
Geometria obliczeniowa
Wykład 8

Lokalizacja punktu na płaszczyźnie

1. Metoda warstwowa

2. Metoda trapezowa

3. Metoda separatorów

4. Metoda doskonalenia triangulacji

Randomizowany algorytm znajdujący

triangulację Delaunay.

Problem.

Dany jest podział D płaszczyzny (lub
jej części) na wielokąty proste. Stwórz
strukturę danych, która dla danego
punktu p pozwoli szybko określać
obszar zawierający ten punkt.

Ograniczony podział można umieścić w
odpowiednio dużym wielokącie wy-
pukłym W o małej liczbie boków i po
striangulowaniu części wspólnej W i
nieograniczonej części płaszczyzny mo-
żemy ograniczyć naszą uwagę do W.

Podobnie jak w przypadku lokalizacji
punktu w obszarach prostokątnych,
czas odpowiedzi na zapytanie o obszar
będzie zależeć od rozmiaru struktury i
wyboru metody jej konstrukcji.

Przykład. Lokalizacja punktów w podziale.

Metoda warstwowa.

Konstrukcja struktury:

Podziel przestrzeń na warstwy
równoległymi prostymi przechodzącymi
przez wierzchołki podziału D.

Stablicuj kolejne warstwy oraz ich
podział.

Lokalizacja punktu:

Stosując przeszukiwanie binarne znajdź:

- warstwę zawierającą dany punkt,

- odpowiednią część warstwy zawierającą
dany punkt.

Określ obszar odpowiadający znalezionej
części warstwy.

Lemat.

Struktura danych dla n-wierzchołkowego
podziału płaszczyzny ma rozmiar O(n2) i
można ją stworzyć, stosując np. algorytm
zamiatania, w czasie O(n2).

Dowód.

W algorytmie zamiatania strukturą zdarzeń
jest uporządkowana lista wierzchołków
podziału, a strukturą stanu - zrównoważone
drzewo poszukiwań binarnych przechowujące
uporządkowany ciąg krawędzi przecinanych
przez miotłę. Łączny czas aktualizacji
struktury stanu wynosi O(n log n). Czas
tworzenia struktury danych dla zapytań zależy
od rozmiaru struktury stanu (może być liniowy
względem rozmiaru podziału – zależy od
liczby przecinanych krawędzi).

Lemat.

Czas lokalizacji punktu w n-wierzchołkowym
podziale płaszczyzny wynosi O(log n).

Metoda trapezów.

procedure TRAPEZ(D);

posortuj wierzchołki podziału D względem y-ów;

znajdź ich medianę ym , prostą k (y = ym) i stwórz
dla niej węzeł drzewa z dwoma dowiązaniami;

rozbij D względem prostej k na D1 i D2;

for i := 1 to 2 do

 if istnieją krawędzie całkowicie przecinające

 Di

 then rozbij Di wzdłuż tych krawędzi;

 krawędziom przecinającym Di przypisz

 węzły zrównoważonego poddrzewa
 węzła dla prostej k, którego liście
odpowiadają tworzonym przez nie
podziałom Di (Tj) ;

 for każdy podział Tj do

 if Tj nie jest pusty then TRAPEZ(Tj)

 else stwórz liść

 else TRAPEZ(Di);

return węzeł dla prostej k;

Równoważenie drzewa.

Niech U = T1e1T2...Tk-1ek-1Tk oraz
W(U) będzie liczbą wierzchołków
podziału płaszczyzny zawartych w
U.

Niech r będzie taką liczbą, że
W(T1) + ... + W(Tr-1) < W(U)/2
oraz W(T1) + ... + W(Tr)  W(U)/2.

Wtedy er-1 jest korzeniem drzewa
odpowiadającego U, er jego pra-
wym synem, a lewym synem er jest
poddrzewo odpowiadające Tr.

Pozostałe dwa poddrzewa odpo-
wiadają początkowemu i końco-
wemu fragmentowi U.

Gdy W(U) = 0, U odpowiada
zrównoważone drzewo krawędzi ei

z liśćmi odpowiadającymi zbiorom
pustych trapezów T’ i T” .

er-1

 er

 T” Tr

 T’

 ei

 T” T’

Lemat.

