
Geometria obliczeniowa 
Wykład 10 

Przecięcie półpłaszczyzn i wielokątów wypukłych 

Problemy optymalizacyjne 

1. Problem wyważania 

2. Problem mediany 

3. One-line problem 

4. Programowanie liniowe w R2 

5. Znajdywanie minimalnego okręgu opisanego 

6. Problem kanapki z szynką 



Przecięcie półpłaszczyzn.  

 

Problem. 

Danych jest n półpłaszczyzn. Znajdź ich część wspólną. 

 

Częścią wspólną półpłaszczyzn jest obszar wypukły (ograniczony lub nie).  

 

Twierdzenie. 

Rozwiązanie tego problemu można znaleźć w czasie O(n log n) i jest to czas 
optymalny. 

Dowód. 

Przecięcie półpłaszczyzn możemy znaleźć stosując np. algorytm przyrostowy 

(dolny i górny łańcuch przecięcia zapisujemy w zbalansowanym drzewie BST). 
Dodajemy kolejne półpłaszczyzny, badając czy i w jakich punktach ich brzeg 
przecina wygenerowaną wcześniej część wspólną. 

Optymalność pokazujemy poprzez redukcję problemu sortowania. Dany ciąg 
liczb {x1, x2, ..., xn} zastępujemy półpłaszczyznami o równaniach y  2xix-xi

2, 
których brzegi są styczne do paraboli y = x2. Ciąg krawędzi części wspólnej tych 
półpłaszczyzn jednoznacznie określa porządek w ciągu (xi). 



Przecięcie wielokątów wypukłych. 

 

Problem. 

Dane są dwa wielokąty wypukłe A i B w 
postaci ciągu kolejnych wierzchołków. 

Znajdź A  B.  

 

Algorytm (zamiatanie). 

 

scal górne i dolne łańcuchy obu wielokątów 
w jedną listę, otrzymując posortowany ciąg 
wszystkich wierzchołków ; 

zastosuj algorytm znajdywania przecięć 
odcinków, zapamiętując punkty przecięć 
aktywnych krawędzi w dodatkowej pamięci 

(zamiast kopca); 

podczas zamiatania w każdym punkcie 
zdarzeń sprawdź, czy należy on do części 
wspólnej i stwórz górny i dolny łańcuch 
przecięcia ;  



Lemat. 

Przecięcie dwóch wielokątów wypukłych możemy znaleźć w czasie O(n), 

gdzie n jest sumą liczby wierzchołków badanych wielokątów. 

Dowód. 

Wierzchołkami części wspólnej mogą być wierzchołki wielokątów lub 

punkty przecięcia ich krawędzi. 

Brzegi wielokątów mogą przecinać się w co najwyżej n punktach (każde 

przecięcie odpowiada zmianie kolejności krawędzi – można je 

przyporządkować wierzchołkowi „na zewnątrz”). Krawędź jednego 

wielokąta może przecinać brzeg drugiego w co najwyżej dwóch punktach. 

Liczba pamiętanych osobno (w odrębnej stałej pamięci) punktów przecięć 

aktywnych krawędzi nie przekracza dwóch. 

Czas określenia następnego zdarzenia jest stały.  

Struktura stanu ma stały rozmiar w każdym położeniu miotły. 

Czas sprawdzenia, czy punkt zdarzenia należy do przecięcia oraz aktualizacji 

struktury stanu jest stały. 

Zatem łączny czas zamiatania wynosi O(n).    

 



Problem wyważania. 

 

Dla danej (zorientowanej) prostej k i zbioru 

punktów S, zbiór punktów leżących po 

lewej (po prawej) stronie prostej k oznacza-

my jako SL(k) (odpowiednio SP(k)). Punkty 

leżące na prostej możemy rozdzielać dowol-

nie.  

  

Problem. 

Pragniemy znaleźć prostą k taką, że sumy 

odległości od k punktów z S  leżących po 

każdej ze stron tej prostej są równe, tzn. 

pSL(k) d(p,k) = pSP(k) d(p,k), gdzie d(p,k) 

oznacza odległość punktu p od prostej k. 

 



Ustalmy kierunek prostej k. Zauważmy, że 

wyraz wolny w równaniu prostej k jest 

średnią wyrazów wolnych prostych 

równoległych do k i przechodzących przez 

punkty ze zbioru S.  

