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Problem galerii. 

 

Dany jest wielokąt prosty wyobrażający galerię sztuki. 

Znajdź minimalną liczbę strażników (tzn. punktów należących do wielo-

kąta) takich, że każdy punkt wielokąta będzie widzialny dla co najmniej 

jednego strażnika. 

 

Definicja. 

Punkt x należący do wielokąta F jest widzialny z punktu vF, gdy odcinek        

jest zawarty w F. 

 

Czasem interesuje nas tylko przypadek, gdy strzeżone są jedynie krawędzie 

wielokąta. Czy istnieje wielokąt i takie ustawienie strażników, w którym 

cały jego brzeg jest strzeżony a wnętrze nie ?  
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Twierdzenie. 

Decyzyjny problem galerii w R2 jest NP-zupełny. 

Dowód. 

Chcemy znaleźć odpowiedź na pytanie, czy q strażników wystarcza do 

ochrony galerii. 

Aby udowodnić, że problem galerii należy do klasy NP wystarczy 

zgadnąć pozycje strażników, a następnie w czasie wielomianowym 

sprawdzić, czy cały wielokąt jest przez nich strzeżony. 

W celu pokazania NP-trudności tego problemu, przeprowadzimy redukcję 

z problemu 3-CNF-SAT. 

3-CNF-SAT P GALERIA 

W tym celu, dla danej 3-CNF-formuły logicznej skonstruujemy galerię, 

która może być strzeżona przez q strażników wtedy i tylko wtedy, gdy 

formuła jest spełniona. 

Literałom, klauzulom i zmiennym występującym w formule przypisujemy 

następujące fragmenty brzegu galerii. 



Fragment brzegu galerii odpowiada-

jący pojedynczemu literałowi. 

 

Fragment brzegu galerii odpowiada-

jący pojedynczej klauzuli. 

Pozycja n odpowiada  wartości lite-

rału false, a pozycja t wartości true. 

Aby punkt z był strzeżony, co najmniej 

jeden literał w klauzuli musi mieć 

wartość true. 

 

Fragment brzegu galerii odpowiada-

jący zmiennej. 

Aby punkt u był strzeżony, strażnik 

musi znajdować się w punkcie F lub T 

(wartościowanie zmiennej). 
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Dodatkowe występy na brzegu we 

fragmentach brzegu galerii odpowiada-

jących zmiennym są tak umieszczone, 

aby były strzeżone przez strażnika 

odpowiadającego zmiennej lub straż-

nika odpowiadającego wartości literału 

zawierającego tą zmienną lub jej ne-

gację. 

 

Każdemu literałowi odpowiadają dwa 

występy, po jednym w każdej odnodze 

brzegu galerii odpowiadającej warto-

ściowaniu zmiennej. Wszystkie wy-

stępy w odnodze mogą być strzeżone 

przez strażnika umieszczonego w 

punkcie odpowiadającym wartościo-

waniu zmiennej. 
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Układ strażników dla formuły (x1x2 x3)(x1x2x3)(x1x2x3). 

x1 x2 x3 

k1 k2 k3 

x 



Wklejając odpowiedniki klauzul i zmiennych w brzeg prostokąta dostajemy 

dla formuły o k klauzulach i m zmiennych wielokąt o 28k+10m+4 

wierzchołkach.  

Strażnik w punkcie x obserwuje prostokąt i widzi wnętrza występów  

odpowiadających zmiennym. Ponieważ każda klauzula musi być spełniona, 

więc istnieje przynajmniej jeden strażnik w punkcie zaznaczonym jako t. 

Występy odpowiadające literałom są strzeżone, bo przy każdym z nich w 

jednym z wierzchołków n lub t  stoi strażnik. Wierzchołki u są strzeżone 

przez strażników stojących w odpowiednich wierzchołkach F lub T (w 

jednym z nich zawsze stoi strażnik, w zależności od wartości zmiennej). 

Pozostałe występy w elementach odpowiadających zmiennym, są chronione 

przez strażników w punkcie odpowiadającym wartości zmiennej lub w 

punktach określających wartości literałów zawierających tą zmienną. 

 

Zatem wielokąt można ochronić z pomocą  3k+m+1 strażników wtedy i 

tylko wtedy, gdy dana formuła o k klauzulach i m zmiennych jest spełniona. 



Lemat. 

Liczba strażników w galerii o n wierzchołkach jest nie mniejsza od 1 i nie 

większa niż n. 

Dowód. 