Niech U będzie pasem odpowiadającym
ciągowi T1e1T2e2 ... ek-1Tk, gdzie Ti
oznacza i-ty fragment podziału pasa, a ej
j-tą krawędź rozdzielającą. Niech W(U)
oznacza liczbę wierzchołków obszarów
podziału płaszczyzny zawartych w U.
Wtedy głębokość drzewa
odpowiadającego pasowi U szacuje się
przez 3logW(U) + log n + 3, gdzie n
jest całkowitą liczbą wierzchołków
podziału płaszczyzny.

Dowód. Indukcja po W(U).

Twierdzenie.

W n-wierzchołkowym podziale pła-
szczyzny lokalizujemy punkt w czasie
O(log n) stosując strukturę danych o
rozmiarze O(n log n) stworzoną w
czasie O(n log n).

Metoda separatorów.

Definicja.

Separatorem nazywamy monotoniczną
względem danego kierunku łamaną roz-
dzielającą podział i tworzoną przez jego
krawędzie.

Naszym celem jest stworzenie ciągu
separatorów (Sn) takiego, że :

- każde dwa sąsiednie separatory wyzna-
czają dokładnie jeden obszar należący do
podziału D,

- każdy obszar podziału jest wyznaczany
przez separatory,

- wszystkie wierzchołki separatorów o
niższych numerach leżą po tej samej
stronie separatora o numerze wyższym.

Załóżmy, że ciąg separatorów dla danego podziału
jest stablicowany oraz że krawędzie każdego sepa-
ratora są również stablicowane. Rozmiar struktury
wynosi O(n2).

Wyszukujemy binarnie separator, który znajduje się
powyżej/poniżej (z prawej/lewej strony) lokalizo-
wanego punktu i taki, że poprzedzający go separator
znajduje się poniżej/powyżej (z lewej/prawej strony)
tego punktu (wyszukujemy odpowiednią krawędź
separatora i sprawdzamy, po której stronie danego
punktu się znajduje). Wyznaczamy w ten sposób
obszar zawierający punkt.

Lemat.

Czas lokalizacji punktu w n-wierzchołkowym
podziale płaszczyzny wynosi O(log2 n).

Rozmiar struktury pozostaje kwadratowy, nawet
gdy sąsiednie separatory mogą określać więcej niż
jeden obszar podziału.

Wyznaczanie separatorów.

Definicja.

Niech zbiór wierzchołków podziału tworzy ciąg uporządkowany względem

współrzędnej y-owej (w przypadku równych wartości - względem współ-

rzędnej x-owej). Wierzchołek vk jest regularny, gdy istnieją krawędzie (vi,vk)

i (vk,vj) dla i < k < j. Podział jest regularny, gdy wszystkie wierzchołki ciągu

poza pierwszym i ostatnim są regularne.

Każdy podział można zregularyzować stosując algorytm podobny do algo-

rytmu podziału wielokąta na wielokąty monotoniczne (łączymy krawędzią

wierzchołek nieregularny v z pomocnikiem krawędzi sąsiadującej z v z lewej

strony) lub triangulując otoczkę wypukłą podziału.

Załóżmy, że krawędzie podziału są skierowane od wierzchołka o mniej-

szym indeksie do wierzchołka o większym indeksie. Niech IN(v) i

OUT(v) odpowiednio oznaczają zbiory krawędzi dochodzących do v i

wychodzących z v.

Niech W(e) oznacza wagę krawędzi e, czyli liczbę separatorów, do któ-

rych należy e.

Wtedy WIN(v) := eIN(v) W(e) oraz WOUT(v) := eOUT(v) W(e) .

Aby wyznaczyć układ separatorów wystarczy pokazać, że wagi można tak

dobrać, aby:

- waga każdej krawędzi była dodatnią liczbą całkowitą,

- WIN(v) = WOUT(v) dla każdego v regularnego.

Pierwszy warunek zapewnia, że każda krawędź należy do co najmniej

jednego separatora. Drugi zaś gwarantuje, że separatory są spójne i nie

kończą się w wierzchołku regularnym.

procedure WAGI

for każda krawędź e do W(e) := 1;

for i := 2 to n-1 do

 v := i-ty wierzchołek w ciągu;

 WIN(v) := eIN(v) W(e) ;

 d := pierwsza z lewej krawędź wycho-

 dząca z v;

 if WIN(v) > WOUT(v)

 then W(d) := WIN(v)- WOUT(v)+ W(d);

for i := n-1 downto 2 do

 v := i-ty wierzchołek w ciągu;

 WOUT(v) := eOUT(v) W(e) ;

 d := pierwsza z lewej krawędź docho-

 dząca do v;

 if WOUT(v) > WIN(v)

 then W(d) := WOUT(v) - WIN(v) + W(d);

1

1

1

1 1

1

1

1

1
1

1

1

1
1

1

1
2

2

3

3

2

2

3

3

Przykład.

