Geometria obliczeniowa
Wyktad 5

Geometryczne struktury danych
1. Drzewa odcinkow
Badanie przeci¢¢ odcinkow w modelu PRAM

2. Drzewa czworkowe
3. Drzewa BSP

Dotychczas zaymowaliSmy si¢ problemem
przecinania prostokata odcinkami rowno-
legtymi do jego bokow. Jednak znacznie
bardziej realistyczne jest zalozenie, ze
odcinki mogg by¢ potozone dowolne.

W takim przypadku mozemy zamiast od-
cinkow badac¢ prostokaty, ktorych prze-
katnymi sg dane odcinki. Korzystajac ze
znanych juz struktur mozemy znalez¢
wszystkie prostokaty przecinajgce dany
prostokat a nastepnie sprawdzi¢, ktore od-
cinki rzeczywiscie go przecinajg.

Jednak w szczegolnych przypadkach ta
metoda moze okazac si¢ bardzo nieefek-

tywna.

Drzewo odcinkow (segment tree).

W n-elementowym zbiorze S roziacznych
odcinkow, chcemy znalez¢ te z nich, ktore
przecinajg prostokat R := [X{,X,]x[Y1,Ys]-

Zrzutuymy zbior S na o$ x-0w. Niech I bedzie
zbiorem rzutow odcinkow z S.

Rzuty koncdéw odcinkdéw wyznaczaja podziat
osi na dwa rodzaje przedziatow: domkniete
odpowiadajace jednopunktowym rzutom
koncow oraz otwarte wypelniajgce reszte osi.
Przedziaty te nazywamy elementarnymi.

Zbudujemy drzewo binarne, ktorego lis¢mi
bedg przedziaty elementarne. Przedziat ele-
mentarny odpowiadajacy lisciowi u
bedziemy oznaczac przez Int(u).

Niech v, i v, oznaczaja synow v.

Drzewo odcinkow jest zrOwnowazonym
drzewem binarnym T, w ktorym

- liscie odpowiadajg przedziatom elemen-
tarnym okreslonym przez konce odcinkow
Z 1,

- kazdy wezet wewnetrzny odpowiada
przedzialom bedacym sumg przedziatow
elementarnych lisci poddrzewa o korzeniu
w tym wezle, Int(v) = Int(v,) U Int(v,),

- kazdy wezel wewnetrzny lub 11$¢ v pa-
mieta przedziat Int(v) 1 zbidr przedziatow
(rzutow odcinkow) I(v) I, ktory sktada
si¢ z takich [X;,X,] €1, ze Int(v) < [X{,X,]
oraz —(Int(ojciec(v)) < [X1,X,]) (w takim
przypadku mowimy, ze przedzial pokrywa
wezel).

procedure BUILDST(I)
posortuj konce przedziatow z I;

stworz zroOwnowazone drzewo binarne T
dla przedziatow elementarnych;

for kazdy wezet v do oblicz Int(v); 2,3 3.2

for kazdy s € | do INSERTST(korzen T,s); 1,2 2 S

return T; 1 3 /4 A 2/\3/\ g5
14\2/\3 /

procedure INSERTST(v,s)
If Int(v) s
then zapisz sw v
else if Int(Is(v)) Ns# <
then INSERTST(Is(v),s)
If Int(rs(v)) ns=J
then INSERTST(rs(v),s)

Sprobujmy znalez¢ wszystkie odcinki
przecinane przez dang prostg pionowa o

wspotrzednej x-owej g,. 0
o
procedure SEARCHST(v,q,) oS 513
return wszystkie przedzialy z I(v); 1.2 2 5
If v nie jest lisciem 1 3 x4 2/\3/\ 5
O
then if g, € Int(Is(v)) 1213\ [\

then SEARCHST(Is(v),q,)
else SEARCHST(rs(v),q,)

Lemat.

Drzewo odcinkow dla zbioru I zawierajgcego n przedzialow uzywa O(n log n)
pamigci 1 mozna je zbudowac w czasie O(n log n).

Dowaod.