Jest oczywiste, że musi być co najmniej jeden strażnik. 

Gdy umieścimy strażników w wierzchołkach wielokąta to będą widzieć  

całą galerię.  

 

Czy strażnicy umieszczeni w wierzchołkach bryły trójwymiarowej zawsze 

chronią całe wnętrze bryły ?  



Twierdzenie. 

Do pilnowania galerii potrzeba i wy-
starcza n/3 strażników. 

Dowód. 

Przykład „grzebienia” (z wąskimi 
połączeniami między zębami) pokazuje, 
że taka liczba strażników jest 
konieczna. 

 

Z triangulacji wielokąta wynika, że mo-
żemy pokolorować jego wierzchołki 
trzema kolorami tak, aby żadne dwa 
wierzchołki o tym samym kolorze nie 
sąsiadowały ze sobą. 

Na mocy zasady Dirichleta minimalny 
zbiór wierzchołków o tym samym 
kolorze ma moc nie większą niż n/3. 

Stawiając strażnika w każdym z tych 
punktów wykazujemy, że liczba ta jest 
również liczbą wystarczającą. 
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Ochrona wypukłych podzbiorów zbiorów 

punktów. 

 

Definicja. 

Niech P będzie zbiorem punktów na pła-

szczyźnie. Zbiór S nazywamy zbiorem k-

wypukłych strażników, gdy każdy wy-

pukły k-kąt o wierzchołkach z P zawiera 

w swoim wnętrzu strażnika z S.  

 

Problem. 

Niech k  3 będzie liczbą całkowitą. Dany 

jest zbiór P n punktów na płaszczyźnie w 

położeniu ogólnym. Jaki jest minimalny 

rozmiar zbioru k-wypukłych strażników 

dla zbioru P ?  



Definicja. 

Niech k  3 będzie liczbą całkowitą. Przez Gk(n) 
oznaczmy najmniejszą liczbę s taką, że każdy zbiór 
n punktów na płaszczyźnie P ma zbiór k-wypukłych 
strażników rozmiaru s. 

 

Lemat. 

Gn(n)  Gn-1(n)  ....  G3(n). 

 

Twierdzenie. 

Jeśli punkty ze zbioru P tworzą wielokąt wypukły, 
to G3(n) = n-2. 

Dowód. 

Zauważmy, że dla dowolnego k  3 nie może być 
mniej strażników niż (n-2)/(k-2) (bo możemy po-
dzielić wielokąt na rozłączne podwielokąty). Z dru-
giej strony, niech i-ty strażnik si (1 < i < n) należy do 
przecięcia p1pipnpi-1pipi+1. Wtedy dowolny 
trójkąt pjpipk (j <  i < k) zawiera strażnika si. 
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Iluminacje. 

 

Problem. 

Dany jest wielokąt o n wierzchołkach i m źródeł światła o określonych 

parametrach (np. kącie oświetlenia). Czy można tak rozmieścić źródła 

światła, aby cały wielokąt był oświetlony ? 

 

Twierdzenie. 

Każdy trójkąt można oświetlić trzema lampami o kącie oświetlenia /6, 

umieszczonymi w jego wierzchołkach.  

Dowód. 

Niech  ABC  będzie danym trójkątem. Prowadzimy okręgi przechodzące 

przez punkt A (odpowiednio B, C) i styczne w B (odpowiednio w C, A) do 

prostej zawierającej BC (odpowiednio CA, AB). 



Niech ACB ma rozwartość  ≤ /2 ( > 
/2). Wtedy BCS ma rozwartość /2- 
(-/2). Zatem kąt środkowy BSC ma 
rozwartość 2 (2-2), a kąt wpisany 
BXC oparty na łuku nieprzecinającym 
(przecinającym) trójkąt ma rozwartość -
 =  - ACB.  

Podobnie można pokazać, że AXC ma 
rozwartość  - BAC, a kąt BXA ma 
rozwartość  - ABC. 

Ponieważ suma tych kątów wynosi 2, 
więc wszystkie trzy okręgi przecinają się 
w jednym punkcie. 

Ponadto niech XBC ma rozwartość . 

Wtedy kąt XCB ma rozwartość  -  -( 
- ACB)  = ACB -  =  - , czyli kąt 
XCA ma rozwartość . Podobnie można 
pokazać, że kąt XAB ma rozwartość . 
Zatem trójkąt ABC można oświetlić 
trzema lampami o kącie oświetlenia . 
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Dla trójkąta równobocznego 

odpowiednie kąty   wynoszą /6. 

