
Geometria obliczeniowa 
Wykład 7 

Uogólnienia diagramów Voronoi 

1. Diagramy w metrykach Lp 

2. Diagramy potęgowe 

3. Diagramy ważone 

4. Diagramy dla odcinków 

5. Szkielety 

6. Diagramy wyższych rzędów 

7. -szkielety 



Diagramy w metrykach Lp dla (1<p<). 

  

Odległość między dwoma punktami na 
płaszczyźnie definiujemy jako: 

dp(a,b) = (|a1 - b1|
p + |a2 - b2|

p)1/p . 

Dla 1 < p <  własności i konstrukcja 
diagramu niewiele różnią się od 
prezentowanych wcześniej (w metryce 
euklidesowej).  

Z uwagi na odmienne kształty kół dla    
p  2 obszary Voronoi nie muszą być 
wypukłe, gdyż granica miedzy dwoma 
obszarami jest krzywą a nie prostą. Nie 
pociąga to jednak za sobą żadnych 
negatywnych skutków takich, jak np. 
rozspójnienie wspólnego brzegu 
sąsiednich obszarów.  

 



W metrykach L1 i L granica między 

dwoma obszarami Voronoi może być 

łamaną lub połączonymi klinami. 

 

Diagram Voronoi może składać się z 

odcinków, półprostych lub prostych 

pionowych, poziomych, zawartych w 

prostych o współczynnikach kierun-

kowych 1 lub  –1 bądź z obszarów 

między nimi. 

 

Ponadto nie jest prawdą, że generatory 

nieograniczonych obszarów Voronoi są 

wierzchołkami otoczki wypukłej zbioru 

generatorów S oraz że suma trójkątów 

triangulacji Delaunay tworzy wielokąt 

wypukły.  



Fakt. 

Stosując np. metodę dziel i rządź możemy znaleźć diagram Voronoi w 

metryce Lp (1  p  ) dla zbioru n punktów na płaszczyźnie w czasie 

O(n log n). 



Diagramy potęgowe (w geometrii Laguerre).  

 

Generatorami obszarów Voronoi są koła, 

które traktujemy jako punkty. Podobnie, 

punkty utożsamiamy z kołami o zerowym 

promieniu.  

 

Definicja. 

Niech Ci będzie kołem o środku w (xi,yi) i 

promieniu ri a p=(x,y) punktem na płaszczyź-

nie, wtedy d2
L(Ci,p) = (x - xi)

2 + (y - yi)
2 – r2

i, 

czyli kwadrat odległości koła od punktu 

(„potęga”) jest kwadratem długości odcinka 

stycznego o końcu w danym punkcie. 

 

W przypadku, gdy wszystkie koła mają 

równe promienie otrzymamy diagram 

Voronoi w L2. 

Ci 

r 
p 

dL(Ci,p) 



Własności diagramu potęgowego: 

- Krawędziami diagramów są odcinki, półproste lub proste. 

- Obszarami Voronoi są ograniczone lub nieograniczone wielokąty 

wypukłe.  

- Gdy okręgi kół przecinają się – wspólna krawędź obszarów zawiera 

punkty ich przecięcia.  

- Przecięcie obszaru Voronoi z generującym go kołem może być puste. 

- Mogą istnieć generatory, dla których odpowiadający im obszar Voronoi 

nie istnieje. 

 

Lemat. 

Stosując metodę dziel i rządź można znaleźć diagram potęgowy n-ele-

mentowego zbioru punktów na płaszczyźnie w czasie O(n log n). 



Przykład. 



Diagram ważony – addytywny. 

 

Każdemu punktowi pi  S przypisujemy wagę 

wi > 0. Wtedy obszar Voronoi definiujemy 

następująco: 

VD(pi) := {x: ij d(pi,x) - wi  d(pj,x) - wj}  

 

Krawędzie diagramu są kawałkami hiperbol 

lub prostych. Wspólny brzeg dwóch obszarów 

może być niespójny.  Mogą nie istnieć obszary 

dla niektórych centrów. 

