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Podwójnie łączona lista krawędzi 

Diagramy Voronoi i triangulacja Delaunay 

1. Właściwości diagramu Voronoi i triangulacji 

Delaunay 
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3. Algorytm przyrostowy 

4. Algorytm dziel i rządź 
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Podwójnie łączona lista krawędzi. 

Niech D będzie podziałem płaszczyzny na  
wielokątne obszary. Z każdą krawędzią 
zwiążmy dwie przeciwnie zorientowane 
(po obu stronach przeciwnie do ruchu 
wskazówek zegara) półkrawędzie.  

Podwójnie łączona lista krawędzi składa 
się z powiązanych ze sobą trzech zbiorów 
rekordów: 

- półkrawędzi pamiętających wskaźniki do 
ściany leżącej z lewej strony, następnej, 
poprzedniej i sąsiedniej półkrawędzi dla tej 
ściany oraz początku półkrawędzi, 

- ściany pamiętających wskaźniki do pew-
nej półkrawędzi na jej zewnętrznym brze-
gu oraz do wybranych półkrawędzi ścian 
zawartych w danej, 

- wierzchołka pamiętających jego współ-
rzędne i wskaźnik do dowolnej krawędzi 
zaczynającej się w nim.  

nil 



Georgy Feodosevich Voronoi 

(Георгий Феодосьевич Вороной,  

28.04.1868 – 20.11.1908). 

Urodzony na Ukrainie. Studiował 

w Sankt Petersburgu. W latach 

1894-1905 oraz 1908 pracował na 

Uniwersytecie Warszawskim i 

Politechnice Warszawskiej.  

 

 

Boris Nikolaevich Delaunay 

(Борис Николаевич Делоне,  

15.03.1890 – 17.07.1980). Mate-

matyk i alpinista.  Nazwisko odzie-

dziczył po francuskich przodkach. 



Definicje. 

Niech S={p1, ... , pn} będzie zbiorem n 
punktów na płaszczyźnie. Dla każdego z 
punktów należących do S określamy obszar 
Voronoi zawierający punkty płaszczyzny, 
dla których dany punkt jest najbliższy 
spośród punktów z S, tzn.: 

VD(pi)={x: ik d(pi,x)  d(pk,x)}. 

Inaczej:  

Dla każdej pary punktów z S określamy 
podział płaszczyzny na dwa obszary:  

V(pi,pj)={x: d(pi,x)  d(pj,x)} oraz 

V(pj,pi)={x: d(pj,x)  d(pi,x)}. Wtedy  

VD(pi)= ijV(pi,pj). 

 

Lemat. 

Obszar Voronoi jest wielokątem wypukłym 
(czasem nieograniczonym). 



Brzegi obszarów Voronoi tworzą diagram 

Voronoi. 

  

Załóżmy, że żadne cztery punkty ze zbioru 

S nie są współokręgowe. 

Triangulacją Delaunay nazywamy graf 

dualny do diagramu Voronoi, którego 

wierzchołkami są punkty z S a krawędzie 

łączą wierzchołki odpowiadające sąsiednim 

obszarom Voronoi.  

 

Triangulację Delaunay możemy również 

rozpatrywać bez żadnych ograniczeń dla 

zbioru S. Jednakże wtedy triangulacja 

może być wyznaczona niejednoznacznie. 

 

W ten sam sposób można zdefiniować 

diagram Voronoi i triangulację Delaunay w 

wyższych wymiarach. 



Własności diagramu Voronoi. 

 

1. Do każdego obszaru Voronoi należy do-

kładnie jeden punkt z S. Punkty z S nazy-

wamy generatorami (centrami) 

odpowiednich obszarów Voronoi.  

2. Diagram Voronoi jest grafem planar-

nym. Ma n ścian i O(n) krawędzi (równą 

liczbie krawędzi triangulacji Delaunay). 

