
Geometria obliczeniowa 
Wykład 8 

Lokalizacja punktu na płaszczyźnie 

1. Metoda warstwowa 

2. Metoda trapezowa 

3. Metoda separatorów 

4. Metoda doskonalenia triangulacji 

Randomizowany algorytm znajdujący 

triangulację Delaunay. 

 



Problem. 

Dany jest podział D płaszczyzny (lub 
jej części) na wielokąty proste. Stwórz 
strukturę danych, która dla danego 
punktu p pozwoli szybko określać 
obszar zawierający ten punkt. 

 

Ograniczony podział można umieścić w 
odpowiednio dużym wielokącie wy-
pukłym W o małej liczbie boków i po 
striangulowaniu części wspólnej W i 
nieograniczonej części płaszczyzny mo-
żemy ograniczyć naszą uwagę do W.   

 

Podobnie jak w przypadku lokalizacji 
punktu w obszarach prostokątnych, 
czas odpowiedzi na zapytanie o obszar 
będzie zależeć od rozmiaru struktury i 
wyboru metody jej konstrukcji.  



Przykład. Lokalizacja punktów w podziale. 

 



Metoda warstwowa. 

 

Konstrukcja struktury: 

Podziel przestrzeń na warstwy 
równoległymi prostymi przechodzącymi 
przez wierzchołki podziału D. 

Stablicuj kolejne warstwy oraz ich 
podział. 

 

Lokalizacja punktu: 

Stosując przeszukiwanie binarne znajdź: 

- warstwę zawierającą dany punkt, 

- odpowiednią część warstwy zawierającą 
dany punkt. 

Określ obszar odpowiadający znalezionej 
części warstwy.  



Lemat. 

Struktura danych dla n-wierzchołkowego 
podziału płaszczyzny ma rozmiar O(n2) i 
można ją stworzyć, stosując np. algorytm 
zamiatania, w czasie O(n2). 

Dowód. 

W algorytmie zamiatania strukturą zdarzeń 
jest uporządkowana lista wierzchołków 
podziału, a strukturą stanu - zrównoważone 
drzewo poszukiwań binarnych przechowujące 
uporządkowany ciąg krawędzi przecinanych 
przez miotłę. Łączny czas aktualizacji 
struktury stanu wynosi O(n log n). Czas 
tworzenia struktury danych dla zapytań zależy 
od rozmiaru struktury stanu (może być liniowy 
względem rozmiaru podziału – zależy od 
liczby przecinanych krawędzi).  

  

Lemat. 

Czas lokalizacji punktu w n-wierzchołkowym 
podziale płaszczyzny wynosi O(log n). 



Metoda trapezów. 

 

procedure TRAPEZ(D); 

posortuj wierzchołki podziału D względem y-ów; 

znajdź ich medianę ym , prostą k (y = ym) i stwórz 
dla niej węzeł drzewa z dwoma dowiązaniami; 

rozbij D względem prostej k na D1 i D2; 

for i := 1 to 2 do 

    if  istnieją krawędzie całkowicie przecinające   

        Di  

        then rozbij Di wzdłuż tych krawędzi; 

                krawędziom przecinającym Di przypisz  

                węzły zrównoważonego poddrzewa  
 węzła dla prostej k, którego liście 
odpowiadają tworzonym przez nie 
podziałom Di (Tj) ; 

                for każdy podział Tj do 

                    if Tj nie jest pusty then TRAPEZ(Tj) 

                                                  else stwórz liść 

        else TRAPEZ(Di); 

return węzeł dla prostej k; 



Równoważenie drzewa. 

Niech U = T1e1T2...Tk-1ek-1Tk oraz 
W(U) będzie liczbą wierzchołków 
podziału płaszczyzny zawartych w 
U. 

Niech r będzie taką liczbą, że 
W(T1) + ... + W(Tr-1) < W(U)/2 
oraz W(T1) + ... + W(Tr)  W(U)/2. 

