
Geometria obliczeniowa 
Wykład 5 

Geometryczne struktury danych 

1. Drzewa odcinków 

 Badanie przecięć odcinków w modelu PRAM  

2. Drzewa czwórkowe 

3. Drzewa BSP 

 



Dotychczas zajmowaliśmy się problemem 

przecinania prostokąta odcinkami równo-

ległymi do jego boków. Jednak znacznie 

bardziej realistyczne jest założenie, że 

odcinki mogą być położone dowolne. 

 

W takim przypadku możemy zamiast od-

cinków badać prostokąty, których prze-

kątnymi są dane odcinki. Korzystając ze 

znanych już struktur możemy znaleźć 

wszystkie prostokąty przecinające dany 

prostokąt a następnie sprawdzić, które od-

cinki rzeczywiście go przecinają. 

 

Jednak w szczególnych przypadkach ta 

metoda może okazać się bardzo nieefek-

tywna. 



Drzewo odcinków (segment tree). 

 

W n-elementowym zbiorze S rozłącznych 

odcinków, chcemy znaleźć te z nich, które 

przecinają prostokąt R := [x1,x2][y1,y2]. 

 

Zrzutujmy zbiór S na oś x-ów. Niech I będzie 

zbiorem rzutów odcinków z S. 

Rzuty końców odcinków wyznaczają podział 

osi na dwa rodzaje przedziałów: domknięte 

odpowiadające jednopunktowym rzutom 

końców oraz otwarte wypełniające resztę osi. 

Przedziały te nazywamy elementarnymi. 

Zbudujemy drzewo binarne, którego liśćmi 

będą przedziały elementarne. Przedział ele-

mentarny odpowiadający liściowi  

będziemy oznaczać przez Int(). 

Niech vl i vr oznaczają synów v. 
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Drzewo odcinków jest zrównoważonym 

drzewem binarnym T, w którym  

- liście odpowiadają przedziałom elemen-

tarnym określonym przez końce odcinków 

z I, 

- każdy węzeł wewnętrzny odpowiada 

przedziałom będącym sumą przedziałów 

elementarnych liści poddrzewa o korzeniu 

w tym węźle, Int(v) := Int(vl)  Int(vr), 

- każdy węzeł wewnętrzny lub liść v pa-

mięta przedział Int(v) i zbiór przedziałów 

(rzutów odcinków) I(v)  I, który składa 

się z takich [x1,x2] I, że Int(v)  [x1,x2] 

oraz (Int(ojciec(v))  [x1,x2]) (w takim 

przypadku mówimy, że przedział pokrywa 

węzeł).  
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procedure BUILDST(I) 

posortuj końce przedziałów z I; 

stwórz zrównoważone drzewo binarne T 

dla przedziałów elementarnych; 

for każdy węzeł v do oblicz Int(v); 

for każdy s  I do INSERTST(korzeń T,s); 

return T; 

 

procedure INSERTST(v,s) 

if  Int(v)  s 

    then zapisz s w v 

    else if  Int(ls(v))  s   

               then INSERTST(ls(v),s) 

           if  Int(rs(v))  s   

               then INSERTST(rs(v),s) 
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Spróbujmy znaleźć wszystkie odcinki 

przecinane przez daną prostą pionową o 

współrzędnej x-owej qx. 

 

procedure SEARCHST(v,qx) 

return wszystkie przedziały z I(v); 

if  v nie jest liściem  

    then if  qx  Int(ls(v)) 

                 then SEARCHST(ls(v),qx) 

                 else SEARCHST(rs(v),qx) 
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Lemat. 

Drzewo odcinków dla zbioru I zawierającego n przedziałów używa O(n log n) 

pamięci i można je zbudować w czasie O(n log n). 

Dowód. 

Każdy odcinek jest pamiętany w strukturze co najwyżej O(log n) razy (na 

każdym poziomie co najwyżej dwukrotnie). Zatem wszystkie zbiory I(v) aktu-

alizujemy o dane kolejnego odcinka w czasie O(log n). Pozostałe operacje 

wykonujemy w czasie O(n log n). 