3. Wierzchołek v diagramu Voronoi (tzn. 

punkt należący do brzegu trzech lub wię-

cej obszarów Voronoi) jest środkiem 

okręgu C(v) przechodzącego przez punkty 

z S generujące sąsiednie obszary. Zatem 

okrąg C(v) jest opisany na odpowiednim 

trójkącie należącym do triangulacji 

Delaunay.  W wyższych wymiarach będą 

to sfery opisane na sympleksach. 

 



Własności triangulacji Delaunay. 

 

1. Jest to (z definicji) graf planarny o n 
wierzchołkach. 

2. Każdy trójkąt odpowiada wierzchoł-
kowi diagramu Voronoi. Każda krawędź 
triangulacji odpowiada krawędzi diagra-
mu. Brzegiem triangulacji jest otoczka 
wypukła zbioru S. 

3. Okrąg przechodzący przez dwa punkty 
pi,pj  S, który nie zawiera w swoim 
wnętrzu innych punktów z S, istnieje 
wtedy i tylko wtedy, gdy odcinek     
należy do triangulacji Delaunay.  

4. Triangulacja Delaunay w R2 maksy-
malizuje minimalny kąt w triangulacji. 

5. Triangulacja w Rd zawiera O(nd/2 ) 
sympleksów. 
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Definicja. 

Minimalne drzewo rozpinające MST(S) 

rozpięte na punktach z S jest drzewem o 

wierzchołkach w S i minimalnej wadze 

krawędzi (sumie ich długości). 

Lemat. 

Minimalne drzewo rozpinające MST(S) 

rozpięte na punktach z S jest podgrafem 

triangulacji Delaunay DT(S). 

Dowód. 

Załóżmy, że tak nie jest. Niech krawędź  

       należy do MST(S) i nie należy do 

DT(S). Wtedy okrąg o średnicy |      | 

zawiera w swoim wnętrzu punkt p  S. 

Odcinki        oraz         są krótsze od      

       . Zatem krawędź       możemy zastą-

pić jednym z nich otrzymując drzewo o 

mniejszej wadze, co jest sprzeczne z  

        MST(S). 
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Mając triangulację Delaunay dla danego zbioru punktów na płaszczyźnie 

możemy na zbiorze krawędzi triangulacji zastosować algorytm Prima lub 

algorytm Kruskala znajdywania minimalnego drzewa rozpinającego w 

grafach.   

 

Lemat. 

Minimalne drzewo rozpinające MST(S) rozpięte na punktach z S można 

znaleźć w czasie O(n log n). 

Dowód. 

Powyższe algorytmy działają odpowiednio w czasie O(|E| + |V| log |V|) 

oraz O(|E| log |V|), co przy |E| = O(|V|) daje złożoność O(|V| log |V|).  



Przykład. 



Algorytm przyrostowy 

 

S’ =  ; 

for każdy p  S do 

    znajdź obszar w VD(S’), do którego  

    należy p; 

    korzystając z podwójnie łączonych list  

    krawędzi oblicz obszar Voronoi dla p  

    względem S’ i zaktualizuj diagram; 

    S’ := S’  {p}; 

 

Lemat. 

Algorytm przyrostowy znajdujący dia-

gram Voronoi wymaga czasu O(n2). 

 



Algorytm dziel i rządź 

 

uporządkuj zbiór S względem x-owej współ-

rzędnej, a następnie podziel go na małe grupy 

kolejnych punktów; 

znajdź diagramy Voronoi dla każdej grupy ; 

while zbiór S jest podzielony do 

    for kolejne pary podziałów do 

        znajdź styczne do otoczek wypukłych  

        podziałów ; 

        znajdź przecięcia symetralnych stycz- 

        nych z pierwszymi zewnętrznymi kra- 

        wędziami znanych diagramów Voronoi ; 

        korzystając z podwójnie łączonych list 

        krawędzi znajdź łamaną wyznaczającą  

        resztę krawędzi wspólnego diagramu  

        Voronoi rozdzielających podziały ;   



Przykład zastosowania podwójnie łączonych list krawędzi. 



Lemat. 

Czas potrzebny do znalezienia łamanej określającej krawędzie diagramu 

Voronoi między dwoma łączonymi zbiorami punktów jest liniowy 

względem sumy rozmiarów tych zbiorów. 