Jeśli wszystkie wagi są równe, to otrzymujemy 

diagram Voronoi w przestrzeni euklidesowej. 

 

Lemat. 

Diagram ważony n-elementowego zbioru 

punktów na płaszczyźnie można znaleźć w 

czasie O(n log n) (np. metodą dziel i rządź). 



Diagramy Voronoi dla odcinków w R2. 
 

Odległość punktu p od odcinka I definiu-
jemy jako odległość p od najbliższego 
punktu należącego do I: 

d(p,I) = minq  I d(p,q) . 

  

Krawędziami obszarów Voronoi mogą 
być odcinki, półproste i fragmenty para-
bol (gdy dla punktu z brzegu obszaru 
najbliższym punktem jednego z sąsiadu-
jących odcinków jest jego koniec a dru-
giego - punkt z jego wnętrza). Każdy 
generator należy do swojego obszaru. 

 

Lemat.  

Diagram Voronoi dla n odcinków na 
płaszczyźnie  można znaleźć w czasie 
O(n log n) (np. metodą dziel i rządź). 



Szkielety. 

 

Szkieletem (lub osią medialną (medial 

axis)) wielokąta prostego nazywamy 

podgraf części wspólnej wnętrza 

wielokąta i diagramu Voronoi dla jego 

krawędzi. Jest on miejscem 

geometrycznym środków okręgów 

stycznych do co najmniej dwóch punktów 

na brzegu wielokąta. 

 

Twierdzenie (Chin, Snoeyink, Wang 

1995). 

Szkielet wielokąta prostego o n wierz-

chołkach można znaleźć w czasie O(n).    



 Szkielet prosty. (straight skeleton) 

 

Załóżmy, że dany wielokąt będzie 

„obkurczać się” w taki sposób, że jego 

wierzchołki będą poruszać się wzdłuż 

dwusiecznych kątów wyznaczanych przez 

proste zawierające boki wielokąta. 

Mamy dwa rodzaje zdarzeń, które powodują 

zmianę kierunku poruszania się wierzchołka: 

- zdarzenie krawędziowe, gdy znika  

krawędź „obkurczającego się” wielokąta, 

- zdarzenie rozdzielające, gdy krawędź 

„obkurczającego się” wielokąta jest rozbijana 

przez wierzchołek poruszający się w 

przeciwnym kierunku.   

 

Suma śladów wierzchołków wielokąta 

tworzy szkielet prosty. 



Własności szkieletu prostego. 

1. Krawędzie szkieletu prostego są odcinkami. 

2. Szkielet prosty dzieli  wielokąt na wielokąty monotoniczne. 

 

Lemat. 

Jeśli P jest wielokątem prostym o n wierzchołkach, to szkielet prosty tego 

wielokąta składa się z co najwyżej 2n-3 krawędzi. 

 

Twierdzenie (Cheng, Mencel,Vigneron 2016) 

Szkielet prosty dla n-kąta prostego na płaszczyźnie z r kątami o rozwartości 

większej niż  można obliczyć w czasie O(n log n log r + r4/3+).  

 

Dla n-kąta monotonicznego można zrobić to w czasie O(n log n) (Das et al. 

2010).      



Rozpoznawanie obrazu. 

 

Dla danego obrazu możemy tworzyć mniej lub bardziej dokładne 

szkielety zmieniając parametry, które odpowiadają minimalnemu 

promieniowi koła wpisanego we wnętrzu obrazu lub odległości między 

liśćmi drzewa. 

[W.-P. Choi et al. Pattern Recognition 36 (2003)]  



Diagramy Voronoi wyższych rzędów. 

 

Definicje. 

Niech S={p1, ... , pn} będzie zbiorem n 

punktów na płaszczyźnie. Dla każdego 

podzbioru T  S określamy uogólniony 

obszar Voronoi zawierający punkty 

płaszczyzny, dla których punkty z T są 

bliżej niż punkty z S-T, tzn.: 

VD(T) := {x: pT,qS-T d(p,x)  d(q,x)}. 