 

Lemat. 

Stosując drzewo odcinków, możemy podać wszystkie przedziały z I zawiera-

jące punkt zapytania w czasie O(k + log n), gdzie k jest liczbą znalezionych 

przedziałów. 



Jeśli chcemy znaleźć przecięcia odcinków z 

prostokątem, to zamiast zbioru I(v) stosujemy np.  

zrównoważone drzewo poszukiwań binarnych lub 

uporządkowaną tablicę. Wykorzystujemy tu fakt, że 

odcinki ze zbioru I(v) przecinają cały pas 

odpowiadający v oraz są rozłączne. 

 

Lemat. 

Niech S będzie zbiorem n rozłącznych odcinków na 

płaszczyźnie. Odcinki przecinające pionowy odcinek 

zapytania można znaleźć w czasie O(k + log2 n), gdzie 

k jest liczbą znalezionych odcinków, stosując 

strukturę, którą można zbudować w czasie O(n log n) 

(musimy uporządkować odcinki przecinające pasy) 

używając O(n log n) pamięci. 



Sprawdzanie istnienia pary przecinających się 

odcinków. 

 

Problem. 

Dany jest zbiór S zawierający n odcinków na 

płaszczyźnie. Sprawdź, czy istnieją dwa przecinające 

się odcinki. 

 

Rozpatrzmy model PRAM (Parallel Random Access 

Machine), w którym procesory komunikują się poprzez 

wspólną pamięć. Wyróżniamy różne rodzaje obliczeń 

w zależności od tego, czy procesory mogą jedno-

cześnie czytać (CR - concurrent read) informacje z tej 

samej komórki pamięci czy nie (ER - exclusive read) 

oraz czy mogą jednocześnie zapisywać dane (CW - 

concurrent write) czy tylko osobno (EW - exclusive 

write). W przypadku CW określamy dodatkowo jaki 

sposób zapisu danych nie powoduje konfliktu. 

 



Konstrukcja drzewa odcinków. 

 

(a)  Posortuj końce odcinków. 

(b) Stwórz drzewo binarne zupełne o liściach 
odpowiadających przedziałom elementar-
nym (rysunek zawiera jeden poziom mniej). 

(c)  Procesory odpowiadające danym odcinkom 
z S przemieszczają się od korzenia w kie-
runku liści znajdując węzły (pokrywane), 
dla których Int(v)  [x1,x2] oraz 
(Int(ojciec(v))  [x1,x2]).  

 

Lemat. 

Wykorzystując O(n log n) procesorów CREW 
PRAM możemy stworzyć drzewo odcinków dla 
danego zbioru S w czasie O(log n). 

 

Fakt (algorytm Cole’a). 

Z pomocą O(n) procesorów CREW PRAM mo-

żemy posortować n liczb w optymalnym czasie 

O(log n).   
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Definicja. 

Niech Int(v) oznacza przedział na osi x-ów 

odpowiadający v, P(v) - pas Int(v)  (-,+) a 

Z(v) - zbiór odcinków pokrywających Int(v).  

Niech H(v) oznacza uporządkowane listy 

odpowiadające punktom kolejnych przecięć 

Z(v) z brzegami P(v).  

 

Dysponujemy O(n log n) procesorami CREW 

PRAM. 

Każdej etykiecie pokrycia przypisany jest 

procesor. Zatem wszystkie listy H(v) możemy 

stworzyć w czasie logarytmicznym.  

Dla każdego odcinka przypisujemy dodatkowe 

procesory do tych pasów, które nie są pokry-

wane przez ten odcinek, ale zawierają co 

najmniej jeden jego koniec.  
Z(v) = {3} 

H(v) = {(3), (3)} 

Int(w) Int(v) 
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Mamy dwa przypadki. 