Kazdy odcinek jest pamigtany w strukturze co najwyzej O(log n) razy (na
kazdym poziomie co najwyzej dwukrotnie). Zatem wszystkie zbiory I(v) aktu-
alizujemy o dane kolejnego odcinka w czasie O(log n). Pozostale operacje
wykonujemy w czasie O(n log n).

Lemat.

Stosujac drzewo odcinkow, mozemy podac wszystkie przedzialy z I zawiera-
jace punkt zapytania w czasie O(k + log n), gdzie k jest liczbg znalezionych
przedziatow.

Jesli chcemy znalez¢ przeciecia odcinkow z
prostokatem, to zamiast zbioru I(v) stosujemy np.
zroOwnowazone drzewo poszukiwan binarnych lub
uporzadkowang tablicg. Wykorzystujemy tu fakt, ze
odcinki ze zbioru I(v) przecinajg caly pas
odpowiadajacy v oraz sg roztaczne.

Lemat.

Niech S bedzie zbiorem n roztagcznych odcinkéw na
plaszczyznie. Odcinki przecinajgce pionowy odcinek
zapytania mozna znalez¢ w czasie O(k + log? n), gdzie
k jest liczbg znalezionych odcinkow, stosujac
strukture, ktorg mozna zbudowac w czasie O(n log n)
(musimy uporzadkowac odcinki przecinajgce pasy)
uzywajac O(n log n) pamieci.

Sprawdzanie i1stnienia pary przecinajacych si¢
odcinkow.

Problem.

Dany jest zbior S zawierajacy n odcinkow na
plaszczyznie. Sprawdz, czy istniejg dwa przecinajgce
si¢ odcinki.

Rozpatrzmy model PRAM (Parallel Random Access
Machine), w ktorym procesory komunikujg si¢ poprzez
wspolng pamie¢. Wyrdzniamy rozne rodzaje obliczen
w zaleznosci od tego, czy procesory moga jedno-
czesnie czyta¢ (CR - concurrent read) informacje z tej
samej komorki pamigci czy nie (ER - exclusive read)
oraz czy mogg jednoczes$nie zapisywac dane (CW -
concurrent write) czy tylko osobno (EW - exclusive
write). W przypadku CW okre§lamy dodatkowo jaki
sposob zapisu danych nie powoduje konfliktu.

<
/
%

Konstrukcja drzewa odcinkow.

(@) Posortuj konce odcinkow.

(b) Stworz drzewo binarne zupelne o liSciach
odpowiadajacych przedziatom elementar-
nym (rysunek zawiera jeden poziom mniej).

(c) Procesory odpowiadajace danym odcinkom
z S przemieszczaja si¢ od korzenia w kie-
runku lisci znajdujac wezty (pokrywane),
dla ktorych Int(v) < [X,X,] oraz
—(Int(ojciec(v)) < [X1,X,]).

Lemat.

Wykorzystujac O(n log n) procesorow CREW
PRAM mozemy stworzy¢ drzewo odcinkow dla
danego zbioru S w czasie O(log n).

Fakt (algorytm Cole’a).
Z. pomocg O(n) procesorow CREW PRAM mo-

zemy posortowac n liczb w optymalnym czasie
O(log n).

Definicja.

Niech Int(v) oznacza przedzial na osi x-6w
odpowiadajacy v, P(v) - pas Int(v) x (-o0,+0) a
Z(V) - zbior odcinkdéw pokrywajacych Int(v).
Niech H(v) oznacza uporzadkowane listy
odpowiadajace punktom kolejnych przeciec¢
Z(V) z brzegami P(v).

Dysponujemy O(n log n) procesorami CREW
PRAM.

Kazdej etykiecie pokrycia przypisany jest
procesor. Zatem wszystkie listy H(v) mozemy
stworzy¢ w czasie logarytmicznym.

Dla kazdego odcinka przypisujemy dodatkowe ;
procesory do tych pasow, ktore nie sg pokry- L 3 . i
wane przez ten odcinek, ale zawieraja co _

Int(v) Z(v) = 8{w)

najmniej jeden jego koniec. Z(w) = {5’@(\/) _{3). (3
H(w) = {(5,6), (6,5)}

Mamy dwa przypadki.

(a) Istnieje przeciecie odcinkow z Z(V).

Mozemy to stwierdzi¢ badajac

kolejnos¢ odcinkow na listach H(v).