Mamy dwa przypadki zależne od 

liczby kątów o rozwartościach 

większych od /3.  

„Rozciągamy” trójkąty po jednym 

wierzchołku, aż otrzymamy 

interesującą nas postać. 

Gdy zaczynamy „rozciągać” 

trójkąt, kąty maleją (punkt 

przecięcia okręgów przesuwa się w 

jednym kierunku na okręgu, który 

się nie zmienia). 

Zatem rozwartość kąta oświetlenia 

 nie przekracza /6. 

Pierwszy przypadek (jeden kąt 

większy od /3). 



Drugi przypadek (dwa kąty 

większe od /3). 



Grafy łukowe. 

 

Definicja. 

Dla danego zbioru łuków na okręgu de-

finiujemy graf łukowy, którego wierz-

chołki etykietowane są etykietami łuków, 

a krawędź między dwoma wierzchołkami 

istnieje wtedy i tylko wtedy, gdy prze-

cięcie łuków jest niepuste. 

 

Definicja. 

Minimalnym pokryciem klikami 

nazywamy pokrycie wszystkich 

wierzchołków grafu minimalną liczbą 

jego podgrafów, z których każdy jest 

kliką. 

Rozwiązanie nie musi być jednoznaczne. 
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Znajdywanie minimalnego pokrycia 

klikami. 

 

Definicja. 

Dla uporządkowanego zgodnie z ruchem 

wskazówek zegara ciągu łuków na okręgu 

definiujemy funkcję NEXT. Wartością 

funkcji NEXT dla łuku i jest łuk j taki, że  

- początek j leży po końcu i, 

- odległość kątowa końców i oraz j jest 

najmniejsza spośród wszystkich łuków 

mających początek po końcu i.  

Funkcja NEXT odpowiada grafowi skiero-

wanemu, w którym każda spójna składowa 

ma dokładnie jeden cykl (być może 

wielokrotnie „nawinięty” na okrąg). 
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Niech F będzie spójną składową grafu 
funkcji NEXT. 

 

Fakt. 

Jeśli  cały F nie jest kliką, to ciąg kolejnych 
końców łuków odpowiadających wierz-
chołkom grafu funkcji NEXT leżącym na 
cyklu, liczony aż do pierwszego zapętlenia 
(na okręgu), określa punkty wyznaczające 
minimalne pokrycie klikami. Kliki tworzą 
łuki zawierające wyznaczone końce.  

 

Twierdzenie. 

Znalezienie minimalnego pokrycia klikami 
dla n uporządkowanych łuków na okręgu 
wymaga czasu O(n).  

Dowód. 

Wyznaczenie funkcji NEXT oraz znale-
zienie cyklu w grafie funkcji NEXT 
wymaga czasu O(n). 
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Grafy łukowe można wykorzystać w 
uproszczonym problemie rozgłaszania: dany 
jest nadajnik oraz odbiorcy poza obszarem 
nadawania (koła). Należy znaleźć 
minimalną liczbę przekaźników o danej 
mocy umożliwiającą odbiór wszystkim 
odbiorcom (o ile to możliwe). W tym 
przypadku każdemu odbiorcy 
przyporządkowujemy łuk odpowiadający 
położeniu przekaźników na brzegu obszaru 
nadawania pokrywających swoim zasięgiem 
danego odbiorcę. Aby rozwiązać problem 
wystarczy znaleźć minimalne pokrycie 
klikami dla tak określonego zbioru łuków. 



Andrzej Schinzel 

Polski matematyk, członek rzeczywisty 

Polskiej Akademii Nauk, urodzony w 

1937 roku w Sandomierzu. Zmarł w 2021. 

Ukończył studia na Uniwersytecie 

Warszawskim. 

Profesor zwyczajny od 1974 r. 

Uzyskał doktorat pod kierownictwem 

prof. Wacława Sierpińskiego. 

Zajmował się zagadnieniami związanymi 

z teorią liczb.  



Ciągi Davenporta-Schinzela. 

 

Definicja. 

Rozpatrzmy rodzinę I = {fn} funkcji kawałkami ciągłych określonych na R. 

Krzywą ue(x) = max{fn(x)} nazywamy obwiednią górną, a krzywą le(x) = 

min{fn(x)} nazywamy obwiednią dolną dla danej rodziny funkcji.  