 

Lemat. 

Stosując metodę dziel i rządź możemy stworzyć diagram Voronoi dla n-

elementowego zbioru S punktów na płaszczyźnie w czasie O(n log n).  



Algorytm zamiatania (Fortune) 

 

Niech miotła będzie równoległa do osi x-
ów. Będziemy śledzić zmiany krzywej B, 
której każdy punkt jest w takiej samej 
odległości od miotły jak od najbliższego 
punktu ze zbioru S.  

 

Lemat. 

Krzywa B składa się z fragmentów para-
bol i jest monotoniczna względem kie-
runku prostej zamiatającej. 

Dowód. 

Miejsce geometryczne punktów jedna-
kowo odległych od prostej i od punktu 
jest parabolą. Krzywa B jest obwiednią 
sumy parabol. Ponieważ każda z parabol 
jest monotoniczna względem kierunku 
prostej zamiatającej, więc krzywa B też. 



Zauważmy, że wierzchołki krzywej B 
wyznaczają krawędzie diagramu Voronoi. 

  

Krzywa B zmienia się, gdy: 

 

- miotła osiąga kolejny punkt ze zbioru S, 
dzięki czemu powstaje nowy fragment 
krzywej B, którego końce wyznaczają 
brzeg odpowiedniego obszaru Voronoi , 

 

- miotła jest styczna do okręgu opisanego 
na trójkącie z triangulacji Delaunay zbio-
ru S, co sprawia, że jeden z fragmentów 
krzywej B znika - punkt, w którym to 
następuje jest wierzchołkiem diagramu 
Voronoi dla zbioru S. 

 

Opisane sytuacje nazwijmy zdarzeniem 
punktowym i okręgowym. 



Strukturą zdarzeń będzie kopiec H.  

Rozmiar zbioru zdarzeń jest liniowy względem rozmiaru zbioru S (jest liniowo 

wiele zdarzeń okręgowych). Początkowo kopiec zawiera uporządkowane 

względem y-ów współrzędne punktów z S. 

 

Pozycja zdarzenia okręgowego jest obliczana, gdy na krzywej B pojawia się 

nowa trójka kolejnych fragmentów krzywej. Nie każda taka trójka określa 

zdarzenie – istotne są tylko trójki odpowiadające trójkątom triangulacji 

Delaunay. Jednakże do kopca H wstawiamy wszystkie potencjalne zdarzenia 

okręgowe – „fałszywe” są usuwane, gdy przestaje istnieć tworząca je trójka 

fragmentów krzywej B (wskutek zniknięcia lub pojawienia się jakiegoś 

fragmentu). 

 

Natomiast w strukturze stanu T przechowujemy fragmenty krzywej B, jako liście 

zrównoważonego drzewa poszukiwań  binarnych, którego węzły odpowiadają 

wspólnym wierzchołkom sąsiednich fragmentów krzywej B (odpowiadających 

poddrzewom). Wraz z fragmentami krzywej B pamiętane są punkty je 

wyznaczające oraz inne informacje (np. tworzone zdarzenia okręgowe). 

 



procedure HANDLEPOINT(p) 

if T =  then T := {p}; return ; 

znajdź łuk  krzywej B leżący nad p; 

if  z sąsiadami generował  zdarzenie 

okręgowe q, które nie nastąpi  

    then usuń  q z kopca H ; 

zastąp w T liść  przez poddrzewo 

opisujące zmiany na B i zrównoważ T ; 

stwórz nowe rekordy do opisu krawędzi 

diagramu Voronoi; 

sprawdź, czy p z punktami odpowia-

dającymi łukom B sąsiadującym z 

nowopowstałym łukiem wyznacza 

zdarzenie okręgowe – jeśli tak, to zapisz 

je w H;                                                                                                                

procedure HANDLECIRCLE 

usuń z T łuk, który przestaje istnieć, a 

z H wszystkie związane z nim 

zdarzenia okręgowe; 

zrównoważ drzewo T; 

dodaj wierzchołek diagramu Voronoi i 

stwórz rekordy dla nowych krawędzi ; 

sprawdź, czy punkty odpowiadające 

sąsiednim łukom krzywej B 

zajmującym miejsce usuniętego łuku 

wyznaczają zdarzenie okręgowe – jeśli 

tak, to zapisz je w H;  



Algorytm zamiatania 

 

stwórz pustą strukturę T; 

wstaw zdarzenia punktowe do kopca H; 

while H nie jest pusty do  

    if nowe zdarzenie jest punktowe 

        then HANDLEPOINT(p) 

        else HANDLECIRCLE; 

 

Lemat. 