(a) Istnieje przecięcie odcinków z Z(v). 
Możemy to stwierdzić badając 
kolejność odcinków na listach H(v). 

(b) Odcinki z Z(v) przecinają się z 
odcinkami, które przecinały pas 
wyznaczany przez potomka v (nie-
koniecznie syna), a teraz mają co 
najmniej jeden koniec wewnątrz 
pasa P(v). Wtedy sprawdzamy, 
między którymi odcinkami z Z(v) 
znajdują się końce danego odcinka 
lub jego przecięcie z brzegiem pasa 
i czy jest to ten sam obszar. 

 

Lemat. 

Wszystkie powyższe operacje można  

wykonać w czasie O(log n) równolegle  

w każdym węźle.   



Fakt. 

Sytuacja, w której przecinają się dwa 

odcinki nieprzecinające całego pasa nie 

ma miejsca. Takie przecięcie zostałoby 

wykryte na niższym poziomie drzewa. 

 

for każdy wierzchołek v do 

   stwórz zbiory Z(v) i H(v); 

   if odcinki z H(v) przecinają się 

      then return „przecinają się” 

      else porównaj H(v) z odcinkami 

 mającymi co najmniej jeden 

 koniec wewnątrz pasa P(v) 

             if odcinki przecinają się  

                then return „przecinają się”; 

return „nie przecinają się” 
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Twierdzenie. 

Z pomocą O(n log n) procesorów CREW PRAM możemy sprawdzić w 

czasie O(log n), czy w danym zbiorze S zawierającym n odcinków na 

płaszczyźnie istnieją co najmniej dwa, które się przecinają. 



Drzewo czwórkowe (quadtree). 

 

Drzewo czwórkowe dla n-elementowego 
zbioru punktów P (card(P) oznacza licz-
ność zbioru P) definiujemy w następujący 
sposób. Niech Q := [x1,x2][y1,y2] będzie 
kwadratem.  

- Jeśli card(P)  1, to drzewo czwórkowe 
zawiera pojedynczy liść, w którym pamię-
tamy zbiór P i kwadrat Q. 

- W przeciwnym przypadku dzielimy kwa-
drat Q na ćwiartki QNE, QNW, QSW, QSE 
względem xm := (x1+x2)/2 i ym := (y1+y2)/2, 

gdzie PNE := {p  P: px > xm , py > ym }, 

         PNW := {p  P: px  xm , py > ym }, 

         PSW := {p  P: px  xm , py  ym }, 

         PSE := {p  P: px > xm , py  ym }. 

Korzeniowi drzewa odpowiada kwadrat Q 
a jego synom - QNE, QNW, QSW, QSE . 

W wierzchołku v trzymamy kwadrat Q(v). 

QNE QNW 

QSW QSE 

 NE  SE SW NW 



Drzewa czwórkowe mogą być wy-
korzystane np. w celu kompresji 
jednotonalnych obrazów bitmap-
owych. 

Można też skorzystać z nich do 
tworzenia sieci trójkątów dla efek-
tywnych obliczeń numerycznych w 
szczególnych przypadkach płytek 
obwodów drukowanych (kierunki 
ścieżek różnią się o wielokrotność 
/4). Siatki muszą : 

- być dopasowane (nie ma wierz-
chołków trójkątów na krawędziach 
innych trójkątów), 

- uwzględniać dane (ścieżki są za-
warte w krawędziach siatki), 

- być dobrze ukształtowana (trójkąty 
muszą mieć określony kształt), 

- być niejednolite (małe trójkąty bli-
sko ścieżek, a duże – daleko). 



Lemat. 

Głębokość drzewa czwórkowego dla zbioru punktów P na płaszczyźnie 
wynosi co najwyżej log(s/c)+3/2, gdzie c jest najmniejszą odległością 
między dowolnymi dwoma punktami z P, a s jest długością boku po-
czątkowego kwadratu Q zawierającego P. 

Dowód. 

