Geometria obliczeniowa
Wyktad 12

Planowanie ruchu

1.

Najkrotsza sciezka migdzy dwoma punktami.

2. Znajdywanie Sciezki miedzy dwoma punktami.
3.
A4

Ruch postepowy robota wielokatnego na ptaszczyznie.

Ruch z mozliwoscig obrotow.

Algorytmy randomizowane

1.
2.
3.

Programowanie liniowe w R?,
Minimalne koto opisane na zbiorze punktow.

Lokalizacja punktu w siatce trapezow.



Planowanie ruchu — najkrétsza $ciezka miedzy dwoma punktami.

Problem.

Na ptaszczyznie dany jest obszar D (ograniczony lub nie) z dziurami
(bedacymi zbiorami otwartymi) majacy w sumie n krawedzi oraz dwa
wybrane punkty s i t.

Znajdz najkrotszg sciezke taczacy s 1t (o ile istnigje).

Lemat.

Najkrotsza sciezka tgczgca punkty s 1t jest tamang sktadajacg si¢ z krawedzi
grafu widzialnosci dla zbioru krawedzi obszaru D oraz punktow s 1t (tzn.
najkrotsza sciezka migdzy punktami s 1t moze zmienia¢ kierunek jedynie w
punktach bedacych wierzchotkami obszaru D).



Algorytm.

stworz graf widzialnosct W dla zbioru
krawedzi obszaru D oraz punktow s 1 t;

If punkty s i1t nalezg do tej samej spojne;j
sktadowej grafu W
then zastosuj algorytm Dijkstry w celu
znalezienia najkrotszej sciezki z s do t;
return najkrotsza sciezka;

Twierdzenie.

Algorytm dziata w czasie O(n?).
Dowaod.

Graf W tworzymy w czasie O(n?). Spojne
sktadowe sprawdzamy w tym samym czasie.
Jesli s 1t sg w tej samej sktadowej to
najkrotszg sciezke znajdujemy w czasie
O([Vllog|VI[+|E]).




Twierdzenie (Hershberger, Suri 1997)

Sciezke o minimalnej dtugo$ci miedzy dwoma danymi punktami w
obszarze z dziurami na plaszczyznie, ktérego rozmiar wynosi n, mozna
znalez¢ w czasie O(n log n) wykorzystujgc pami¢¢ rozmiaru O(n log n).



Znajdywanie $ciezki migdzy dwoma punktami.

Problem.

Dany jest obszar z dziurami D na plaszczyznie oraz dwa wyrdznione punkty s 1
t. Znajdz sciezke taczacy s 1t (o ile istnieje).

Zaktadamy, ze dziury sg zbiorami otwartymi.
Obszar D jest reprezentowany w postaci podwojnie tgczonej listy krawedzi K.
Orientacja krawedzi obszaru D okresla jego wnetrze 1 zewnetrze.

Mapa trapezowa.

Wykorzystujgc metode zamiatania dzielimy obszar D na trapezy o podstawach
prostopadtych do kierunku zamiatania. Podziat przechowujemy w strukturze K.

Strukturg zdarzen bedzie lista Q wierzchotkow obszaru D uporzagdkowana
wzgledem kierunku zamiatania (np. 0s1 y-Ow).
Strukturg stanu bedzie zrownowazone drzewo poszukiwan binarnych T za-

wierajgce aktywne krawedzie obszaru D uporzadkowane wzgledem kolejnosci
ich przeci¢¢ z miotlg (wzdluz osi x-0w).



Algorytm.

stworz liste Q;
while Q = & do
q:=POP(Q);
usun z T krawedzie, ktorych koncem
jest q 153 za miotla;
znajdz w T sasiadow q;
for kazdy sgsiad q w T do
If krawedz taczaca q z sgsiadem
nalezy do obszaru
then uaktualnij strukture K;
dodaj do T krawedzie, ktorych kon-
cem jest q 1 sg przed miotlg;
return K;




Lemat.

Mapg trapezowg wielokata z dziurami o rozmiarze n mozna skonstruowac w
czasie O(n log n) 1 pamiegci O(n).
Dowaod.

W danym potozeniu miotlty operacja znalezienia sgsiadow badanego punktu
w T wymaga czasu O(log n). Sprawdzenie nalezenia badanej podstawy
trapezu do wnetrza obszaru D oraz aktualizacja struktury K wymagaja czasu
statego.