Wtedy er-1 jest korzeniem drzewa 
odpowiadającego U, er jego pra-
wym synem, a lewym synem er jest 
poddrzewo odpowiadające Tr. 

Pozostałe dwa poddrzewa odpo-
wiadają początkowemu i końco-
wemu fragmentowi U. 

 

Gdy W(U) = 0, U odpowiada 
zrównoważone drzewo krawędzi ei 

z liśćmi odpowiadającymi zbiorom 
pustych trapezów T’ i T” .  

er-1 

 er 

 T”  Tr 

 T’ 

 ei 

  T”  T’ 



Lemat. 

Niech U będzie pasem odpowiadającym 
ciągowi T1e1T2e2 ... ek-1Tk, gdzie Ti 
oznacza i-ty fragment podziału pasa, a ej 
j-tą krawędź rozdzielającą. Niech W(U) 
oznacza liczbę wierzchołków obszarów 
podziału płaszczyzny zawartych w U. 
Wtedy głębokość drzewa 
odpowiadającego pasowi U szacuje się 
przez  3logW(U) + log n + 3, gdzie n 
jest całkowitą liczbą wierzchołków 
podziału płaszczyzny. 

Dowód. Indukcja po W(U).  

 

Twierdzenie. 

W n-wierzchołkowym podziale pła-
szczyzny lokalizujemy punkt w czasie 
O(log n) stosując strukturę danych o 
rozmiarze O(n log n) stworzoną w 
czasie O(n log n). 



Metoda separatorów. 

 

Definicja. 

Separatorem nazywamy monotoniczną 
względem danego kierunku łamaną roz-
dzielającą podział i tworzoną przez jego 
krawędzie. 

 

Naszym celem jest stworzenie ciągu 
separatorów (Sn) takiego, że : 

- każde dwa sąsiednie separatory wyzna-
czają dokładnie jeden obszar należący do 
podziału D,  

- każdy obszar podziału jest wyznaczany 
przez separatory, 

- wszystkie wierzchołki separatorów o 
niższych numerach leżą po tej samej 
stronie separatora o numerze wyższym.  



Załóżmy, że ciąg separatorów dla danego podziału 
jest stablicowany oraz że krawędzie każdego sepa-
ratora są również stablicowane. Rozmiar struktury 
wynosi O(n2). 

Wyszukujemy binarnie separator, który znajduje się 
powyżej/poniżej (z prawej/lewej strony) lokalizo-
wanego punktu i taki, że poprzedzający go separator 
znajduje się poniżej/powyżej (z lewej/prawej strony) 
tego punktu (wyszukujemy odpowiednią krawędź 
separatora i sprawdzamy, po której stronie danego 
punktu się znajduje). Wyznaczamy w ten sposób 
obszar zawierający punkt. 

 

Lemat. 

Czas lokalizacji punktu w n-wierzchołkowym 
podziale płaszczyzny wynosi O(log2 n). 

 

Rozmiar struktury pozostaje kwadratowy, nawet 
gdy sąsiednie separatory mogą określać więcej niż 
jeden obszar podziału.     



Wyznaczanie separatorów. 

 

Definicja. 

Niech zbiór wierzchołków podziału tworzy ciąg uporządkowany względem 

współrzędnej y-owej (w przypadku równych wartości - względem współ-

rzędnej x-owej). Wierzchołek vk jest regularny, gdy istnieją krawędzie (vi,vk)  

i (vk,vj) dla i < k < j. Podział jest regularny, gdy wszystkie wierzchołki ciągu 

poza pierwszym i ostatnim są regularne.  

 

Każdy podział można zregularyzować stosując algorytm podobny do algo-

rytmu podziału wielokąta na wielokąty monotoniczne (łączymy krawędzią 

wierzchołek nieregularny v z pomocnikiem krawędzi sąsiadującej z v z lewej 

strony) lub triangulując otoczkę wypukłą podziału. 