 

W przestrzeni dualnej proste równoległe 

odpowiadają punktom o tej samej współ-

rzędnej x-owej. Zatem dla każdej wartości 

x współrzędna y-owa punktu D(k) jest 

średnią współrzędnych y-owych punktów 

należących do prostych odpowiadających 

punktom z S.  

 

Średnia z funkcji liniowych jest funkcją 

liniową, więc zbiór rozwiązań problemu 

wyważania tworzy w przestrzeni dualnej 

prostą.  



Wniosek  

Wszystkie proste będące rozwiązaniami problemu wyważania w przestrzeni 

pierwotnej przechodzą przez ten sam punkt.  

 

W ten sposób pokazaliśmy, że rozwiązaniem problemu wyważania jest 

prosta zawierająca środek masy zbioru S. 

 

Lemat. 

Rozwiązanie problemu wyważania dla zbioru n punktów na płaszczyźnie 

można znaleźć w czasie O(n). 

 

 

 



Problem mediany. 

 

Pragniemy znaleźć takie proste, które dzielą 
dany zbiór n punktów na płaszczyźnie S na 
połowy, tzn. oddzielają (n+1)/2 punktów z 
S od reszty. Punkty leżące na prostej dzielącej 
rozdzielamy dowolnie.  

 

Możemy ten problem sformułować także w 
następujący sposób: 

dla danego kierunku znajdź prostą, dla której 
osiągane jest :  minl-prosta pS d(p,l) .  

 

Fakt. 

Dla danego kierunku prostej istnieje dokład-
nie jedno rozwiązanie, gdy liczba punktów w 
S jest nieparzysta. Dla parzystej liczby punk-
tów rozwiązanie nie musi być jednoznaczne.  



W przestrzeni dualnej obrazem rozwią-

zania są zbiory punktów, które wzdłuż 

osi y-ów mają powyżej i poniżej tyle sa-

mo prostych odpowiadających punktom 

ze zbioru S, tzn. punkty z ((n+1)/2-1)-

szego poziomu lub znajdujące się między 

((n+1)/2-1)-szym a (n+1)/2-tym 

poziomem. 

 

Lemat. 

Zbiór wszystkich median jesteśmy w 

stanie wyznaczyć w czasie O(n2).  

 



One-line problem. 

 

Znajdywanie najwęższego pasa, w którym 

zawiera się dany n-elementowy zbiór S.  

Problem ten jest znany jako one-line pro-

blem - szukanie prostej minimalizującej od-

ległość od niej najdalszego punktu S, tzn. 

szukamy prostych, dla których osiągane 

jest: minl-prosta maxp  S d(p,l) . 

 

Brzegi pasa muszą być styczne do otoczki 

wypukłej zbioru S (w przeciwnym razie 

moglibyśmy zmniejszyć szerokość pasa). 

 

Definicja. 

Pary przeciwległych wierzchołków otoczki 

wypukłej (tzn. punkty styczności pasa) na-

zywamy punktami antypodycznymi. 



Lemat 

Otoczka wypukła o n wierzchołkach ma co najwyżej n par punktów 

antypodycznych. 

Dowód. 

Obrót pasa o  oznacza, że jego brzegi były styczne do otoczki we wszy-

stkich jej punktach. Zmiana punktów styczności oznacza zmianę pary punk-

tów antypodycznych. 

 

Szerokość pasa jest określona przez iloczyn długości odcinka łączącego 

punkty antypodyczne i sinus kąta między tym odcinkiem a brzegiem pasa. 

 

Wniosek. 

Pas ma minimalną szerokość, gdy kąt między odcinkiem łączącym punkty 

antypodyczne a brzegiem pasa jest najmniejszy, tzn. gdy proste wyzna-

czające brzegi pasa są w położeniach skrajnych. Zatem jedna z prostych musi 

zawierać bok otoczki wypukłej. 

 



Algorytm 

 

znajdź otoczkę wypukłą ; 

znajdź punkty antypodyczne ; 

oblicz minimalne szerokości pasów dla 
każdej pary punktów antypodycznych ; 

znajdź minimalną szerokość i położenie 
pasów będących rozwiązaniem problemu; 

 

Lemat. 