Liczba nowych wierzchotkow 1 krawedzi w mapie trapezowej jest proporcjo-
nalna do rozmiaru obszaru D. Rozmiary struktur zdarzen 1 stanu sg lintowe
wzgledem rozmiaru obszaru D.

Mapa drogowa.

Na podstawie mapy trapezowej tworzymy graf, ktory umozliwi nam stwier-
dzenie, czy dane dwa punkty p,, p, mozna polaczy¢ $ciezka.



Algorytm.

stwOrz mape trapezowa;
for kazdy trapez do
wyznacz punkt wewnatrz trapezu 1
potacz srodki krawedzi tworzacych
podstawy trapezu z tym punktem;
fori=1to 2 do
polacz p; z wyznaczonym punktem
wewnatrz trapezu zawierajgcego p; ;

sprawdz, czy w powstatym grafie p, 1 p,
naleza do tej samej spojnej sktadowe;;




Lemat.

Mape¢ drogowg w obszarze z dziurami o rozmiarze n mozemy obliczy¢ w
czasie O(n log n) 1 wymaga ona O(n) pamigci.
Dowaod.

Mapg trapezowa obliczamy w czasie O(n log n). Korzystajac z podwojnie
taczonych list krawedzi tworzymy mape drogowa w czasie proporcjonal-
nym do rozmiaru mapy trapezowej, czyli O(n). Zatem jej rozmiar jest
rowniez O(n).

Twierdzenie.

Sciezke miedzy dwoma danymi punktami w obszarze z dziurami o
rozmiarze n mozemy znalez¢ lub stwierdzi€ jej brak w czasie O(n log n).

Dowad.

W czasie O(n log n) tworzymy mape drogowa. Zbadanie jej spojnych
sktadowych 1 sprawdzenie, czy dane punkty naleza do tej same;
sktadowej, wymaga czasu O(n).



Ruch postgpowy robota wielokatnego na
plaszczyznie.

Problem.

Dany jest robot, ktorego rzut na podtoze jest
wielokatem (zazwyczaj wypuklym). Czy moze
on przemiescic si¢ ruchem postepowym migdzy
dwoma danymi punktami w obszarze z
przeszkodami, tzn. kazdy z punktow robota
porusza si¢ po takim samym torze w tym samym
czasie (robot nie obraca si¢) ?

Definicja.
Zatozmy, ze srodek uktadu wspotrzednych
nalezy do wnetrza robota.

Ruch tego punktu opisuje ruch catego robota.
Nazywamy go punktem odniesienia.

Niech R(0,0) oznacza liste potozen
wierzchotkow robota w chwili startu.

Wtedy R(x,y) := R(0,0) + (X,y)
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Definicja.

Przestrzen, w ktorej porusza si¢ robot
nazywamy przestrzeniq rzeczywistq.
Przestrzen parametrow robota nazywamy
przestrzeniq konfiguracji.\N przestrzeni
tej robot przyymuje postac jednopunktowg
odpowiadajacg jego punktow1 odniesienia.

Jak wygladajg przeszkody (obszary za-
bronione) w przestrzeni konfiguracji ?

Przestrzen rzeczywista

v

.

Przestrzen konfiguracji



Przykiad.

Gdy przesuwany obiekt jest kotem, to
przeszkody nalezy rozszerzy¢ w kazym
kierunku o promien kota.

Gdy srodek kota bedzie leze¢ poza po-
wigkszonymi przeszkodami, to jego
brzeg nie b¢dzie nachodzi¢ na zadng z
rzeczywistych przeszkod.
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Suma Minkowskiego.

Definicja.

Rozpatrzmy wielokaty A 1 B jako zbiory
wektorow o wspotrzednych odpowiada-
jacych wspotrzednym punktow
nalezacych do tych wielokgtow. Sumag
Minkowskiego wielokatow A 1 B jest

A+B={x+y:xe AAy e B}

Fakt.

Suma Minkowskiego dwoch wielokgtow
zalezy od ich potozenia, ale jej ksztatt
nie.

Zalézmy, ze w polozeniu poczatkowym
srodek uktadu wspotrzednych znajduje
si¢ wewnatrz robota.




Fakt.