Układ separatorów określanych przez wagi krawędzi.

Między kolejnymi separatorami może być więcej niż jeden obszar

(jest 8 obszarów i 6 separatorów)

1

1

2

2

3

3

1

1 1

1

1

1
1

1

1

1

1

1

0

0

2

2

1

0

1

0

0

0

0

1

0

0

1

0
0

0

0

0

0

0

W poprzednim algorytmie przechowywa-
liśmy stablicowane separatory co znacznie
obciążało pamięć.

Teraz stosujemy zrównoważone drzewo
binarne, w którego węzłach przechowujemy
stablicowany ciąg krawędzi danego
separatora nie należących do separatorów
odpowiadających przodkom tego separatora
w drzewie. Jeśli w badanym ciągu nie ma
krawędzi separatora leżącej nad lub pod
lokalizowanym punktem, to wynik badania
jest taki sam jak poprzednio.

Lemat.

Czas lokalizacji punktu w n-wierzchołko-
wym podziale płaszczyzny wynosi O(log2 n),
przy wykorzystaniu struktury o rozmiarze
O(n) tworzonej w czasie O(n log n).

 2

1 3

4

6

5

Metoda doskonalenia triangulacji.

Załóżmy, że dany podział D ma kształt
striangulowanego trójkąta.

procedure TRIANGLE(D)

T := zbiór trójkątów tworzących D;

V := {etykiety trójkątów}; E := ;

while |T| > 1 do

 wybierz niezależny zbiór wewnętrznych

 wierzchołków stopnia mniejszego niż 12 ;

 usuń z T trójkąty z tymi wierzchołkami;

 usuń z D wybrane wierzchołki wraz z

 incydentnymi krawędziami, ponownie

 strianguluj D i dodaj nowe trójkąty do T;

 V := V  {nowe trójkąty}; E := E 

 {(N,U): N-nowy, U-usunięty, N  U  };

return (V, E);

1
2

3

4

5 6

9
8

7

7

8

9

6

5

4

3

2

1

10

11

12

10

11

12

13

14

13

14

15

15

Podział D

Graf (V, E)

Lemat.

Liczba poziomów w grafie jest logarytmiczna,

jego rozmiar jest liniowy względem liczby

wierzchołków a każdy wierzchołek ma stopień

ograniczony przez stałą.

Fakt.

Dla dowolnego podziału o n wierzchołkach

czas preprocessingu wynosi O(n) (korzystając

z algorytmu triangulacji Chazelle).

Twierdzenie.

W n-wierzchołkowym trójkątnym podziale

możemy zlokalizować punkt w czasie O(log n)

z pomocą struktury o rozmiarze O(n)

stworzonej w czasie O(n).

7

8

9

6

5

4

3

2

1

10

11

12

13

14

15 15

14 12 3

1
2

3

4

5 6

9
8

7

Randomizowany algorytm znajdujący

triangulację Delaunay.

Załóżmy, że żadne cztery punkty z danego

zbioru P = {p1, …, pn} nie są współokręgowe.

Zdefiniujmy też trzy dodatkowe punkty p-1, p-2,

p-3, które będą wierzchołkami trójkąta

zawierającego zbiór P w swoim wnętrzu. W ten

sposób będziemy mogli zastosować do opisu

struktury podwójnie łączoną listę krawędzi.

Podczas tworzenia triangulacji Delaunay trójkąty

o wierzchołkach w punktach p-1, p-2, p-3,

traktujemy w szczególny sposób, aby nie

wpływały na wynik. Po skończeniu pracy

algorytmu usuwamy te punkty wraz z

incydentnymi krawędziami.

P

p-1

p-2 p-3

W celu znalezienia triangulacji

Delaunay stosujemy algorytm

przyrostowy.

Po dodaniu kolejnego punktu mogą

powstać trzy lub cztery nowe trójkąty,

w zależności od tego, czy punkt ten

znajduje się we wnętrzu aktualnego

trójkąta, czy na jego krawędzi.

Definicja.