 



Załóżmy, że krawędzie podziału są skierowane od wierzchołka o mniej-

szym indeksie do wierzchołka o większym indeksie. Niech IN(v) i 

OUT(v) odpowiednio oznaczają zbiory krawędzi dochodzących do v i 

wychodzących z v. 

Niech W(e) oznacza wagę krawędzi e, czyli liczbę separatorów, do któ-

rych należy e.  

Wtedy WIN(v) := eIN(v) W(e) oraz WOUT(v) := eOUT(v) W(e) . 

 

Aby wyznaczyć układ separatorów wystarczy pokazać, że wagi można tak 

dobrać, aby: 

- waga każdej krawędzi była dodatnią liczbą całkowitą, 

- WIN(v) = WOUT(v) dla każdego v regularnego. 

 

Pierwszy warunek zapewnia, że każda krawędź należy do co najmniej 

jednego separatora. Drugi zaś gwarantuje, że separatory są spójne i nie 

kończą się w wierzchołku regularnym. 

 

 



procedure WAGI 

for każda krawędź e do W(e) := 1; 

for i := 2 to n-1 do 

    v := i-ty wierzchołek w ciągu; 

    WIN(v) := eIN(v) W(e) ;  

    d := pierwsza z lewej krawędź wycho- 

           dząca z v; 

    if WIN(v) > WOUT(v) 

        then W(d) := WIN(v)- WOUT(v)+ W(d); 

for i := n-1 downto 2 do 

    v := i-ty wierzchołek w ciągu; 

    WOUT(v) := eOUT(v) W(e) ;  

    d := pierwsza z lewej krawędź docho- 

           dząca do v; 

    if WOUT(v) > WIN(v) 

        then W(d) := WOUT(v) - WIN(v) + W(d); 
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Przykład. 

Układ separatorów określanych przez wagi krawędzi. 

Między kolejnymi separatorami może być więcej niż jeden obszar 

(jest 8 obszarów i 6 separatorów) 
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W poprzednim algorytmie przechowywa-
liśmy stablicowane separatory co znacznie 
obciążało pamięć. 

 

Teraz stosujemy zrównoważone drzewo 
binarne, w którego węzłach przechowujemy 
stablicowany ciąg krawędzi danego 
separatora nie należących do separatorów 
odpowiadających przodkom tego separatora 
w drzewie. Jeśli w badanym ciągu nie ma 
krawędzi separatora leżącej nad lub pod 
lokalizowanym punktem, to wynik badania 
jest taki sam jak poprzednio. 

 

Lemat. 

Czas lokalizacji punktu w n-wierzchołko-
wym podziale płaszczyzny wynosi O(log2 n), 
przy wykorzystaniu struktury o rozmiarze 
O(n) tworzonej w czasie O(n log n). 
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Metoda doskonalenia triangulacji. 

 

Załóżmy, że dany podział D ma kształt 
striangulowanego trójkąta. 

procedure TRIANGLE(D) 

T := zbiór trójkątów tworzących D; 

V := {etykiety trójkątów}; E := ;  

while |T| > 1 do 

    wybierz niezależny zbiór wewnętrznych  

    wierzchołków stopnia mniejszego niż 12 ;  

    usuń z T trójkąty z tymi wierzchołkami;  

    usuń z D wybrane wierzchołki wraz z  

    incydentnymi krawędziami, ponownie  

    strianguluj D i dodaj nowe trójkąty do T; 

    V := V  {nowe trójkąty}; E := E     

    {(N,U): N-nowy, U-usunięty, N  U  }; 

return (V, E); 
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Graf (V, E) 



Lemat.  

Liczba poziomów w grafie jest logarytmiczna, 

jego rozmiar jest liniowy względem liczby 

wierzchołków a każdy wierzchołek ma stopień 

ograniczony przez stałą.   

 

Fakt. 

Dla dowolnego podziału o n wierzchołkach 

czas preprocessingu wynosi O(n) (korzystając 

z algorytmu triangulacji Chazelle). 