Zauwazmy, ze jesl obiekt styka si¢ z
brzegiem obszaru lub dziury, to punkt
odniesienia obiektu jest odlegly od
punktu stycznosci o wektor przeciwny
do wektora tgczgcego punkt odniesienia
z punktem stycznosci.

Zatem powiekszone przeszkody okres-
lane sg przez sum¢ Minkowskiego D-R.

Algorytm.

oblicz sum¢ Minkowskiego D-R;
sprawdz, czy istnieje Sciezka miedzy
potozeniem poczatkowym 1 koncowym;

X,Y)

v
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Ztozonos¢ algorytmu zalezy od ksztattu robota 1 przeszkod.

Zalozmy, ze robot R ma stalg liczbe wierzchotkow, a obszar D ma n wierz-
chotkow.

R D Rozmiar sumy | Ztozonos¢ czasowa konstrukcji
wypukly wypukty O(n) O(n)

wypukly niewypukty O(n) O(n log n)
niewypukly |niewypukly O(n?) O(n? log n)
Twierdzenie.

W obszarze D z dziurami o 13cznie n wierzchotkach czas znalezienia $ciezki,
wzdtuz ktorej mozna przesung¢ wypuklego robota R o stalym rozmiarze migdzy
dwoma danymi potozeniami bez kolizji z zadng przeszkoda (lub stwierdzié, ze
jest to niemozliwe), wynosi O(n log n).

Dowaod.

Sume Minkowskiego D-R znajdujemy w czasie O(n log n). Nastepnie znaj-
dujemy Sciezke miedzy danymi punktami (jesli istnieje) w czasie O(n log n).



Twierdzenie.

Niech D 1 R bedg wielokatami o odpowiednio n 1 m wierzchotkach.
Z1ozonos¢ sumy Minkowskiego wielokatow D 1 R ma nastepujace
ograniczenia:

- O(n+m), jesli oba wielokaty sa wypukte,

- O(nm), jeshi jeden z wielokatow jest wypukty, a drugi nie,
- O(n’m?), jesli oba wielokaty nie sg wypukle.
Ograniczenia sg $ciste w pesymistycznym przypadku.



Ruch z mozliwoscig obrotow.

W przypadku poruszania si¢ robota, ktory moze si¢ obraca¢, mamy jeden
stopien swobody wiecej. Dlatego przestrzen konfiguracji jest trojwymiarowa

(trzeci wymiar odpowiada katow1 obrotu).

Sposdb planowania ruchu robota jest podobny jak w poprzednim przypadku,
choc¢ nieco bardziej skomplikowany (sciany w przestrzeni konfiguracji nie sg
ptaskie 1 wygodniej jest je przyblizy¢, poza tym wraz ze wzrostem wymiaru
rosnie tez ztozonos¢ obliczeniowa zadania).

Twierdzenie (Canny, 1987)

Problem planowania ruchu, w ktorym robot ma d stopni swobody mozna
rozwiaza¢ w czasie O(n log n).



Podstawowe metody stosowane w algorytmach randomizowanych.

Metoda Las Vegas.

Metoda ta zawsze daje poprawne rozwigzanie. Natomiast czas trwania algo-
rytmu moze by¢ zmienny w zaleznosci od uktadu danych. Przyktadem takie-
go algorytmu moze by¢ np. Quickhull lub dowolny algorytm przyrostowy z
losowo uporzagdkowanymi danymi.

Metoda Monte Carlo.

Metoda ta zawsze konczy si¢ w ustalonym czasie, ale moze z pewnym praw-
dopodobienstwem zwrocic¢ zty wynik badz zwraca wynik tylko z pewng do-
ktadnoscig. Przykladem takiego algorytmu moze by¢ np. szukanie Sciezki 13-
czace] dwa punkty w labiryncie przy losowym wyborze kierunku poruszania
si¢ lub losowe proby lokalizacji punktu na ptaszczyznie podzielonej na
obszary.

Formalnie efektywnos¢ takiego algorytmu jest zmienng losowg okreslong na
zbiorze mozliwych losowych ciggow danych. Warto$¢ oczekiwana takie;
Zmiennej nazywana jest oczekiwanym czasem dziatania.



Przyktad.

Pole kota o promieniu 1 (warto$¢ ).

4x21/27 = 3,111
4x221/289 = 3,059
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Programowanie liniowe w R,

Problem.