Algorytm zamiatania działa w czasie 

O(n log n) i używa O(n) pamięci. 

 



Algorytm rzutowania na paraboloidę. 

 

Umieśćmy badaną płaszczyznę w przestrzeni 
trójwymiarowej jako z = 0. Rozpatrzmy 
paraboloidę z = x2 + y2 i zrzutujmy na nią 
równolegle do osi z-ów punkty ze zbioru S. 

Zauważmy, że obrazy okręgów należących do 
z = 0 będą współpłaszczyznowe. Jeśli punkt 
(x,y) leży na okręgu o równaniu (x - a)2 + (y - 
b)2 = R2, to x2 + y2 = 2ax +2by + R2 - a2 - b2, 
więc jego obraz (x,y,z) należy do płaszczyzny  

z = 2ax + 2by + R2 – a2 – b2. 

Rzuty okręgów opisanych na trójkątach 
triangulacji Delaunay wyznaczają płaszczyzny, 
które nie rozdzielają zbioru S’ obrazów 
punktów z S, czyli zawierają ściany otoczki 
wypukłej zbioru S’.  

Zatem rzuty ścian otoczki wypukłej zbioru S’ 
wyznaczają triangulację Delaunay zbioru S.  



Lemat. 

Stosując rzutowanie na paraboloidę n-elementowego zbioru S punktów na 

płaszczyźnie możemy znaleźć diagram Voronoi tego zbioru w czasie    

O(n log n). 

Dowód. 

Otoczkę wypukłą w R3 możemy znaleźć w czasie O(n log n). Rzutowanie 

odbywa się w czasie liniowym. Zatem metoda ta pozwala znaleźć triangu-

lację Delaunay (diagram Voronoi) w czasie O(n log n). 

 

Fakt. 

Metodę tę możemy również stosować w wyższych wymiarach. 

W przestrzeni o rozmiarze d > 2, możemy znaleźć diagram Voronoi 

n-elementowego zbioru punktów w czasie O(n d/2 ).  



 

 

 

 

Dziękuję za uwagę. 



Ćwiczenia 6. 

 

1. Podaj algorytm znajdujący dla każdego punktu p  S punkt z S, który jest 
najbliższy niego. 

 

2. Dane są dwa n-elementowe zbiory punktów A i B. Znajdź parę najbliższych 
punktów należących do różnych zbiorów. 

 

3. Dana jest mapa płaska o n wierzchołkach, z których każdy ma stopień 3. 
Zaproponuj algorytm sprawdzający, czy mapa jest diagramem Voronoi 
skończonego zbioru S. Jeśli tak, to stwórz S. 

 

4. Czy w algorytmie Fortune'a punkty załamania na linii brzegu zawsze 
przesuwają się w dół, gdy miotła przesuwa się w dół ?  

 

5. Podaj przykład, w którym parabola zdefiniowana przez pewien punkt p 
wnosi więcej niż jeden łuk do linii brzegu. Czy możesz podać przykład, w 
którym tworzy ona liniową liczbę łuków ? 

 



 

6. Udowodnij, że liczba zdarzeń okręgowych w algorytmie Fortune’a jest 
liniowa względem liczby centrów. 

 

7. Podaj przykład triangulacji Delaunay w R3 rozmiaru kwadratowego.  

 

8. Zakładając, że możemy lokalizować położenie punktu w czasie 
subliniowym, podaj przykład danych, dla których algorytm przyrostowy 
dla diagramu Voronoi działa w czasie kwadratowym.  

 