 

Twierdzenie. 

W n-wierzchołkowym trójkątnym podziale 

możemy zlokalizować punkt w czasie O(log n) 

z pomocą struktury o rozmiarze O(n) 

stworzonej w czasie O(n). 
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Randomizowany algorytm znajdujący 

triangulację Delaunay. 

 

Załóżmy, że żadne cztery punkty z danego 

zbioru P = {p1, …, pn} nie są współokręgowe. 

Zdefiniujmy też trzy dodatkowe punkty p-1, p-2, 

p-3, które będą wierzchołkami trójkąta 

zawierającego zbiór P w swoim wnętrzu. W ten 

sposób będziemy mogli zastosować do opisu 

struktury podwójnie łączoną listę krawędzi. 

 

 

Podczas tworzenia triangulacji Delaunay trójkąty 

o wierzchołkach w punktach p-1, p-2, p-3, 

traktujemy w szczególny sposób, aby nie 

wpływały na wynik. Po skończeniu pracy 

algorytmu usuwamy te punkty wraz z 

incydentnymi krawędziami.    

 

P 

p-1 

p-2 p-3 



W celu znalezienia triangulacji 

Delaunay stosujemy algorytm 

przyrostowy. 

 

Po dodaniu kolejnego punktu mogą 

powstać trzy lub cztery nowe trójkąty, 

w zależności od tego, czy punkt ten 

znajduje się we wnętrzu aktualnego 

trójkąta, czy na jego krawędzi.  



Definicja. 

Niech pipjpk oraz pipjpl będą trójkątami 

należącymi do triangulacji. Krawędź pipj jest 

nielegalna (illegal edge), jeśli minimalny kąt w 

trójkątach pipjpk i pipjpl jest mniejszy od 

minimalnego kąta w trójkątach pipkpl oraz 

pjpkpl.   

 

Krawędź legalizujemy zamieniając ją na drugą 

przekątną czworokąta tworzonego przez trójkąty 

przylegające do badanej krawędzi.  

 

Jeśli któryś z nowopowstałych trójkątów nadal 

ma nielegalną krawędź, to kontynuujemy 

zamianę, aż do wyeliminowania wszystkich 

nielegalnych krawędzi. Ponieważ każda nowa 

krawędź ma koniec w dodawanym punkcie, więc 

proces ten jest skończony.  

 



Algorytm (wstawianym punktem jest pr, 

a badaną krawędzią pipj) 

 

LegalizeEdge(pr,pipj,T) 

if pipj jest nielegalna i pipjpk należy do 

triangulacji 

then  

 zastąp pipj przez prpk; 

 LegalizeEdge(pr,pipk,T); 

 LegalizeEdge(pr,pkpj,T); 

 

 

 

 

p-1 

p-2 p-3 



Aby móc lokalizować trójkąt 

zawierający dodawany punkt 

tworzymy odpowiednią strukturę 

danych.  

Jest to skierowany graf, w którym 

źródłem (wierzchołkiem o stopniu 

wejściowym 0) jest trójkąt p-1p-2p-3, 

a przy dodawaniu kolejnych punktów 

powstają nowe wierzchołki 

odpowiadające trójkątom tworzonym 

zarówno przez dodanie punktu jak też 

przez zamianę krawędzi. 