Dana jest liniowa funkcja celu ¢ (postaci
ax+by ) oraz n warunkéw brzegowych
(zbior H nieréwnosci liniowych ax + by
+¢; <0,dlai=1,2, ..., n) opisujacych
obszar dopuszczalny D, w ktorym
poszukujemy punktu maksymalizujgcego
(minimalizujgcego) wartos¢ funkcji c.




Algorytm
If obszar wyznaczany przez potptaszczyzny
z H jest ograniczony w kierunku wzrostu
wartosci funkcji ¢ 1 nie jest pusty
then okresl potptaszczyzny h,, h, ograni-
czajace wzrost wartosci funkcji c,
punkt przeciecia ich brzegow
X:=8(hy)md(h,) 1 D:=h; n h,
else return(,,Brak rozwiazania™);
for h € H-{h;,h,} do
Ifx ¢ hthenD =D nh;
ifD=J
then X := {q: ¢(q) = max ,csm~o C(P)}
else return(,,Brak rozwigzania”);
return(x, c(x));

Funkcja celu:

max 3X+2y

Warunki brzegowe:
y-0,95x-3<0 y-5<0
y+2x-17<0 -y+0,5x-3<0
-y+Xx-7<0 y+x-10<0

: /

/




Twierdzenie

Problem programowania liniowego w R? dla n warunkéw brzegowych mozna
rozwigza¢ w czasie oczekiwanym O(n) z wykorzystaniem O(n) pamigci.

Dowaod.

Niech v, bedzie punktem, w ktorym funkcja ¢ przyjmuje maksimum (minimum)
w obszarze wyznaczanym przez k potplaszczyzn, a h, bedzie k-tg potptaszczyzna.
Zdefiniujmy zmienng losowa X, przyjmujacg wartos¢ 1, gdy v, ; ¢ h, oraz 0 w
przeciwnym przypadku.

Poniewaz znalezienie nowego maksimum (rozwigzanie problemu jednowymiaro-
wego programowania liniowego), wymaga czasu O(n), wiec oczekiwany czas
dzialania algorytmu wynosi E(Z",_; O(k)X,) = ", _3 O(K)E(X,) .

Wartos¢ E(X,) szacujemy stosujgc tzw. analize¢ wsteczng. W tym celu badamy,
jak zmienia si¢ problem, gdy majac k warunkdéw brzegowych, odeymiemy jedng z
potptaszczyzn. Punkt, w ktorym funkcja ¢ ma maksimum (minimum) moze ulec
zmianie, gdy odeymiemy co najwyzej dwie sposrod polptaszczyzn
wyznaczajacych obszar (wyznaczaja one wierzcholek, w ktorym przyjmowane
jest maksimum (minimum) - jesli przez ten punkt przechodzi wiecej prostych
bedacych brzegami danych polptaszczyzn, to moze si¢ zdarzy¢, ze usuniecie
dowolnej poéiptaszczyzny nie wplywa na warto$¢ funkcji celu). Zatem E(X,) <
2/(k-2) . Stad X", _; O(K)E(X,) = ", -3 O(1) = O(n) .



Minimalne koto opisane na zbiorze punktow.

Problem.

Dla danego zbioru punktéw na ptaszczyznie P
znajdz minimalne kolo zawierajgce wszystkie
punkty z P.

Wezmy losowg permutacje punktow z P.

Niech P, := {py, ..., p;} @ D; bedzie minimal-
nym kolem zawierajacym P;.

Lemat .

Dla 2 <i<nmamy:

-jeslip; € Dy 4, to D; = D 4,

- jeslip; ¢ D; 4, to p; lezy na brzegu D;.



Zalozmy, ze znane sg dwa punkty z P
lezace na brzegu minimalnego kota.

MinDisc2P(P, q;, 0,)
D, := najmniejsze koto z q,, g, na brzegu;
for k:==1tondo
if py € D4

then D, := D, 4

else D, :=koto z q4, 0,, p, Na brzegu;
return D,;



Zalozmy teraz, ze znamy jeden punkt z P
lezacy na brzegu minimalnego kota.

MinDiscl1P(P, q)

Oblicz losowg permutacje¢ py, ... , P, Punk-
tow z P;

D, :=najmniejsze koto z p,, q na brzegu;
for j:=2tondo
iIfp; e Dy,

then D; :=D;,

else D; := MinDisc2P({py,---, Pj.1}» P, 9);
return D, ;




Ostatecznie nasz program wyglada naste-
pujaco.