 

Obwiednie możemy znaleźć np. łącząc metodę „dziel i rządź” oraz zamia-

tanie. W ten sposób najpierw znajdujemy obwiednie dla małych podzbiorów 

rodziny funkcji I. Obwiednie te są funkcjami kawałami ciągłymi, których 

kolejne części tworzą fragmenty funkcji z I. Suma przedziałów 

występowania poszczególnych funkcji wyznacza podział dziedziny 

określoności obwiedni. Następnie stosując zamiatanie z kolejnych par 

obwiedni tworzymy z nich jedną. 



Definicja. 

Niech U=(u1, u2, ... , um) będzie ciągiem o 
następujących własnościach:  

ui  {1, 2, ... , n} dla każdego i, 

ui  ui+1 dla każdego i < m, 

Nie istnieje podciąg indeksów (ij) długości 
s+2 taki, że 

1  i1 < i2 < ... < is+2  m, 

a = ux , gdzie x  {i1, i3, i5, ....},  

b = uy , gdzie y  {i2, i4, i6, ....},  

1  a  b  n. 

(tzn. w ciągu U nie ma podciągu o długości 
s+2 składającego się z przemiennie wystę-
pujących dwóch wartości).  

Ciąg U posiadający powyższe własności na-
zywamy (n,s) ciągiem Davenporta-Schinzela 
i oznaczamy przez DS(n,s). Maksymalną dłu-
gość ciągu DS(n,s) oznaczamy przez s(n) .  

1 

2 

3 

4 

5 

1 1 1 2 2 3 4 4 4 5 5 1 1 4 4 5 5 4 4 

s = 3 

a b a b 



W powyższej definicji elementy ciągu U możemy interpretować jako kolejne 

fragmenty obwiedni tworzonej przez zbiór n funkcji. Jeśli dowolne dwie 

funkcje przecinają się ze sobą (z punktu widzenia zewnętrznego obserwatora) 

nie więcej niż s razy, to rozmiar takiej obwiedni jest ograniczony przez s(n).  

 

Fakt. 

Zachodzą następujące równości:  

1(n) = n ,  2(n) = O(n) ,  3(n) = O(n(n)) ,  4(n) = O(n2(n)).  

Ogólnie: 

s(n) = O(n (n)x), gdzie x =  O( (n)s-3) i s > 3, 

2s+1(n) = (n (n)),  

gdzie (n) jest odwrotnością funkcji Ackermanna. 

 

Lemat. 

Stosując metodę „dziel i rządź” możemy obliczyć DS(n,s) dla danego zbioru 

funkcji kawałkami ciągłych w czasie O(s(n) log n). Ponadto dla s=3 możemy 

to zrobić w czasie O(n log n). 



Graf widzialności. 

 

Dany jest zbiór S zawierający n nieprze-
cinających się odcinków na płaszczyźnie. 

Załóżmy, że żadne trzy końce odcinków nie 
są współliniowe.  

 

Definicja.   

Graf widzialności W = (V, E) dla zbioru S 
definiujemy następująco: 

V jest zbiorem końców odcinków z S, 
natomiast do E należą odcinki z S i 
wszystkie krawędzie o końcach z V, których 
wnętrza nie przecinają odcinków z S.  

 

W szczególności możemy rozpatrywać graf 
widzialności dla zbioru odcinków będących 
krawędziami wielokąta. 



Lemat. 

Graf widzialności może mieć rozmiar kwadratowy, więc algorytm znajdujący ten 

graf wymaga w pesymistycznym przypadku czasu (n2), gdzie n jest liczbą 

odcinków w zbiorze S. 

 

Skonstruujemy algorytm działający w czasie O(n2).  

 

Definicja. 

Niech r(p,) oznacza półprostą zaczepioną w p i tworzącą kąt  z osią x-ów (lub 

y-ów), seg(p) oznacza odcinek o końcu w p, a P zbiór końców odcinków z S. 

Dla każdego punktu p  P definiujemy funkcję widzialności:  

vis(p,*): [0,)  S   w następujący sposób: 

- vis(p,) = , gdy r(p,) zawiera seg(p) lub nie przecina żadnego odcinka z S, 

- vis(p,) = s, gdy s jest odcinkiem z S-{seg(p)}, którego punkt przecięcia z 

r(p,) leży najbliżej p. 

 

Z pomocą funkcji vis( ) łatwo możemy stworzyć graf widzialności.   



Niech 0 < 1 < 2 < 3 < . 

 r(p,2) przechodzi przez q oraz w kącie 

 między r(p,1) i r(p,3) nie ma innych 

 końców odcinków z S niż q.  