Inaczej:  

Niech V(p,q) := {x: d(p,x)  d(q,x)}. 

Wtedy VD(T) :=   pT,qS-T V(p,q). 

 



k = 1 k = 2 k = 3 

Definicja. 

Diagram Voronoi rzędu k jest zbiorem 
uogólnionych obszarów Voronoi dla k-
podzbiorów zbioru S, tzn. 

VDk(S) := TS, |T|=k VD(T). 

 

Lemat. 

Dla n-elementowego zbioru S liczba 
obszarów Voronoi wszystkich rzędów 
wynosi O(n3). 

Dowód. 

Każdy wierzchołek diagramu dowolnego 
rzędu jest wyznaczany przez co najmniej 
trzy punkty z S. Każde trzy punkty z S 
wyznaczają wierzchołek co najwyżej 
dwóch diagramów (rzędu równego 
liczbie punktów z S wewnątrz okręgu 
opisanego na danych trzech punktach + 1 
lub 2).  Diagramy są planarne, więc 
liczba obszarów jest liniowa względem 
liczby wierzchołków.   

k = 4 



Niech T1, T2, T3 oznaczają zbiory 

generatorów obszarów Voronoi 

sąsiadujących z danym wierzchołkiem. W 

diagramie Voronoi k-tego rzędu możemy 

wyróżnić dwa rodzaje wierzchołków: 

- wierzchołek bliski, gdy | T1  T2  T3 | = 

k+2 (dla k < n-1), 

- wierzchołek daleki, gdy | T1  T2  T3 | = 

k-2 (dla 1< k), 

gdzie  oznacza różnicę symetryczną. 

Odpowiada to sytuacji, gdy wewnątrz koła 

wyznaczanego przez trzy punkty z S 

znajduje się odpowiednio k-1 lub k-2 

punktów z S.  

k = 2 



Z diagramu Voronoi k-tego rzędu 

możemy stworzyć diagram (k+1)-szego 

rzędu w następujący sposób: 

Z wierzchołków bliskich prowadzimy 

krawędzie będące przedłużeniem 

dotychczasowych krawędzi diagramu, 

które są usuwane.  

W ten sposób wierzchołki bliskie stają się 

wierzchołkami dalekimi. Wierzchołki 

dalekie znikają w kolejnym kroku. A 

przecięcia nowych krawędzi tworzą nowe 

wierzchołki bliskie. 

 

 



Lemat. 

Liczba wierzchołków bliskich w diagramie Voronoi k-tego rzędu dla n-
elementowego zbioru S punktów na płaszczyźnie jest ograniczona z góry 
przez 2k(n-1) - k(k-1) - k

i=1vi, gdzie vi jest liczbą nieograniczonych 
obszarów w VDi(S). 

 

Twierdzenie. 

Diagram Voronoi k-tego rzędu dla n-elementowego zbioru S punktów na 
płaszczyźnie można wyznaczyć w czasie O(k2n log n). 

Dowód. 

Stosujemy metodę zamiatania. Ponieważ liczba wierzchołków bliskich w 
VDi(S) jest rzędu O(ni), więc przejście do VDi+1(S) wymaga czasu O(in 
log n). Zatem k

i=1O(in log n) = O(k2n log n). 

 

Wniosek.  

Algorytmem tym możemy znaleźć diagramy Voronoi wszystkich rzędów 
w czasie O(n3 log n).  



Fakt. 

Istnieje algorytm (Edelsbrunner-Seidel) znajdujący diagramy Voronoi 

wszystkich rzędów w optymalnym czasie O(n3). 

 

Fakt. 

Dla n-elementowego zbioru S punktów na płaszczyźnie złożoność VDk(S) 

wynosi O(k(n-k)) i można taki diagram znaleźć w czasie O(n log3n + k(n-k)) 

(w niektórych przypadkach – szybciej). 

 

Fakt. 