MinDisc(P)

Oblicz losowg permutacje¢ py, ... , P, Punk-
tow z P;

D, := najmniejsze koto zawierajace {p,, pP,};
foriz=3tondo N /
ifp. € D, , \/
then D; := Dy,
else D, := MinDisc1P({py,..., i1} Py);

return D,;



Lemat.

Niech P bedzie zbiorem punktow w R?, a Q, by¢ moze pustym, zbiorem
punktow w R?, dla ktorych P n Q = J oraz p € P. Wtedy zachodza
nastgpujace warunki:

- Jesli istnieje koto, ktore zawiera P 1 wszystkie punkty z Q sa na jego
brzegu, to najmniejsze takie koto jest wyznaczone jednoznacznie (oznaczmy

je przez md(P,Q)).
- Jesli p e md(P-{p},Q), to md(P,Q) = md(P-{p},Q).
- Jesli p ¢ md(P-{p},Q), to md(P,Q) = md(P-{p},QAp}).

Whiosek.
MinDisc poprawnie oblicza minimalne koto zawierajace zbior punktow.

Twierdzenie.

Minimalne koto zawierajace zbidr n punktdw na plaszczyznie mozna
obliczy¢ w oczekiwanym czasie O(n), uzywajac w pesymistycznym
przypadku pamie¢ rozmiaru O(n).



Dowad.

Oszacowanie rozmiaru pamig¢ci wynika z faktu, ze wszystkie trzy algorytmy
MinDisc , MinDisc1P i MinDisc2P potrzebuja O(n) pamigci.

Czas dziatania MinDisc2P wynosi O(n). MinDiscl1P dziata w czasie
liniowym dopoki nie zachodzi koniecznos¢ wywotania MinDisc2P.
Prawdopodobienstwo takiego zdarzenia liczymy wykorzystujac analize
wsteczng. Ustalmy zbior {py,..., Pi}.- Niech D; bedzie minimalnym kotem
zawierajacym {py,..., Pi}, ktore ma q na swoim brzegu. Zatdzmy, ze
usuwamy jeden z punktow z {p,,..., p;}. Koto D; ulega zmianie, gdy
usuwamy jeden z trzech (lub dwoch) punktow na brzegu (gdy punktow jest
wigcej, usuni¢cie niektorych z nich nic nie zmienia). Jednym z tych punktow
jest q, wiec usuniecie co najwyzej dwoch punktdéw powoduje zmniejszenie
kota. Prawdopodobienstwo, ze p; jest jednym z tych punktow wynosi 2/1.
Zatem mozemy oszacowac oczekiwany czas dziatania MinDisc1P przez

O(n) + Z"._,0(i)x2/i = O(n).
Stosujac identyczne rozumowanie dla MinDisc stwierdzamy, ze oczekiwany
czas dziatania tego algorytmu wynosi O(n).



Lokalizacja punktu w siatce trapezow.

Problem

Dany jest prostokatny obszar oraz n zawar-
tych w nim roztacznych odcinkow. Odcinki

sg w potozeniu ogdlnym, tzn. zadne dwa /
konce nie maja tej samej wspotrzednej x-owej >  ~—
ani y-owej (w szczegdlnosci, zaden nie jest * %

pionowy ani poziomy).

Chcemy odpowiadac na pytanie: Miedzy
ktorymi dwoma odcinkami (od gory 1 od
dotu) znajduje si¢ dany punkt ?

Przedstawimy algorytm przyrostowy znaj-
dujacy podziat obszaru na trapezy (mape¢ ~_

trapezowa).

Rownoczesnie skonstruujemy strukture
danych umozliwiajaca odpowiedz na
zapytania o polozenie punktow,
wykorzystujacg podzial obszaru na trapezy .



Struktura jest grafem skierowanym, ktorego
wierzchotki odpowiadajg trapezom podziatu,
koncom odcinkow 1 samym odcinkom.
Wierzcholki odpowiadajace odcinkom mogg
wystepowac wielokrotnie. Wierzchotki od-
powiadajgce trapezom sg lisS¢mi (wierzchot-
kami o zerowym stopniu wyjsciowym).
Niech p; i g; oznaczaja odpowiednio pocza-
tek i koniec i-tego odcinka s;.