Każdy nowopowstały wierzchołek 

struktury danych jest końcem 

krawędzi łączących go z każdym 

wierzchołkiem odpowiadającym 

trójkątowi, z którego powstał.   

t1 t2 

t3 

t1 t2 
t3 

t1 

t3 

t2 t4 

t5 

t6 

t2 
t3 

t4 
t5 t6 

t2 t1 

t3 

t4 

t5 t3 

t4 
t5 t6 

t7 

t8 

t7 
t8 

t3 t2 t1 

t10 

t4 

t5 

t4 
t5 t6 

t9 

t8 

t7 
t8 

t9 
t10 



Algorytm znajdujący triangulację Delaunay 

 

zainicjuj triangulację T jako pojedynczy trójkąt p-1p-2p-3 zawierający 

dany zbiór punktów P w swoim wnętrzu; 

oblicz losową permutację p1, p2, …, pn punktów z P; 

for r:=1 to n do 

 znajdź trójkąt pipjpk zawierający punkt pr 

 if pr leży wewnątrz trójkąta pipjpk  

  then legalizuj krawędzie triangulacji zaczynając od pipj, 

  pipk i pjpk 

  else legalizuj krawędzie triangulacji zaczynając od  

  pozostałych krawędzi trójkątów, na których wspólnym 

  boku leży pr; 

usuń z T punkty p-1, p-2, p-3 wraz ze wszystkimi incydentnymi 

krawędziami; 

return T  

 



Lemat. 

Każda krawędź tworzona przy wstawianiu nowego punktu pr jest krawędzią 

triangulacji Delaunay zbioru {p-1, p-2, p-3, p1, …, pr-1, pr}. 

 

Lemat. 

Oczekiwana liczba trójkątów tworzonych przez algorytm wynosi 9n+1. 

Dowód. 

Dodawany punkt pr ma początkowo stopień 3 lub 4 i tworzy tyle samo nowych 

trójkątów. Przy każdej zamianie krawędzi liczba trójkątów wzrasta o 2, a stopień 

punktu pr o 1. Jeśli po wszystkich zamianach pr ma stopień k, to powstały co 

najwyżej 2(k-3)+3 = 2k-3 nowe trójkąty.  

Na mocy twierdzenia Eulera graf dla zbioru {p-1, p-2, p-3, p1, …, pr-1, pr} ma co 

najwyżej 3(r+3)-6 krawędzi. Trzy krawędzie należą do zewnętrznego trójkąta. 

Zatem suma stopni wierzchołków z P jest mniejsza niż 2(3(r+3)-9) = 6r. Czyli 

oczekiwany stopień punktu z P wynosi co najwyżej 6. 

E(liczba trójkątów tworzonych w r-tym kroku)  E(2deg pr-3) = 2E(deg pr)-3  

 26-3 = 9. 

Dodając trójkąt zewnętrzny otrzymujemy oczekiwaną liczbę trójkątów równą 9n+1.  



Niech K() oznacza podzbiór punktów z P  należący do koła opisanego na 

danym trójkącie . 

 

Lemat. 

Jeśli P jest zbiorem punktów w położeniu ogólnym, to E( card(K())) = 

O(n log n), gdzie sumujemy po wszystkich trójkątach Delaunay 

stworzonych przez algorytm. 

Dowód. 

Niech Pr oznacza zbiór {p1, …, pr-1, pr}, a Tr triangulację zbioru {p-1, p-2, 

p-3, p1, …, pr-1, pr}. Dla każdego r triangulacja jest jednoznacznie 

wyznaczona. Mamy  card(K()) = n
r=1(Tr-T{r-1} card(K())). 

Niech t(Pr,q) oznacza liczbę trójkątów Tr takich, że punkt q należy do 

K(), a t(Pr,q,pr) będzie liczbą trójkątów Tr takich, że pr jest 

wierzchołkiem trójkąta  wpisanego w koło zawierające q.  

Każdy trójkąt stworzony w r-tej fazie algorytmu ma wierzchołek w pr, 

więc Tr-T{r-1} card(K()) = qP-Pr t(Pr,q,pr).  



Chwilowo ustalmy Pr. Wtedy wartość t(Pr,q,pr) zależy tylko od wyboru pr. 

Ponieważ trójkąt Tr ma wierzchołek w pewnym punkcie p należącym do Pr z 

prawdopodobieństwem nie większym niż 3/r, więc E(t(Pr,q,pr))  3t(Pr,q)/r. Stąd  

E(Tr-T{r-1} card(K())) = E(qP-Pr t(Pr,q,pr))  3/r qP-Pr t(Pr,q).  