Diagram Voronoi (n-1)-szego rzędu dla n-elementowego zbioru S punktów na 

płaszczyźnie nazywamy diagramem Voronoi najdalszych punktów. Ma on 

liniowy rozmiar i może być znaleziony w czasie O(n log n). 

 

Definicja. 

Triangulację nazywamy triangulacją Delaunay k-tego rzędu, jeśli okrąg opi-

sany na dowolnym trójkącie zawiera w swoim wnętrzu co najwyżej k centrów. 

Taka triangulacja nie musi być i zwykle nie jest jednoznaczna. 



 = 0,8  = 0,95 

Definicja. 

Dla danego zbioru P zawierającego n punktów w Rm -szkieletami G 

nazywamy rodzinę grafów o wierzchołkach z P, parametryzowaną przez 

wartość , takich, że dwa punkty x,y  P są połączone krawędzią, gdy żaden 

inny punkt z P nie należy do obszaru R(x,y,), gdzie: 

 

2. Dla 0 <  < 1, R(x,y,) jest częścią wspólną  

    dwóch kul o promieniu d(x,y)/2, których  

    brzegi zawierają oba punkty x i y.  

1. Dla  = 0, R(x,y,) jest odcinkiem  xy . 

y x 



 = 1 

3. Dla 1   < , R(x,y, ) jest częścią wspólną dwóch kul o promieniu 

    d(x,y)/2 i środkach odpowiednio w punktach (1-/2)x+(/2)y oraz 

    (/2)x+(1-/2)y.  

4. Dla  = , R(x,y,) jest nieskończonym pasem prostopadłym do prostej 

    przechodzącej przez x i y, którego brzeg zawiera x i y.   

 =  

y x 

 = 2 



Zastosowania. 

Rozpoznawanie obrazu. 

(mii.stanford.edu/research/comptop/references/abe.pdf) 



x y 

z 

Własności -szkieletów. 

-szkielet dla zbioru punktów P i  = 1 nazywamy grafem Gabriela (GG(P)) 

(Gabriel,Sokal 1969), a dla  = 2 nazywamy grafem  relatywnego sąsiedztwa 

(RNG(P)) (Toussaint 1980).  

 

Twierdzenie (Kirkpatrick,Radke 1985). 

MST(P)  RNG(P)  GG(P)  DT(P) 

 

 

x y 



Konstrukcja –szkieletów. 

 

Twierdzenie (Supowit 1983). 

RNG(P) w R2 można znależć w czasie O(n log n). 

 

Twierdzenie (Matula,Sokal 1984). 

GG(P) w R2 można znaleźć w czasie O(n log n). 

 

Twierdzenie (Jaromczyk,Kowaluk 1987) 

–szkielety (dla 1    2) w R2 można wyznaczyć z DT(P) w czasie O(n).   

 

 



Dla każdego wierzchołka v z danego 

zbioru V konstruujemy ścieżki P=(e1, 

… ,es), takie, że 

- e1 jest krawędzią przeciwległą do v 

w pewnym trójkącie DT(V), 

- v eliminuje krawędź ei dla 1 ≤ i ≤ s, 

- krawędzie ei oraz ei+1 należą do tego 

samego trójkąta w DT(V). 

 

Taką ścieżkę nazywamy ścieżką 

eliminacji dla v. 

Ponieważ wierzchołek może 

eliminować tylko dłuższą krawędź 

spośród pozostałych dwóch krawędzi w 

odwiedzanym trójkącie, możemy 

wyznaczyć uogólnione ścieżki 

zawierające ścieżki eliminacji. 

v β=1 



Lemat. 

1. Dwie ścieżki eliminacji, które się połączyły, nigdy się nie rozłączają (co 

najwyżej jedna z nich kończy się wcześniej). 

2. Każda eliminowana krawędź należy do pewnej ścieżki eliminacji. 

 

Twierdzenie. 

Gβ(V) = DT(V) \ ∪∆uvw∈DT(V) path(v,uw).  

 

 



Algorytm. 