Gdy odcinek s; zawiera si¢ w jednym z juz
istniejacych trapezow, to w miejsce odpo-
wiadajgcego mu wierzchotka wstawiamy
wierzchotek p;, ktorego lewym synem jest
wierzchotek odpowiadajgcy trapezowi pow-
stajgcemu po lewej stronie p; a prawym sy-
nem jest g;. Prawym synem ¢ jest wierzcho-
tek odpowiadajacy trapezowi powstajacemu
po prawej stronie g; a lewym synem jest s;.
Lewy i prawy syn s; odpowiadaja odpowied-
nio trapezowi powyzej i ponizej odcinka S;.




Gdy odcinek s; przecina wiele istniejagcych
juz trapezow, to w miejsce wierzchotka
odpowiadajacego skrajnie lewemu trape-
Zowi wstawiamy p;, ktorego lewym synem
jest wierzcholek odpowiadajacy trapezowi
powstajacemu po lewej stronie p; a pra-
wym synem jest s;.

W miejsce wierzchotka odpowiadajacego
skrajnie prawemu trapezowi wstawiamy
q;, ktorego prawym synem jest wierzcho-
tek odpowiadajacy trapezowi powstaja-
cemu po prawej stronie g; a lewym synem
jests;.

Pozostatym trapezom odpowiadajg wierz-
chotki s;. Lewy i prawy syn dowolnego
wierzchotka s; odpowiada odpowiednio
trapezow1 powstatlemu powyzej 1 ponizej
odcinka s; w miejscu poprzedniego
trapezu.




Algorytm
inicjalizuj strukture DS ;
fori:=1tondo

z pomocg struktury DS znajdz trapezy
przecinane przez odcinek s; ;

zastap w strukturze DS wierzchotki
odpowiadajace tym trapezom nowym
uktadem wierzchotkow;




Twierdzenie

Algorytm oblicza mape¢ trapezowa T(S) dla zbioru n odcinkow S 1 tworzy
strukture danych DS(S) dla mapy T(S) w oczekiwanym czasie O(n log n).
Oczekiwany rozmiar struktury wynosi O(n), a lokalizacja punktu wymaga
oczekiwanego czasu O(log n).

Dowaod.

Zmiana wierzchotka odpowiadajacego trapezowi zwigksza dtugosc sciezki
wyszukujgcej punkt o co najwyzej 3 wierzcholki. Jednak szacowanie
dhugosci sciezki wyszukiwan w ten sposob jest zbyt grube.

Rozwazmy $ciezke wyszukiwan punktu q w strukturze danych DS.

Niech X; oznacza dla 1 <i <n liczbg wierzchotkow na §ciezce wyszukiwan
dodanych w i-tej iteracji. Zatem oczekiwana dhugos¢ Sciezki wyszukiwan
wynosi E(X"_, X;) = Z"_, E(X) .

Niech P; oznacza prawdopodobienstwo przejscia w trakcie lokalizacji punktu
q przez wierzchotki stworzone w i-tej iteracji. Mamy E(X) < 3P; oraz

P P[t (S) # t,(Si. 1)] gdzie t,(S;) 0znacza trapez zawierajacy punkt qw
mapie powstalej po i-tej iteracji.



Aby oszacowac prawdopodobienstwo P; zastosujemy analiz¢ wsteczna.
W mapie powstatej po i-tej iteracji, zmiang trapezu zawierajgcego punkt q
spowodowac moze usuni¢cie co najwyzej czterech odcinkow:

- bedagcego gorng krawedzig trapezu,

- bedacego dolng krawedzig trapezu,

- wyznaczajacego poprzez swoj koniec lewg Sciane trapezu,

- wyznaczajgcego poprzez swoj koniec prawg Sciang trapezu.

Jesli koniec odcinka bedacego np. dolng krawedzig trapezu wyznacza

rOwnoczesnie np. lewg sciane trapezu, to liczba odcinkow, ktorych
usunig¢cie moze zmieni€ trapez zawierajacy punkt g, jest mniejsza niz 4.

Zatem P;=P[t,(S;) # t,(S;.)] = P[t,(S) ¢ T(Si.)]l < 4/i.
Stad Z"_ E(X;) < 2M_, 3P, <¥n_,12/i=12 £"._,1/i= 12H_ = O(log n).
czyli oczekiwany czas lokalizacji punktu jest O(log n).