Długość boku kwadratu odpowiadającego węzłowi wewnętrznemu na głę-
bokości i wynosi s/2i. Maksymalna odległość między dwoma punktami w 
takim kwadracie wynosi s/2(i-1/2). Zatem s/2(i-1/2)  c, czyli log(s/c) + ½  i. 
Głębokość drzewa jest o jeden większa niż maksymalna głębokość węzła 
wewnętrznego. 

 

Lemat. 

Drzewo czwórkowe o głębokości d przechowujące zbiór n punktów ma 
O((d+1)n) węzłów i można je zbudować w czasie O((d+1)n). 

Dowód. 

Liczba węzłów wewnętrznych na każdym poziomie szacuje się przez 
liczbę przechowywanych w nich punktów, czyli n. Liczba liści jest równa 
3(liczba węzłów wewnętrznych)+1 (dowód przez indukcję). 



Podział kwadratu jest zrównoważony, 

gdy długości boków dowolnych 

dwóch sąsiednich kwadratów różnią 

się co najwyżej dwukrotnie. Drzewo 

czwórkowe odpowiadające takiemu 

podziałowi nazywamy zrównoważo-

nym.    

 

Lemat. 

Niech T będzie drzewem czwór-

kowym o głębokości d. Sąsiada 

danego węzła v w T w dowolnym 

kierunku można znaleźć w czasie 

O(d+1). 

Dowód. 

Przeszukujemy drzewo czwórkowe w 

poszukiwaniu sąsiada (idąc w górę i 

w dół). 
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Algorytm równoważenia drzewa czwórkowego. 

 

wstaw wszystkie liście z T do kolejki L; 

while L nie jest pusta do 

    usuń liść  z L 

    if Q() powinien zostać podzielony 

        then przekształć  w węzeł wewnętrzny i dodaj cztery liście;  

                jeśli  przechowuje punkt, to przepisz go do odpowiedniego liścia; 

                wstaw cztery nowe liście do L; 

                znajdź sąsiadów Q(), którzy powinni zostać podzieleni i wstaw  

                ich do L; 

return T; 

 

Lemat. 

Niech T będzie drzewem czwórkowym o m węzłach i głębokości d. Drzewo 
TB powstałe w wyniku zrównoważenia T będzie mieć O(m) węzłów i można 
je zbudować w czasie O((d+1)m).     



Dowód. 

Nazwijmy kwadraty odpowiadające węzłom drzewa T starymi, a dodawane w 

TB – nowymi. Pokażemy, że wokół kwadratu (starego lub nowego) dzielonego 

w procesie równoważenia, co najmniej jeden z ośmiu otaczających go 

kwadratów tego samego rozmiaru jest stary. Załóżmy, że tak nie jest. 

Wybierzmy najmniejszy kwadrat Q1, który nie ma danej własności. Skoro 

kwadrat ten jest dzielony, to przylega do niego kwadrat Q2 o boku co najmniej 

czterokrotnie mniejszym. Weźmy kwadrat Q3 mający bok dwukrotnie mniejszy 

od Q1, sąsiadujący z nim i zawierający Q2. Q3 jest dzielony i wokół niego są 

same nowe kwadraty (bo należą do nowych kwadratów sąsiadujących z Q1). 

Zatem dochodzimy do sprzeczności z założeniem o minimalności Q1. Koszt 

tworzenia nowych węzłów możemy przypisać węzłom odpowiadającym starym 

kwadratom sąsiadującym z kwadratami dzielonymi – ich liczba jest co 

najwyżej 8 razy większa od rozmiaru T. Zatem rozmiar TB jest co najwyżej 41 

razy (8x(nowy dzielony+jego dzieci)+1) =(8x(1+4)+1) większy od T. 

Czas potrzebny do obsługi jednego węzła wynosi O(d+1). Zatem złożoność 

algorytmu równoważenia wynosi O((d+1)m).   
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Algorytm generowania siatek dla zbioru S 
odcinków na płaszczyźnie o kierunkach będących 
wielokrotnościami /4. 