Niech pipjpk oraz pipjpl będą trójkątami

należącymi do triangulacji. Krawędź pipj jest

nielegalna (illegal edge), jeśli minimalny kąt w

trójkątach pipjpk i pipjpl jest mniejszy od

minimalnego kąta w trójkątach pipkpl oraz

pjpkpl.

Krawędź legalizujemy zamieniając ją na drugą

przekątną czworokąta tworzonego przez trójkąty

przylegające do badanej krawędzi.

Jeśli któryś z nowopowstałych trójkątów nadal

ma nielegalną krawędź, to kontynuujemy

zamianę, aż do wyeliminowania wszystkich

nielegalnych krawędzi. Ponieważ każda nowa

krawędź ma koniec w dodawanym punkcie, więc

proces ten jest skończony.

Algorytm (wstawianym punktem jest pr,

a badaną krawędzią pipj)

LegalizeEdge(pr,pipj,T)

if pipj jest nielegalna i pipjpk należy do

triangulacji

then

 zastąp pipj przez prpk;

 LegalizeEdge(pr,pipk,T);

 LegalizeEdge(pr,pkpj,T);

p-1

p-2 p-3

Aby móc lokalizować trójkąt

zawierający dodawany punkt

tworzymy odpowiednią strukturę

danych.

Jest to skierowany graf, w którym

źródłem (wierzchołkiem o stopniu

wejściowym 0) jest trójkąt p-1p-2p-3,

a przy dodawaniu kolejnych punktów

powstają nowe wierzchołki

odpowiadające trójkątom tworzonym

zarówno przez dodanie punktu jak też

przez zamianę krawędzi.

Każdy nowopowstały wierzchołek

struktury danych jest końcem

krawędzi łączących go z każdym

wierzchołkiem odpowiadającym

trójkątowi, z którego powstał.

t1 t2

t3

t1 t2
t3

t1

t3

t2 t4

t5

t6

t2
t3

t4
t5 t6

t2 t1

t3

t4

t5 t3

t4
t5 t6

t7

t8

t7
t8

t3 t2 t1

t10

t4

t5

t4
t5 t6

t9

t8

t7
t8

t9
t10

Algorytm znajdujący triangulację Delaunay

zainicjuj triangulację T jako pojedynczy trójkąt p-1p-2p-3 zawierający

dany zbiór punktów P w swoim wnętrzu;

oblicz losową permutację p1, p2, …, pn punktów z P;

for r:=1 to n do

 znajdź trójkąt pipjpk zawierający punkt pr

 if pr leży wewnątrz trójkąta pipjpk

 then legalizuj krawędzie triangulacji zaczynając od pipj,

 pipk i pjpk

 else legalizuj krawędzie triangulacji zaczynając od

 pozostałych krawędzi trójkątów, na których wspólnym

 boku leży pr;

usuń z T punkty p-1, p-2, p-3 wraz ze wszystkimi incydentnymi

krawędziami;

return T

Lemat.

Każda krawędź tworzona przy wstawianiu nowego punktu pr jest krawędzią

triangulacji Delaunay zbioru {p-1, p-2, p-3, p1, …, pr-1, pr}.

Lemat.

Oczekiwana liczba trójkątów tworzonych przez algorytm wynosi 9n+1.

Dowód.

Dodawany punkt pr ma początkowo stopień 3 lub 4 i tworzy tyle samo nowych

trójkątów. Przy każdej zamianie krawędzi liczba trójkątów wzrasta o 2, a stopień

punktu pr o 1. Jeśli po wszystkich zamianach pr ma stopień k, to powstały co

najwyżej 2(k-3)+3 = 2k-3 nowe trójkąty.

Na mocy twierdzenia Eulera graf dla zbioru {p-1, p-2, p-3, p1, …, pr-1, pr} ma co

najwyżej 3(r+3)-6 krawędzi. Trzy krawędzie należą do zewnętrznego trójkąta.

Zatem suma stopni wierzchołków z P jest mniejsza niż 2(3(r+3)-9) = 6r. Czyli

oczekiwany stopień punktu z P wynosi co najwyżej 6.

E(liczba trójkątów tworzonych w r-tym kroku)  E(2deg pr-3) = 2E(deg pr)-3 

 26-3 = 9.

Dodając trójkąt zewnętrzny otrzymujemy oczekiwaną liczbę trójkątów równą 9n+1.

Niech K() oznacza podzbiór punktów z P należący do koła opisanego na

danym trójkącie .

Lemat.