One-line problem można rozwiązać w 
czasie O(n log n) lub w czasie O(n), gdy 
dana jest otoczka wypukła zbioru S .  

 

Wniosek. 

Jeśli otoczka wypukła zbioru S ma n 
wierzchołków, to istnieje co najwyżej n 
różnych rozwiązań problemu. 



Na podstawie wcześniejszych rozważań  

możemy również stworzyć algorytm roz-

wiązujący one-line problem metodą duali-

zacji. 

 

znajdź układ prostych w przestrzeni dulanej 

odpowiadający zbiorowi S ; 

oblicz dolną i górną obwiednię ; 

znajdź odległości wierzchołków obwiedni 

od przeciwległych krawędzi ;  

oblicz szerokości pasów odpowiadające 

wyznaczonym odległościom ; 

znajdź minimalną szerokość pasa ; 

 

Lemat. 

Stosując dualizację możemy rozwiązać 

one-line problem w czasie O(n log n). 



Minimalizowana funkcja:  -x-y . 

Warunki brzegowe: 

         y-6  0,          x-8  0, 

       -x+2  0,     -x+y-2  0, 

     -2x+y  0,  -3x+y+1  0, 

 2x+y-18  0,   3x+y-26  0, 

 3x+y-28  0,           y-8  0, 

    -x-y+2  0.  

Dwuwymiarowe programowanie liniowe.  

 

Problem. 

zminimalizuj wartość funkcji ax + by        
w punktach należących do obszaru wyzna-
czonego przez nierówności:  

aix + biy + ci  0, dla i = 1,2, ... , n.  

 

Obszar, w którym badamy funkcję ax+by 
jest przecięciem półpłaszczyzn. Jest 
wypukły i nazywamy go obszarem 
dopuszczalnym. 

Funkcja ax + by przyjmuje stałą wartość na 
prostej ax + by + c = 0, gdzie c jest stałą. 

Zatem naszym zadaniem jest znalezienie 
prostej ax + by + c = 0 stycznej do danego 
obszaru dopuszczalnego, dla której wartość 
wyrazu wolnego c będzie największa (tzn. 
wartość  funkcji ax + by będzie 
najmniejsza), jeśli takie c istnieje. 



Minimalizowana funkcja:  Y . 

Warunki brzegowe: 

  -X-Y-6  0,          X-8  0, 

     -X+2  0,   -2X-Y-2  0, 

   -3X-Y  0,  -4X-Y+1  0, 

 X-Y-18  0,   2X-Y-26  0, 

2X-Y-28  0,      -X-Y-8  0, 

       Y+2  0. 

Przekształcamy płaszczyznę tak, aby proste 

odpowiadające wartościom badanej funkcji 

były równoległe do osi x-ów : Y = ax+by,    

X = x.  

W tym układzie współrzędnych problem 

przyjmuje postać (bez utraty ogólności 

możemy założyć, że b  0):  

zminimalizuj Y , gdy  

iX+iY+ci  0,  

gdzie i = 1, 2, ... , n oraz i =ai - (a/b)bi oraz 

i = bi/b. 

Dzielimy warunki definujące obszar, w któ-

rym badamy funkcję na trzy grupy (wzglę-

dem indeksu i): I+, I-, I0 w zależności od 

tego, czy i jest dodatnia, ujemna lub równa 

zero.  

Wtedy u1  X  u2, gdzie u1 = max{-ci/i: i  

I0, i < 0} i u2 = min{-ci/i: i  I0, i > 0}. 

u1 u2 



Niech i = -i/i i i = -ci/i dla i  I+  I-. 

Wtedy odpowiednie półpłaszczyzny są okre-

ślone przez nierówności postaci Y  iX + i 

dla i  I+ oraz Y  iX + i dla i  I-. Zatem 

badany obszar znajduje się między łamanymi 

zdefinowanymi w następujący sposób:  

F+ = min{iX + i : i  I+} oraz 

F- = max{iX + i : i  I-}.  

 

Łamana F+ (F-) jest dolną (górną) obwiednią 

funkcji indeksowanej przez zbiór I+ (I-). 
 

Problem przyjmuje postać: 

zminimalizuj F-(X), gdy F-(X)  F+(X) oraz 

u1  X  u2 .  