 

zbuduj drzewo czwórkowe T na zbiorze S 
wewnątrz kwadratu Q; 

stwórz drzewo zrównoważone TB ; 

for każdy liść  drzewa TB do 

    if odcinek z S przecina wnętrze Q() 

        then dodaj to przecięcie jako nową krawędź 

        else  if wierzchołki trójkątów są tylko w ro- 

                    gach Q()  

                    then dodaj przekątną Q() jako no- 

                            wą krawędź 

                    else dodaj punkt w środku Q() i po- 

                           łącz go nowymi krawędziami ze    

                           wszystkimi wierzchołkami trój- 

                           kątów na brzegu Q();  



Drzewo BSP (Binary Space Partition). 

 

Binarny podział przestrzeni, w której znajduje się dany zbiór obiektów S, po-

lega na podziale przestrzeni hiperpłaszczyznami (w przypadku R2 – prostymi) 

tak, aby po zakończeniu podziału w każdym obszarze znajdował się fragment 

tylko jednego obiektu (porównaj z kd drzewem). Jeśli hiperpłaszczyzny są 

wyznaczane przez obiekty z S, to taki podział nazywamy autopodziałem.  

Strukturę opisującą podział przestrzeni nazywać będziemy drzewem BSP, 

które jest drzewem binarnym T o następujących własnościach: 

- Jeśli card(S)  1, to T jest liściem. W liściu jest pamiętany odpowiedni frag-

ment obiektu (o ile istnieje). 

- Jeśli card(S) > 1, to korzeń v drzewa T pamięta hiperpłaszczyznę hv wraz ze 

zbiorem S(v) obiektów, które są całkowicie zawarte w hv. Lewym synem v 

jest korzeń drzewa BSP T- dla zbioru S- := {h-
v  s: s  S}, a prawym – ko-

rzeń drzewa BSP T+ dla zbioru S+ := {h+
v  s: s  S}, gdzie h-

v i h
+

v oznacza-

ją odpowiednio półprzestrzenie poniżej i powyżej hiperpłaszczyzny hv. 



Załóżmy, że zbiór S zawiera n nieprzeci-

nających sie odcinków na płaszczyźnie. 

 

procedure 2DBSP(S) 

if card(S)  1 

    then stwórz drzewo T składające się z  

             liścia, w którym jest pamiętany S; 

             return T 

    else S+  {l+(s1)  s: s  S}, 

           T+  2DBSP(S+);  

           S-  {l-(s1)  s: s  S}, 

           T-  2DBSP(S-); 

           stwórz drzewo BSP z korzeniem v,   

           lewym poddrzewem T-, prawym –  

           T+ i S(v) = {s  S: s  l(s1)}; 

           return T 
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Twierdzenie. 

Przy założeniu losowych danych, oczekiwana liczba fragmentów tworzonych 
przez algorytm wynosi O(n log n). Odpowiednie drzewo BSP można obliczyć w 
oczekiwanym czasie O(n2 log n). 

Dowód. 

Niech si będzie odcinkiem ze zbioru S. Spróbujemy obliczyć oczekiwaną liczbę 
przecięć odcinków o indeksach większych od i prostą l(si) zawierającą si.  Niech 
disti(sj) będzie równe liczbie odcinków przecinających l(si) między si a sj, jeśli 
l(si) przecina sj oraz + w przeciwnym przypadku.  

Wtedy prawdopodobieństwo, że prosta l(si) przecina sj możemy oszacować przez 
P(l(si) przecina sj)  1/(disti(sj)+2), gdyż każdy z odcinków leżących między si a sj 
musi zostać wybrany później niż si oraz wybór si musi poprzedzać sj (im więcej 
odcinków tym oszacowanie jest grubsze). 