1. Dla każdego wierzchołka znajdź uogólnione ścieżki. 

2. Połącz je w drzewa. 

3. Analizuj kolejne ścieżki eliminacji i sklejaj je ze sobą z pomocą 

FIND-UNION (ponieważ drzewa zawierające ścieżki znane są „z 

góry” – można to zrobić w czasie liniowym względem analizowanych 

krawędzi). 

4. Usuń z DT(V) wszystkie krawędzie należące do jakiejkolwiek ścieżki 

eliminacji. 



Twierdzenie (Chazelle,Edelsbrunner,Guibas,Hershberger,Seidel,Sharir 1990). 

GG(P) w R3 może mieć (n2) krawędzi. 

 

 

Fakt. 

RNG(P) w Rm dla m > 3 może mieć (n2) krawędzi. 

 



Niech L(u,v) oznacza długość najkrótszej ścieżki w grafie łączącej wierz-

chołki u i v spójnego grafu G w R2, a D(u,v) oznacza odległość między u i v.  

Współczynnik rozpięcia DL (dilation) grafu G definiujemy jako 

  DL = max (u,v)  G L(u,v)/D(u,v) . 

 

 

 

 

 

 

Twierdzenie (Keil,Gutwin 1992). 

Współczynnik rozpięcia DT(P), gdzie |P| = n, wynosi O(1). 

 

Twierdzenie (Bose,Devroye,Evans,Kirkpatrick 2002). 

Współczynnik rozpięcia RNG(P), gdzie |P| = n, wynosi (n). 

Współczynnik rozpięcia GG(P), gdzie |P| = n, wynosi O(n1/2).  

L(u,v) 

D(u,v) 
v u 



Grafami sąsiedztwa (proximity graphs) dla zbioru punktów P nazywamy   

grafy, w których istnienie krawędzi między dwoma punktami z P zależy  

od spełnienia odpowiedniego warunku geometrycznego. 

 

Grafy definiowane przez różne obszary. 

grafy planarne 

grafy bez trójkątów 

grafy bez czworokątów 

grafy acykliczne 



 

 

 

 

Dziękuję za uwagę. 



Ćwiczenia. 

1. Przy założeniu, że żadna prosta o współczynniku kieunkowym 1 lub -1 nie 
zawiera dwóch centrów wykaż, że w metryce L1 diagram Voronoi najdalszego 
punktu zbioru n-elementowego S (n  4) składa się zawsze z co najwyżej 
czterech obszarów. 

 

2. Podaj przykład, że generatory nieograniczonych obszarów w metryce L1 

mogą nie być wierzchołkami otoczki wypukłej, a triangulacja Delaunay nie 
musi tworzyć wielokąta wypukłego. 

 

3. Podaj przykład układu punktów w metryce L1 , dla których brzeg obszaru ma 
niezerowe pole. 

 

4. Czy może nastąpić rozspójnienie wspólnego brzegu sąsiednich obszarów w 
diagramach w metryce Lp ? 

 

 

 

 

 



 

5. Udowodnij następujące właściwości diagramu potęgowego: 

- krawędziami diagramu są fragmenty prostych, 

-mogą istnieć generatory, dla których obszar nie istnieje. 

 

6.  Niech S będzie zbiorem n (być może przecinających się) jednostkowych 

okręgów na płaszczyźnie. Chcemy obliczyć otoczkę wypukłą S. 

- (*) Podaj algorytm obliczania otoczki wypukłej w czasie O(n log n) w 

przypadku, w którym okręgi z S mają różne promienie. 

 

7.  Podaj przykład, że wspólny brzeg sąsiadujących obszarów addytywnego 

diagramu ważonego może być niespójny.  

 

8. Dane są zbiory A i B punktów na płaszczyźnie tworzących dwa zbiory 

punktów dominujących rozdzielone prostą (kolejność punktów w 

każdym zbiorze jest znana). Znajdź w czasie liniowym względem sumy 

rozmiarów zbiorów parę najbliższych punktów z A i B w metryce L1. 

 

 