Każdy q  P-Pr z jednakowym prawdopodobieństwem może stać się pr+1, więc 

E(t(Pr,pr+1)) = 1/(n-r) qP-Pr t(Pr,q), czyli 

E(Tr-T{r-1} card(K()))  3(n-r)/r E(t(Pr,pr+1)).  

Ponieważ t(Pr,pr+1) oznacza liczbę trójkątów Tr, dla których pr+1K(), więc 

są to dokładnie te trójkąty, które zostaną zmienione po dodaniu pr+1. 

Zatem E(Tr-T{r-1} card(K()))  3(n-r)/r E(card(Tr-Tr+1)). 

Ale liczba trójkątów zmienionych po wstawieniu punktu pr+1 jest dokładnie o 2 

mniejsza od liczby trójkątów stworzonych przez wstawienie tego punktu.  

Stąd E(Tr-T{r-1} card(K()))  3(n-r)/r (E(card(Tr+1-Tr)-2). 

To samo zachodzi dla dowolnego zbioru Pr. Ponieważ oczekiwana liczba 

trójkątów tworzonych przez wstawienie pr+1 jest nie większa niż 6, więc 

E(Tr-T{r-1} card(K()))  12(n-r)/r, czyli   

E( card(K())) = E(n
r=1(Tr-T{r-1} card(K())))  12 n

r=1(n-r)/r = O(n log n). 



Twierdzenie. 

Triangulację Delaunay zbioru P zawierającego n punktów na płaszczyźnie 

można obliczyć w oczekiwanym czasie O(n log n) i z oczekiwanym 

rozmiarem pamięci O(n). 

Dowód. 

Oczekiwany rozmiar struktury danych jest liniowy. 

Oczekiwany czas działania bez uwzględnienia czasu lokalizacji punktu jest 

również liniowy. Rozważmy lokalizację punktu pr. 

Czas lokalizacji wynosi O(1)+O(czas lokalizacji w trójkątach 

zawierających pr, które zostały zmienione). Trójkąt pipjpk może być 

usunięty z triangulacji, gdy: 

- nowy punkt pl wstawiono we wnętrzu lub na brzegu pipjpk, 

- została zmieniona krawędź (np. pipj) pipjpk. 

W pierwszym przypadku pipjpk był trójkątem wcześniejszej 

 triangulacji, a w drugim - takim trójkątem był sąsiedni  

trójkąt (pipjpm) i wstawiono pl. Wtedy okrąg opisany  

na pipjpm zawiera pl i pr. Zwiążmy koszt odwiedzenia trójkąta  

w trakcie lokalizacji pr z trójkątem triangulacji zmienianym wraz z pipjpk.  

 

pl 

pj 

pm 

pi 

pk 



Zatem takiemu trójkątowi przypisujemy czasy lokalizacji (jednostkowe) 

wszystkich punktów należących do koła opisanego na nim.  

Dla trójkąta  takich punktów jest card(K()). Zatem oczekiwany czas 

lokalizacji wszystkich punktów wynosi (długość ścieżki wyszukiwania 

danego punktu = liczba kół zawierających dany punkt; liczba kół 

zawierających wszystkie punkty = liczba punktów zawieranych przez 

wszystkie koła): 

O(n) + O(card(K())) = O(n log n). 

Stąd oczekiwany czas działania algorytmu wynosi 

O(n) + O(n log n) = O(n log n) . 

 



 

 

 

 

Dziękuję za uwagę. 



Ćwiczenia. 