Mamy 4 przypadki: 

1. vis(p,1)  seg(q), p jest bliżej q 

niż przecięcie r(p,2) i vis(p,1). 

Wtedy vis(p,2) := seg(q) i kra-

wędź (p,q) należy do W. 

2. vis(p,1) = seg(q). Wtedy vis(p,3) 

:= vis(q,2) i krawędź (p,q) należy 

do W. 

3. seg(p) = seg(q) nie powoduje 

żadnych zmian grafu W. 

4. vis(p,1)  seg(q) i p jest bliżej 

przecięcia r(p,2) i vis(p,1) niż q. 

Nie wpływa to na postać grafu W. 
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Algorytm znajdywania grafu widzialności. 

 

Załóżmy, że w P nie ma trzech punktów 
współliniowych. 

 

for każdy p  P do oblicz vis(p,0) (po y); 

analizuj wierzchołki układu prostych 
dualnych do P stosując algorytm 
przyrostowy względem malejących 
współczynników kierunkowych prostych; 

wykorzystując poznane własności funkcji 
vis( ) stwórz graf W dodając lub nie 
krawędź (p,q) dla vi = D(p)  D(q);  

E := E  S;  

return (P,E);   
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Twierdzenie. 

Algorytm znajduje graf widzialności w czasie O(n2). 

Dowód. 

Analizowane są wszystkie pary wierzchołków z P. 

Na mocy wcześniejszych rozważań dotyczących funkcji vis( ) każda krawędź 

z E-S jest znajdywana. 

Początkowe wartości funkcji vis( ) można obliczyć w czasie O(n2). 

Tworzenie układu prostych, sortowanie punktów przecięć w układzie oraz 

analiza kolejnych wierzchołków wymagają czasu O(n2), proporcjonalnego do 

rozmiaru danych. 

 

W przypadku wystąpienia w P co najmniej trzech punktów współliniowych, 

analizujemy punkty także w porządku topologicznym (krawędzie w układzie 

prostych są zorientowane w lewo – wszystkie punkty przecięć poprzedzające 

punkt przecięcia wielu prostych są analizowane wcześniej, a stosując 

podwójnie łączoną listę krawędzi analizujemy kolejne pary wierzchołków we 

właściwej kolejności ).   

  



 

 

 

 

Dziękuję za uwagę. 



Ćwiczenia. 

 

1. Znajdź wielokąt i takie ustawienie strażników, że widzą oni każdy punkt 

brzegu, ale nie każdy punkt wnętrza wielokąta. 

 

2. Znajdź wielościan, w którym ustawienie strażników we wszystkich 

wierzchołkach nie zapewnia kontroli nad każdym punktem wielościanu. 

 

3. Wielokątem prostokątnym nazywamy wielokąt, którego krawędzie są 

poziome i pionowe. Podaj przykład pokazujący, że do ochrony wielokąta o n 

wierzchołkach czasem potrzebne są  n/4 kamery.  

 

4. Przypuśćmy, że dany jest wielokąt prosty P o n wierzchołkach wraz ze zbio-

rem przekątnych, które dzielą P na wypukłe czworokąty. Jak wiele kamer wy-

starcza do ochrony P ? Dlaczego nie przeczy to twierdzeniu o galerii sztuki ?  

 

5. Jak wyznaczyć funkcję NEXT w czasie O(n), gdy dany jest porządek 

końców łuków ? 



6. Wykaż, że graf funkcji NEXT wskazuje minimalne pokrycie klikami. 

 

7. Dane są 3 (odpowiednio 4) reflektory rzucające snop światła o rozwartości 

120  (odp. 90) każdy. Udowodnij, że reflektory te można ustawić w dowolnych 

3 (odp. 4) danych punktach płaszczyzny tak, aby cała płaszczyzna była 

oświetlona. 

Własność ta zachodzi dla dowolnego naturalnego n. 

 

8. Oszacuj 2(n). 

 

9. Jak udowodnić twierdzenie o strefie z pomocą ciągów Davenporta-Schinzela ?  

 

10. Jakie są oszacowania na rozmiar obwiedni zbioru: 

- parabol o pionowej osi, 

- kół o jednakowym promieniu, 

- kół o różnym promieniu, 

- odcinków.  

 

  



11. Stwórz graf widzialności dla zbioru nieprzecinających się odcinków S 

analizując wierzchołki odcinków podobnie jak w DFS-ie i 

wykorzystując funkcję widzialności vis( ). 