 

Niech B- (B+) oznacza zbiór brzegów półpła-

szczyzn należących do I- (I+). 

Minimalizowana funkcja:  Y . 

Warunki brzegowe: 

   Y  -X-6,           X  8, 

         X  2,   Y  -2X-2, 

    Y  -3X,   Y  -4X+1, 

  Y  X-18,   Y  2X-26, 

Y  2X-28,      Y  -X-8, 

       Y  -2. 

u1 u2 



Szukamy punktu o minimalnej współrzędnej 
y-owej należącego do obszaru określonego 
przez F-, F+, u1 i u2. Korzystamy z faktu, że 
obszary ograniczone przez F- i F+ są wypukłe. 

Załóżmy, że między u1 i u2, F- jest poniżej F+. 

 

Algorytm (prune and search). 

 

while B- nie jest dostatecznie mały do 

    zgrupuj w pary proste z B- ; 

    w każdej parze prostych równoległych lub  

    przecinających się poza [u1,u2] usuń z B-  

    prostą, która nie tworzy F- w [u1,u2] ; 

    znajdź medianę xm punktów przecięć po- 

    zostałych par prostych ; 

    określ kierunek wzrostu F- w xm i w każ- 

    dej parze po tej stronie, usuń z B- prostą,  

    która jest oddzielona od minimum F- ; 

znajdź minimum dla F- na B- ; 

 

u1 u2 



Twierdzenie. 

Problem programowania liniowego w R2 można rozwiązać w czasie O(n), 

gdzie n jest liczbą warunków brzegowych. 

Dowód. 

Przecięcie F+ i F- jest wypukłe, więc istnieje tylko jedno minimum (być może 

przyjmowane przez wiele punktów tworzących poziomą krawędź obszaru do-

puszczalnego po zamianie zmiennych).  

Usuwane proste oddzielane są od F- przez proste tworzące z nimi parę.  

Punkt xm znajdujemy w czasie liniowym. 

Kierunek monotoniczności F- w punkcie xm znajdujemy w czasie O(|B-|) anali-

zując wartości prostych z B- w tym punkcie (prosta o maksymalnej wartości 

wyznacza kierunek monotoniczności). 

Ponieważ z co najmniej połowy par prostych usuwamy jedną z nich, wiec wy-

konując jedną pętlę algorytmu zmniejszamy rozmiar zadania co najmniej o 1/4. 

W małym zbiorze B- znajdujemy minimum F- w stałym czasie. 

Zatem złożoność algorytmu jest opisana równaniem rekurencyjnym T(n) = 

T(3n/4) + O(n), co daje w wyniku T(n) = O(n).   



Gdy między u1 i u2, minimum F- nie jest poniżej F+, to powyższą metodą 

znajdujemy ekstrema F- i F+, a następnie badamy przecięcia na 

monotonicznych kawałkach. 

Współczynniki kierunkowe prostych tworzących jeden brzeg rosną, a 

drugi – maleją.  

Tworzymy pary prostych z F- (F+), znajdujemy wspólną medianę punktów 

przecięć, badamy położenie skrajnych prostych i usuwamy te proste (co 

najmniej ¼ wszystkich), które nie tworzą brzegu obszaru dopuszczalnego 

(sprawdzamy, czy dla pozycji mediany istnieje obszar dopuszczalny - w 

zależności od tego przesuwamy się w odpowiednim kierunku).  

Gdy pozostanie dostatecznie mało półpłaszczyzn, sprawdzamy istnienie 

obszaru dopuszczalnego i znajdujemy minimum (jeśli istnieje). 

Tak jak poprzednio, możemy to zrobić w czasie liniowym ze względu na 

łączny rozmiar F- i F+. 



Minimalny okrąg opisany na danym zbio-
rze punktów.  

 

Problem.  

Znajdź punkt, dla którego maksymalna 
odległość do punktów z danego zbioru S 
jest minimalna, tzn. punkt spełniający 
następujący warunek:  

minqRR maxpS d(p,q). 

 

Rozpatrzmy najpierw nieco prostszy pro-
blem, w którym środek okręgu leży na da-
nej prostej k. 

 

Fakt. 