1. Udowodnij, że głębokość drzewa tworzonego w metodzie trapezowej jest 
nie większa niż 3logW(U) + log n + 3. 

 

2. Udowodnij, że rozmiar drzewa tworzonego w metodzie trapezowej wynosi 
O(n log n). 

 

3. Podaj przykład podziału, dla którego drzewo tworzone w metodzie 
trapezowej ma rozmiar (n log n).   

 

4. Wielokąt P nazywamy gwiaździstym, gdy zawiera punkt (centralny) p taki, 
że dla każdego punktu qP odcinek pq jest zawarty w P. Wierzchołki 
wielokąta są kolejno stablicowane. W jakim czasie można sprawdzić, czy dany 
punkt należy do wielokąta gwiaździstego ? (znając punkt centralny lub nie) 

 

5. Udowodnij, że liczba poziomów w grafie lokalizacji trójkątami jest 
logarytmiczna, jego rozmiar jest liniowy względem liczby wierzchołków, a 
każdy wierzchołek ma stopień ograniczony przez stałą. 

 

 



6. Dany jest zbiór n punktów. Jak stworzyć strukturę (czas jej tworzenia jest 

nieistotny), dzięki której w czasie O(log n + k), gdzie k jest liczbą 

rozwiązań, będzie można zlokalizować wszystkie punkty oddalone od 

punktu zapytania o nie więcej niż d, gdzie k jest rozmiarem wyniku  ? 

 

7. Podaj przykład układu separatorów, które generują kwadratowy  rozmiar 

odpowiedniej struktury względem liczby wierzchołków podziału 

płaszczyzny. 

 

8. Jak stworzyć drzewo układu separatorów w czasie O(n log n) ? 

 

9. Udowodnij, że każda krawędź tworzona przy wstawianiu nowego punktu 

pr jest krawędzią triangulacji Delaunay zbioru {p-1, p-2, p-3, p1, …, pr-1, pr}. 

 

 



1. Udowodnij, że głębokość drzewa tworzonego w metodzie trapezowej jest 
nie większa niż 3logW(U) + log n + 3. 

Dowód. 

Indukcja po W(U). 

Dla W(U) = 1 jedyny wierzchołek drzewa odpowiada- 

jący poziomej prostej przechodzącej przez wierz- 

chołek podziału znajduje się w korzeniu Tr.  

Poddrzewa Tr oraz T’ i T” są zrównoważonymi 

drzewami zawierającymi co najwyżej n wierzchołków 

odpowiadających trapezom. 

Zatem głębokość całego drzewa wynosi co najwyżej log n + 3 = 3logW(U) 
+ log n + 3. 

Załóżmy, że W(U) = k i dla wszystkich pasów U’ takich, że W(U’) < k 

teza indukcji jest prawdziwa. 

Niech pas Ur odpowiada poddrzewu Tr. Mamy dwa przypadki. 

1) W(Ur)  k/2. Ponieważ dla pasów U’ i U” odpowiadających poddrzewom 
T’ i T” mamy W(U’) < k/2 i W(U”) < k/2 ,  

 

er-1 

 er 

 T”  Tr 

 T’ 



więc głębokości poddrzew T’, T” i Tr szacują się na mocy założenia 

indukcyjnego przez 3log(k/2) + log n + 3 = 3log k + log n, co daje 

oszacowanie głębokości całego drzewa przez 3log k + log n + 2  

3logW(U) + log n +3. 

2) W(Ur) > k/2. Ponieważ W(U’) < k/2 i W(U”) < k/2, więc dla T’ i T” 

mamy te same oszacowania co powyżej. Korzeniem poddrzewa Tr jest 

(podobnie jak dla przypadku W(U) = 1) wierzchołek odpowiadający 

poziomej prostej poprowadzonej przez medianę punktów podziału 

należących do Ur, więc wagi pasów odpowiadających lewemu i prawemu 

poddrzewu tego drzewa szacują się przez W(Ur)/2  k/2.  

Zatem na mocy założenia indukcyjnego ich głębokość szacuje się przez 

3log(k/2) + log n + 3 = 3log k + log n, co daje oszacowanie głębokości 

całego drzewa przez 3log k + log n + 3  3logW(U) + log n +3.  

 