Stąd  E(liczba przecięć generowanych przez si (w obu kierunkach))                 
ij 1/(disti(sj)+2)  2 n-2

k=0 1/(k+2)  2 (ln n + ) = O(ln n).  

Skoro dla jednego odcinka oczekiwana liczba przecięć innych odcinków wynosi 
O(ln n), więc dla całego zbioru S otrzymujemy oszacowanie O(n ln n). Ponieważ 
zbiór S zawiera n odcinków, więc oczekiwana liczba wszystkich fragmentów, 
jakie mogą powstać w trakcie działania algorytmu szacuje się przez n + O(n ln n), 
czyli jest O(n log n). Każdy krok podziału wymaga czasu O(n), więc oczekiwany 
czas konstrukcji drzewa wynosi O(n2 log n). 



Lemat. 

Przy założeniu losowych danych, oczeki-

wana liczba fragmentów obiektów tworzo-

nych przez algorytm w R3 wynosi O(n2). 

 

Lemat. 

Istnieją zbiory n nieprzecinających się trój-

kątów w R3, dla których każdy autopodział 

(ale niekoniecznie każdy podział) ma 

rozmiar (n2). 

 

Lemat. 

Dla dowolnego zbioru n nieprzecinających 

się trójkątów w R3 istnieje drzewo BSP 

rozmiaru O(n2).  

Istnieje konfiguracja n nieprzecinających 

się trójkątów w R3, dla której rozmiar 

każdego drzewa BSP jest (n2). 



 

 

 

 

Dziekuję za uwagę. 

 



Ćwiczenia 5. 

 

1. Niech I będzie zbiorem przedziałów na prostej. Chcemy pamiętać 
przedziały tak, aby móc efektywnie określać te przedziały, które są 
całkowicie zawarte w danym przedziale [x1,x2]. opisz strukturę danych, 
która używa O(n log n) pamięci i daje odpowiedź na takie zapytanie w 
czasie O(log n + k), gdzie k jest liczbą odpowiedzi. 

 

2. Dany jest zbiór S zawierający n rozłącznych odcinków na płaszczyźnie. 
Znajdź te odcinki, które przecinają pionowy promień biegnący ku górze z 
punktu (qx,qy) do nieskończoności.  

a) Opisz strukturę danych dla tego problemu, która używa O(n log n) 
pamięci i ma czas odpowiedzi na zapytanie O(log n + k), gdzie k jest 
liczbą podawanych odpowiedzi.  

b) Jak zbudować taką strukturę w czasie O(n log n) ? 

 

3. Niech S będzie zbiorem n rozłącznych odcinków na płaszczyźnie. W czasie 
O(n log n) i używając O(n log n) pamięci skonstruuj strukturę, z pomocą 
której można znaleźć odcinki przecinające pionowy odcinek zapytania w 
czasie O(k + log2 n), gdzie k jest liczbą znalezionych odcinków. 

 

 



4. Wykorzystując O(n) procesorów CRCW PRAM (z jednoznacznym 
zapisem) znajdź w czasie stałym pierwsze wystąpienie jedynki w n-
elementowym ciągu 0-1. 

 

5. Wykorzystując O(n log n) procesorów CREW PRAM stwórz drzewo 
odcinków dla danego zbioru n odcinków S w czasie O(log n). 

 

6. Załóżmy, że mamy drzewa czwórkowe na obrazach pikselowych I1 i I2. Oba 
obrazy mają rozmiar 2k  2k i zawierają tylko dwie intensywności 0 i 1. 
Podaj algorytm operacji boolowskich na tych obrazach, tzn. I1  I2 i I1  I2. 

 

7. Podaj przykład zbioru S zawierającego n rozłącznych odcinków na 

    płaszczyźnie takiego, że dowolny autopodział S ma głębokość (n). 

 

8. Niech C będzie zbiorem n rozłącznych kół o promieniu 1 na płaszczyźnie. 

    Pokaż, że dla C istnieje drzewo BSP rozmiaru O(n). 

 

 

 

 