Okrąg przechodzący przez punkty a i b ma 
środek na prostej k w punkcie przecięcia z 
symetralną odcinka ab. 

a 

b 



Algorytm 

while zbiór S nie jest dostatecznie mały do 

    pogrupuj punkty ze zbioru S w pary; 

    znajdź zbiór P przecięć symetralnych od- 

    cinków tworzonych przez pary z prostą k;  

    wyznacz medianę m zbioru P; 

    oblicz minimalny promień okręgu o środ- 

    ku w m zawierającego zbiór S i znajdź  

    wyznaczające go punkty z S; 

    if  rzuty prostopadłe tych punktów na pro- 

        stą k znajdują się po obu stronach m 

        then return znaleziony okrąg 

        else  usuń z S punkty będące bliższymi  

                m końcami odcinków, których sy- 

                metralne przecinają k po przeciw- 

                nej stronie m niż punkty na okręgu; 

oblicz okrąg opisany na S; 



Fakt. 

Jeśli rzuty punktów wyznaczających okrąg znajdują się po tej samej 
stronie punktu m, to przesuwając środek okręgu w ich kierunku zmniej-
szamy promień okręgu. Jeśli rzuty są po obu stronach m, to jakiekolwiek 
przesunięcie środka zwiększa jego promień. 

 

Lemat. 

Algorytm znajduje minimalny okrąg zawierający n-elementowy zbiór S o 
środku na danej prostej w czasie O(n). 

Dowód. 

Wykonanie jednej pętli (tworzenie par, znalezienie symetralnych i ich 
punktów przecięcia z prostą, znalezienie mediany i minimalnego okręgu o 
środku w tym punkcie, usunięcie zbędnych punktów) wymaga czasu pro-
porcjonalnego do liczby elementów w zbiorze S (wszystkie te operacje 
wykonujemy w czasie liniowym). 

Za każdym razem usuwamy z S co najmniej 1/4 punktów. Zatem złożo-
ność algorytmu jest opisana równaniem rekurencyjnym T(n) = T(3n/4) + 
O(n), co daje w wyniku T(n) = O(n).  



Algorytm dla przypadku ogólnego. 

 

while zbiór S nie jest dostatecznie mały do  

    podziel S na pary i stwórz z nich odcinki; 

    wyznacz symetralne odcinków; 

    znajdź medianę am  współczynników ką- 

    towych symetralnych i przyjmij ją jako oś  

    x-ów; 

    pogrupuj symetralne w pary o nieujem- 

    nych i niedodatnich współczynnikach; 

    znajdź medianę ym y-owych współrzęd- 

    nych punktów przecięć par prostych (dla  

    prostych równoległych do am - poziom  

    jednej z nich); 

    znajdź minimalny okrąg o środku na 

prostej y=ym i półpłaszczyznę, w której 

promień okręgu maleje;      



Algorytm dla przypadku ogólnego cd. 

 

    if okrąg jest optymalny then KONIEC; 

    znajdź medianę xm x-owych współrzęd-    

    nych  punktów przecięć par prostych na- 

    leżących do przeciwnej półpłaszczyzny niż 
środek szukanego okręgu; 

    znajdź minimalny okrąg o środku na xm i  

    półpłaszczyznę, w której promień okręgu    

    maleje;  

    dla punktów przecięć prostych należących  

    do obszaru będącego przecięciem półpłasz- 

    czyzn, w których promień okręgu rośnie,  

    znajdź proste, które nie przecinają obszaru  

    X będącego przecięciem półpłaszczyzn, w  

    których promień okręgu maleje, i usuń wy- 

    znaczający ją punkt bliższy obszarowi X;  

oblicz okrąg opisany na S; 

 



Uwaga. 

Uznając kierunek am za nową oś x-ów nie dokonujemy żadnych przekształceń 

płaszczyzny, a jedynie modyfikujemy współrzędne punktów. 
 

Fakt.  

Jeśli punkty wyznaczające okrąg są zawarte w półokręgu, to zbliżając środek 
okręgu zawierającego zbiór S prostopadle do najdłuższej cięciwy o końcach w 
tych punktach, zmniejszamy jego promień. 

Jedna prosta z każdej pary prostych przechodzących przez punkt w obszarze 
przeciwległym do X nie przecina obszaru X.  
 

Lemat. 