Jeśli P jest zbiorem punktów w położeniu ogólnym, to E( card(K())) =

O(n log n), gdzie sumujemy po wszystkich trójkątach Delaunay

stworzonych przez algorytm.

Dowód.

Niech Pr oznacza zbiór {p1, …, pr-1, pr}, a Tr triangulację zbioru {p-1, p-2,

p-3, p1, …, pr-1, pr}. Dla każdego r triangulacja jest jednoznacznie

wyznaczona. Mamy  card(K()) = n
r=1(Tr-T{r-1} card(K())).

Niech t(Pr,q) oznacza liczbę trójkątów Tr takich, że punkt q należy do

K(), a t(Pr,q,pr) będzie liczbą trójkątów Tr takich, że pr jest

wierzchołkiem trójkąta  wpisanego w koło zawierające q.

Każdy trójkąt stworzony w r-tej fazie algorytmu ma wierzchołek w pr,

więc Tr-T{r-1} card(K()) = qP-Pr t(Pr,q,pr).

Chwilowo ustalmy Pr. Wtedy wartość t(Pr,q,pr) zależy tylko od wyboru pr.

Ponieważ trójkąt Tr ma wierzchołek w pewnym punkcie p należącym do Pr z

prawdopodobieństwem nie większym niż 3/r, więc E(t(Pr,q,pr))  3t(Pr,q)/r. Stąd

E(Tr-T{r-1} card(K())) = E(qP-Pr t(Pr,q,pr))  3/r qP-Pr t(Pr,q).

Każdy q  P-Pr z jednakowym prawdopodobieństwem może stać się pr+1, więc

E(t(Pr,pr+1)) = 1/(n-r) qP-Pr t(Pr,q), czyli

E(Tr-T{r-1} card(K()))  3(n-r)/r E(t(Pr,pr+1)).

Ponieważ t(Pr,pr+1) oznacza liczbę trójkątów Tr, dla których pr+1K(), więc

są to dokładnie te trójkąty, które zostaną zmienione po dodaniu pr+1.

Zatem E(Tr-T{r-1} card(K()))  3(n-r)/r E(card(Tr-Tr+1)).

Ale liczba trójkątów zmienionych po wstawieniu punktu pr+1 jest dokładnie o 2

mniejsza od liczby trójkątów stworzonych przez wstawienie tego punktu.

Stąd E(Tr-T{r-1} card(K()))  3(n-r)/r (E(card(Tr+1-Tr)-2).

To samo zachodzi dla dowolnego zbioru Pr. Ponieważ oczekiwana liczba

trójkątów tworzonych przez wstawienie pr+1 jest nie większa niż 6, więc

E(Tr-T{r-1} card(K()))  12(n-r)/r, czyli

E( card(K())) = E(n
r=1(Tr-T{r-1} card(K())))  12 n

r=1(n-r)/r = O(n log n).

Twierdzenie.

Triangulację Delaunay zbioru P zawierającego n punktów na płaszczyźnie

można obliczyć w oczekiwanym czasie O(n log n) i z oczekiwanym

rozmiarem pamięci O(n).

Dowód.

Oczekiwany rozmiar struktury danych jest liniowy.

Oczekiwany czas działania bez uwzględnienia czasu lokalizacji punktu jest

również liniowy. Rozważmy lokalizację punktu pr.

Czas lokalizacji wynosi O(1)+O(czas lokalizacji w trójkątach

zawierających pr, które zostały zmienione). Trójkąt pipjpk może być

usunięty z triangulacji, gdy:

- nowy punkt pl wstawiono we wnętrzu lub na brzegu pipjpk,

- została zmieniona krawędź (np. pipj) pipjpk.

W pierwszym przypadku pipjpk był trójkątem wcześniejszej

 triangulacji, a w drugim - takim trójkątem był sąsiedni

trójkąt (pipjpm) i wstawiono pl. Wtedy okrąg opisany

na pipjpm zawiera pl i pr. Zwiążmy koszt odwiedzenia trójkąta

w trakcie lokalizacji pr z trójkątem triangulacji zmienianym wraz z pipjpk.

pl

pj

pm

pi

pk

Zatem takiemu trójkątowi przypisujemy czasy lokalizacji (jednostkowe)

wszystkich punktów należących do koła opisanego na nim.

