracji. Zatem oczekiwana długość ścieżki wyszukiwań 
wynosi E(n

i=1Xi) = n
i=1E(Xi) .  

Niech Pi oznacza prawdopodobieństwo przejścia w trakcie lokalizacji punktu 
q przez wierzchołki stworzone w i-tej iteracji. Mamy E(Xi)  3Pi oraz 
Pi=P[tq(Si)  tq(Si-1)], gdzie tq(Si) oznacza trapez zawierający punkt q w 
mapie powstałej po i-tej iteracji.  



Aby oszacować prawdopodobieństwo Pi zastosujemy analizę wsteczną. 

W mapie powstałej po i-tej iteracji, zmianę trapezu zawierającego punkt q 

spowodować może usunięcie co najwyżej czterech odcinków: 

- będącego górną krawędzią trapezu, 

- będącego dolną krawędzią trapezu, 

- wyznaczającego poprzez swój koniec lewą ścianę trapezu, 

- wyznaczającego poprzez swój koniec prawą ścianę trapezu. 

Jeśli koniec odcinka będącego np. dolną krawędzią trapezu wyznacza 

równocześnie np. lewą ścianę trapezu, to liczba odcinków, których 

usunięcie może zmienić trapez zawierający punkt q, jest mniejsza niż 4.  

Zatem Pi=P[tq(Si)  tq(Si-1)] = P[tq(Si)  T(Si-1)]  4/i .  

Stąd n
i=1E(Xi)  n

i=13Pi  n
i=112/i = 12 n

i=11/i = 12Hn = O(log n). 

czyli oczekiwany czas lokalizacji punktu jest O(log n). 

q 



Zbadajmy oczekiwany rozmiar struktury.  

Wynosi on:  (liczba trapezów) + n
i=1(liczba węzłów stworzonych w i-tej 

iteracji).  

Liczba trapezów szacuje się przez O(n).  

Natomiast liczba wierzchołków dodanych w jednej iteracji może być liniowa 
względem liczby zbadanych odcinków. Prowadzi to do kwadratowego (pesy-
mistycznego) oszacowania rozmiaru omawianej struktury danych .  

Niech ki oznacza liczbę trapezów tworzonych w i-tej iteracji.  

Zatem liczba nowych wierzchołków wewnętrznych wynosi ki-1. 

Niech (t,s) będzie równe 1, gdy trapez t  T(Si) nie będzie należeć do T(Si-1) 
po usunięciu odcinka s oraz 0 w przeciwnym przypadku.  

Mamy sS t T(Si) (t,s)  4|T(Si)| = O(i) .  

Stąd  E(ki) = 1/i sS t T(Si) (t,s)  O(i)/i = O(1) ,  

czyli oczekiwana liczba nowych wierzchołków  wewnętrznych powstałych w 
i-tej iteracji jest stała.  

Zatem oczekiwany rozmiar struktury danych wynosi 

O(n) + n
i=1 E(ki-1) = O(n) + n

i=1 E(ki) = O(n) + n
i=1 O(1) = O(n) ,  

czyli jest liniowy względem liczby odcinków.  



Teraz możemy obliczyć oczekiwany czas pracy algorytmu, który wynosi:  

(Koszt inicjalizacji) + n
i=1 (średni czas wyszukiwania położenia końców 

odcinka dodawanego w i-tej iteracji + liczba nowych wierzchołków 

dodawanych w i-tej iteracji) =   

O(1) + n
i=1 (O(log i) + O(E(ki))) = O(1) + O(n log n) + O(n) = O(n log n), 

co kończy dowód. 



 

 

 

 

Dziękuję za uwagę. 



Ćwiczenia. 

 

1. Udowodnij, że ścieżka o minimalnej długości łącząca dane punkty s i t 

wewnątrz danego wielokąta prostego jest łamaną składającą się z krawędzi 

grafu widzialności dla zbioru krawędzi danego obszaru A oraz punktów s i t 

(tzn. najkrótsza ścieżka między punktami s i t może zmieniać kierunek 

jedynie w punktach będących wierzchołkami obszaru A). 

2. Dlaczego wybieramy punkty wewnątrz trapezów w mapie drogowej ? 

3. Udowodnij, że kształt sumy Minkowskiego robota i przeszkody nie zależy 

od wyboru punktu odniesienia.  

4. Pokaż, że suma Minkowskiego dwóch wielokątów niewypukłych, z których 

jeden ma skończoną liczbę wierzchołków a drugi ma n wierzchołków, może 

mieć rozmiar O(n2).    

 

 



 

5. Który z poniższych algorytmów generuje losowe permutacje dla danej tablicy 

A długości n (tzn. każda możliwa permutacja A jest równie prawdopodobna 

jako wynik): 

a) (bez identyczności) for i:=1 to n do zamień(A[i],A[RANDOM(i+1,n)]); 

b) for i:=1 to n do zamień(A[i],A[RANDOM(1,n)]); 

c) for i:=n downto 2 do zamień(A[i],A[RANDOM(1,i)]); 

 

6. Udowodnij, że liczba wewnętrznych węzłów w strukturze przeszukiwań DS 

algorytmu tworzenia mapy trapezowej wzrasta o ki-1 w iteracji i, gdzie ki jest 

liczbą nowych trapezów w T(Si) (tzn. nowych liści w DS). 

 

7. Podaj przykład układu odcinków generującego w pesymistycznym przypadku 

strukturę podziału na trapezy rozmiaru O(n2). 

 

8. Udowodnij, że mapa trapezowa n odcinków w położeniu ogólnym ma co 

najwyżej  3n+1 trapezów.  
 
 



9. Prosty wielokąt nazywamy gwiaździstym, gdy zawiera punkt q widoczny 
z każdego punktu wielokąta. Podaj algorytm, którego oczekiwany czas 
działania jest liniowy i sprawdza, czy dany prosty wielokąt jest 
gwiaździsty. 

 

 

 
 