Minimalny okrąg opisany na n-elementowym zbiorze punktów można znaleźć 
w czasie O(n). 

Dowód. 

Wykonanie jednej pętli algorytmu wymaga czasu proporcjonalnego do rozmia-
ru zbioru S. W tym czasie w n/4 parach prostych usuwamy jeden z czterech 
punktów je wyznaczających. Dostajemy równanie T(n) = T(15n/16) + O(n) i 
złożoność T(n) = O(n). 



Problem kanapki z szynką. 

 

Problem ten jest rozszerzeniem problemu 

mediany. 

 

Definicja. 

Dane są dwa zbiory punktów G i H (chleb 

i szynka) w R2, odseparowane prostą (je-

den zbiór leży po jednej a drugi po drugiej 

stronie prostej) i liczące odpowiednio n i 

m punktów.  

Należy podzielić oba zbiory jedną prostą 

w ten sposób, aby po obu stronach prostej 

było tyle samo punktów każdego ze zbio-

rów (punkty leżące na prostej możemy 

przyporządkować dowolnej z półpłasz-

czyzn lub „zjeść”).  

 



Bez utraty ogólności możemy założyć, że 

prosta oddzielająca dane zbiory punktów 

jest osią y-ów układu współrzędnych oraz 

liczby n i m są nieparzyste.  

 

Lemat.  

Rozwiązanie problemu zawsze istnieje. 

Dowód. 

Rozpatrzmy mediany osobno dla każdego 

ze zbiorów. Położenie każdej z tych pro-

stych zmienia się w sposób ciągły oraz 

(zakładając, że są to proste zorientowane) 

ich wzajemne położenie zmienia się po 

obrocie o . Zatem istnieje taki kierunek, 

że obie mediany pokryją się.  



W celu znalezienia położenia pokrywają-

cych się median wykorzystamy przestrzeń 

dualną, w której problem sprowadza się do 

badania przecięć dwóch łamanych odpo-

wiadających medianom obu zbiorów.  

 

Fakt. 

Ponieważ punkty ze zbioru G mają ujem-

ne a punkty ze zbioru H - dodatnie współ-

rzędne x-owe, więc odpowiednie łamane 

odpowiadające medianom będą krzywymi 

monotonicznymi (odpowiednio malejącą i 

rosnącą). 

 

Wniosek. 

Istnieje dokładnie jedno położenie prostej 

będącej rozwiązaniem problemu. 



Rozpatrzmy następujący problem pomocniczy : 

Dla danej prostej t sprawdź, czy prosta t zawiera punkt przecięcia 

kG-tego poziomu zbioru prostych D(G) i kH-tego poziomu zbioru prostych 

D(H). 

Jeśli odpowiedź jest negatywna, to określ, po której stronie prostej t 

znajduje się szukany punkt przecięcia. 

 

Zbadamy przypadki, gdy prosta t jest pionowa, pozioma lub ma dodatni 

(ujemny) współczynnik kierunkowy. 

 

Do obliczenia punktów przecięć odpowiednich poziomów z prostą t 

wykorzystamy algorytm magicznych piątek. 



Prosta pionowa. 
 

znajdź przecięcia poziomów z prostą;  

if to ten sam punkt then return wynik 

    else if  kG jest na t wyżej niż kH 

        then przecięcie jest na prawo od t 

        else przecięcie jest na lewo od t; 
 

Prosta pozioma. 

Niech m1, m2, m3 (odpowiednio n1, n2, n3) 

będą prostymi powyżej i poniżej t oraz 
przecinającymi prostą t. 
 

if kG  m1 or kH  n1  

    then przecięcie jest powyżej t 

    else if kG  m-m2+1 or kH  n-n2+1 

               then przecięcie jest poniżej t  

               else podobnie jak dla pionowej; 



Prosta skośna. 

 

Gdy prosta t nie jest ani pionowa, ani po-

zioma, to w zależności od jej współczynni-

ka kierunkowego (dodatniego lub ujem-

nego) prosta ta ma tylko jeden punkt prze-

cięcia z jednym z poziomów. 

Znajdujemy ten punkt i prowadzimy przez 

niego prostą pionową t’. Odpowiedzi dla t i 

t’ są takie same. 