Dla trójkąta  takich punktów jest card(K()). Zatem oczekiwany czas

lokalizacji wszystkich punktów wynosi (długość ścieżki wyszukiwania

danego punktu = liczba kół zawierających dany punkt; liczba kół

zawierających wszystkie punkty = liczba punktów zawieranych przez

wszystkie koła):

O(n) + O(card(K())) = O(n log n).

Stąd oczekiwany czas działania algorytmu wynosi

O(n) + O(n log n) = O(n log n) .

Dziękuję za uwagę.

Ćwiczenia.

1. Udowodnij, że głębokość drzewa tworzonego w metodzie trapezowej jest
nie większa niż 3logW(U) + log n + 3.

2. Udowodnij, że rozmiar drzewa tworzonego w metodzie trapezowej wynosi
O(n log n).

3. Podaj przykład podziału, dla którego drzewo tworzone w metodzie
trapezowej ma rozmiar (n log n).

4. Wielokąt P nazywamy gwiaździstym, gdy zawiera punkt (centralny) p taki,
że dla każdego punktu qP odcinek pq jest zawarty w P. Wierzchołki
wielokąta są kolejno stablicowane. W jakim czasie można sprawdzić, czy dany
punkt należy do wielokąta gwiaździstego ? (znając punkt centralny lub nie)

5. Udowodnij, że liczba poziomów w grafie lokalizacji trójkątami jest
logarytmiczna, jego rozmiar jest liniowy względem liczby wierzchołków, a
każdy wierzchołek ma stopień ograniczony przez stałą.

6. Dany jest zbiór n punktów. Jak stworzyć strukturę (czas jej tworzenia jest

nieistotny), dzięki której w czasie O(log n + k), gdzie k jest liczbą

rozwiązań, będzie można zlokalizować wszystkie punkty oddalone od

punktu zapytania o nie więcej niż d, gdzie k jest rozmiarem wyniku ?

7. Podaj przykład układu separatorów, które generują kwadratowy rozmiar

odpowiedniej struktury względem liczby wierzchołków podziału

płaszczyzny.

8. Jak stworzyć drzewo układu separatorów w czasie O(n log n) ?

9. Udowodnij, że każda krawędź tworzona przy wstawianiu nowego punktu

pr jest krawędzią triangulacji Delaunay zbioru {p-1, p-2, p-3, p1, …, pr-1, pr}.

1. Udowodnij, że głębokość drzewa tworzonego w metodzie trapezowej jest
nie większa niż 3logW(U) + log n + 3.

Dowód.

Indukcja po W(U).

Dla W(U) = 1 jedyny wierzchołek drzewa odpowiada-

jący poziomej prostej przechodzącej przez wierz-

chołek podziału znajduje się w korzeniu Tr.

Poddrzewa Tr oraz T’ i T” są zrównoważonymi

drzewami zawierającymi co najwyżej n wierzchołków

odpowiadających trapezom.

Zatem głębokość całego drzewa wynosi co najwyżej log n + 3 = 3logW(U)
+ log n + 3.

Załóżmy, że W(U) = k i dla wszystkich pasów U’ takich, że W(U’) < k

teza indukcji jest prawdziwa.

Niech pas Ur odpowiada poddrzewu Tr. Mamy dwa przypadki.

1) W(Ur)  k/2. Ponieważ dla pasów U’ i U” odpowiadających poddrzewom
T’ i T” mamy W(U’) < k/2 i W(U”) < k/2 ,

er-1

 er

 T” Tr

 T’

więc głębokości poddrzew T’, T” i Tr szacują się na mocy założenia

indukcyjnego przez 3log(k/2) + log n + 3 = 3log k + log n, co daje

oszacowanie głębokości całego drzewa przez 3log k + log n + 2 

3logW(U) + log n +3.

2) W(Ur) > k/2. Ponieważ W(U’) < k/2 i W(U”) < k/2, więc dla T’ i T”

mamy te same oszacowania co powyżej. Korzeniem poddrzewa Tr jest

(podobnie jak dla przypadku W(U) = 1) wierzchołek odpowiadający

poziomej prostej poprowadzonej przez medianę punktów podziału

należących do Ur, więc wagi pasów odpowiadających lewemu i prawemu

poddrzewu tego drzewa szacują się przez W(Ur)/2  k/2.

Zatem na mocy założenia indukcyjnego ich głębokość szacuje się przez

3log(k/2) + log n + 3 = 3log k + log n, co daje oszacowanie głębokości

całego drzewa przez 3log k + log n + 3  3logW(U) + log n +3.