/
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Zbadajmy oczekiwany rozmiar struktury.

Wynosi on: (liczba trapezow) + Z"._, (liczba wezldw stworzonych w i-te]
Iteraciji).

Liczba trapezow szacuje si¢ przez O(n).

Natomiast liczba wierzchotkow dodanych w jedne;j iteracji moze by¢ liniowa
wzgledem liczby zbadanych odcinkow. Prowadzi to do kwadratowego (pesy-
mistycznego) oszacowania rozmiaru omawianej struktury danych .

Niech k; oznacza liczbg trapezow tworzonych w i-tej iteracji.

Zatem liczba nowych wierzchotkéw wewnetrznych wynosi k;-1.

Niech d(t,s) bedzie rowne 1, gdy trapez t € T(S;) nie bedzie naleze¢ do T(S; ;)
po usuni¢ciu odcinka s oraz 0 w przeciwnym przypadku.

Mamy % s X 1si) O(L,S) < 4[T(S)| = O(I) .

Stad E(k;) = 1/1 25 Ty 155 0(L,8) < O(1)/1 = O(1)

czyli oczekiwana liczba nowych wierzchotkow wewnetrznych powstatych w
I-tej iteracji jest stala.

Zatem oczekiwany rozmiar struktury danych wynosi

O(n) + % E(ki-1) = O(n) + X", E(ky) = O(n) + ", O(1) = O(n)

czyli jest liniowy wzgledem liczby odcinkow.



Teraz mozemy obliczy¢ oczekiwany czas pracy algorytmu, ktéry wynosi:
(Koszt inicjalizacji) + X",_, ($redni czas wyszukiwania potozenia koncoéw
odcinka dodawanego w i-tej iteracji + liczba nowych wierzchotkoéw
dodawanych w i-tej iteracji) =

O(1) + Z"._; (O(log 1) + O(E(k;))) = O(1) + O(n log n) + O(n) = O(n log n),
co konczy dowod.



Dzigkuje za uwage.



Cwiczenia.

1.

Udowodnij, ze Sciezka o minimalnej dtugosci taczaca dane punkty s 1t
wewnatrz danego wielokata prostego jest tamang sktadajacg si¢ z krawedzi
grafu widzialnosci dla zbioru krawedzi danego obszaru A oraz punktow s 1t
(tzn. najkrotsza sciezka miedzy punktami s 1 t moze zmienia¢ kierunek
jedynie w punktach bedacych wierzchotkami obszaru A).

Dlaczego wybieramy punkty wewnatrz trapezéw w mapie drogowej ?

Udowodnij, ze ksztalt sumy Minkowskiego robota 1 przeszkody nie zalezy
od wyboru punktu odniesienia.

Pokaz, ze suma Minkowskiego dwoch wielokatow niewypuktych, z ktorych
jeden ma skonczong liczbe wierzchotkdéw a drugi ma n wierzchotkdéw, moze
mie¢ rozmiar O(n?).



5. Ktory z ponizszych algorytmow generuje losowe permutacje dla danej tablicy
A dhugosci n (tzn. kazda mozliwa permutacja A jest rownie prawdopodobna
jako wynik):

a) (bez 1identycznosci) for 1:=1 to n do zamien(A[1],A[RANDOM(i+1,n)]);

b) for 1:=1 to n do zamien(A[1],A[RANDOM(1,n)]);

c) for i:=n downto 2 do zamien(A[i],A[RANDOM(1,1)]);

6. Udowodnij, ze liczba wewngetrznych weztow w strukturze przeszukiwan DS
algorytmu tworzenia mapy trapezowej wzrasta o k-1 w iteracji i, gdzie k; jest
liczbg nowych trapezow w T(S;) (tzn. nowych lisci w DS).

/. Podaj przyktad uktadu odcinkdéw generujgcego w pesymistycznym przypadku
strukture podziatu na trapezy rozmiaru O(n?).

8. Udowodnij, ze mapa trapezowa n odcinkow w potozeniu ogdlnym ma co
najwyzej 3n+1 trapezow.



Prosty wielokat nazywamy gwiazdzistym, gdy zawiera punkt q widoczny
z kazdego punktu wielokata. Podaj algorytm, ktorego oczekiwany czas
dziatania jest liniowy 1 sprawdza, czy dany prosty wielokat jest
gwiazdzisty.