 

Niech L = D(G)  D(H) a lm będzie  me-

dianą (względem współczynnika kierunko-

wego) w zbiorze L.  

Niech L1 oznacza zbiór prostych o współ-

czynnikach kierunkowych mniejszych niż 

ma prosta lm, L2 - zbiór prostych równole-

głych do lm i L3 zbiór pozostałych prostych. 



Algorytm. 

 

while zbiór L nie jest dostatecznie mały do 

    znajdź prostą lm i określ zbiory Li; 

    połącz w pary proste należące do zbio- 

    rów L1 i L3 , tworząc zbiór Lp ; 

    zrzutuj punkty przecięcia każdej pary  

    prostych należących do Lp na oś x-ów ;  

    znajdź medianę multizbioru rzutów i za- 

    wierającą ją pionową prostą t ; 

    if punkt przecięcia poziomów kG i kH le- 

        ży na prostej t  

        then return wynik 

        else określ półpłaszczyznę U, do któ- 

        rej należy punkt przecięcia poziomów; U 



    znajdź na prostej t multizbiór R przecięć  

    t z prostymi z L2 oraz rzutów równole- 

    głych do lm punktów przecięć par pro- 

    stych z Lp , nie należących do U; 

    znajdź medianę zbioru R i zawierającą ją  

    prostą t’ równoległą do lm ;  

    if punkt przecięcia poziomów kG i kH le- 

        ży na prostej t’  

        then return wynik 

        else określ półpłaszczyznę W, do któ- 

        rej należy punkt przecięcia poziomów; 

    usuń z L proste, które nie przecinają U   

    W i zaktualizuj wartości kG i kH (jeśli 

    usuwamy proste leżące powyżej punktu 

     przecięcia); 

oblicz punkt przecięcia poziomów ;  

U 

W 



Twierdzenie. 

Problem kanapki z szynką można rozwiązać w czasie O(n). 

Dowód. 

Zbiór Lp ma moc min (|L1|, |L3|). Niech |L1|  |L3|. W każdej parze prostych z 

Lp przecinajacych się poza U, jedna omija U  W. Możemy usunąć również 

proste z L2 leżące poza W. Zatem wyknując jedną pętlę możemy zmniejszyć 

rozmiar zadania o (|Lp|/2 + |L2|)/2 = |Lp|/4 + |L2|/2  |L1|/4 + |L2|/2 = |L1|/8 + 

3|L2|/8 + (|L1| + |L2|)/8  |L1|/8 + 3|L2|/8 + |L3|/8  |L|/8.   

Złożoność algorytmu można opisać równaniem T(n) = T(7n/8) + O(n), co daje 

w wyniku T(n) = O(n). 



 

 

 

Dziękuję za uwagę. 



Ćwiczenia. 

 

1. Po n równoległych torach kolejowych jedzie n pociągów ze stałymi 

prędkościami v1, ..., vn. W czasie t=0 pociągi maja pozycję k1, ..., kn. Podaj 

algorytm działający w czasie O(n log n) wyznaczający wszystkie pociągi, 

które w pewnym czasie są na prowadzeniu. 

 

2. Podaj przykład wielu cięć na równe części w przypadku pomieszanych 

zbiorów punktów w problemie kanapki z szynką. 

 

3. Jak w liniowym czasie podzielić dwiema prostymi zbiór 4n punktów na 

płaszczyźnie na cztery równe części ?    

 

4.Udowodnij, że jeśli punkty wyznaczające okrąg są zawarte w półokręgu, to 

zbliżając środek okręgu zawierającego zbiór S prostopadle do najdłuższej 

cięciwy o końcach w tych punktach zmniejszamy jego promień. 

 



5. Pokaż, że w algorytmie znajdywania minimalnego okręgu opisanego na 

danym zbiorze punktów, jedna prosta z każdej pary prostych przechodzą-

cych przez punkt w obszarze przeciwległym do X nie przecina obszaru X. 

 

6. Punkt x jest nazywany centralnym punktem zbioru n punktów P, gdy 

żadna otwarta półpłaszczyzna omijająca x nie zawiera więcej niż 2n/3 

punktów ze zbioru P. x nie musi należeć do P. 

Pokaż, że dla każdego zbioru czteroelementowego istnieje punkt centralny. 

 