(b) Odcinki z Z(v) przecinaja si¢ z
odcinkami, ktore przecinaty pas
wyznaczany przez potomka v (nie-
koniecznie syna), a teraz maja co
najmniej jeden koniec wewnatrz
pasa P(v). Wtedy sprawdzamy,
miedzy ktérymi odcinkami z Z(v)
znajduja si¢ konce danego odcinka
lub jego przeciecie z brzegiem pasa
| czy jest to ten sam obszar.

Lemat.

Wszystkie powyzsze operacje mozna
wykonac¢ w czasie O(log n) rownolegle
w kazdym wezZle.

i X

Fakt.

Sytuacja, w ktorej przecinajg si¢ dwa
odcinki nieprzecinajace catego pasa nie
ma miejsca. Takie przeciecie zostaloby
wyKkryte na nizszym poziomie drzewa.

for kazdy wierzchotek v do
stworz zbiory Z(v) 1 H(v);
If odcinki z H(v) przecinajg si¢
then return ,,przecinaja si¢”
else porownaj H(v) z odcinkami

majgcymi co najmniej jeden
koniec wewnatrz pasa P(v)
If odcinki przecinajg si¢
then return ,,przecinaja si¢”;
return ,,nie przecinajg si¢”

Twierdzenie.

Z pomocg O(n log n) procesorow CREW PRAM mozemy sprawdzi¢ w
czasie O(log n), czy w danym zbiorze S zawierajagcym n odcinkow na
plaszczyznie istniejg co najmniej dwa, ktore si¢ przecinajg.

Drzewo czworkowe (quadtree).

Drzewo czwoérkowe dla n-elementowego
zbioru punktow P (card(P) oznacza licz-
nos¢ zbioru P) defintujemy w nastepujacy
sposob. Niech Q := [X;,X,]x[Y;,Y,] bedzie
kwadratem.
- Jesli card(P) < 1, to drzewo czworkowe
zawiera pojedynczy iS¢, w ktorym pamie-
tamy zbi16r P 1 kwadrat Q.
- W przeciwnym przypadku dzielimy kwa-
drat Q na ¢wiartki Qug, Qnwy Qswy Qs
wzgledem X, := (X;+X,)/2 1Y, = (Y11Y,)/2,
gdzie Py :={p € P:p,> Xy, Py > Y 1
Paw :={P € Pipy<Xp, Py >Ym 1
I:)SW = {p € P: pxgxm 1 pygym }’

Pse = 1P € Pi P> X, Py <Y J-
Korzeniowi drzewa odpowiada kwadrat Q
a Jego synom - Que, Qs Qsws Qse -

W wierzchotku v trzymamy kwadrat Q(v).

)
. @ 0O
Qi Qe
@ o
e Py @
o o ©
\ 0
W@ Qe
®)

Drzewa czworkowe moga by¢ wy-
korzystane np. w celu kompresji
jednotonalnych obrazow bitmap-
owych.

Mozna tez skorzysta¢ z nich do
tworzenia sieci trojkatow dla efek-
tywnych obliczen numerycznych w
szczegOlnych przypadkach plytek
obwodow drukowanych (kierunki
sciezek roznig si¢ o wielokrotnos¢
n/4). Siatki muszg :

- by¢ dopasowane (nie ma wierz-
chotkow trojkatow na krawedziach
innych trojkatow),

- uwzglednia¢ dane (Sciezki sg za-
warte w krawedziach siatki),

- by¢ dobrze uksztaltowana (trojkaty
muszg mie¢ okreslony ksztatt),

- by¢ niejednolite (mate trojkaty bli-
sko Sciezek, a duze — daleko).

Lemat.

Giebokos¢ drzewa czworkowego dla zbioru punktow P na ptaszczyznie
wynosi co najwyzej log(s/c)+3/2, gdzie ¢ jest naymniejszg odlegtoscig
miedzy dowolnymi dwoma punktami z P, a s jest dlugoscig boku po-
czatkowego kwadratu Q zawierajgcego P.

Dowaod.

Dhugos¢ boku kwadratu odpowiadajacego weztow1 wewngtrznemu na gle-
bokosci i wynosi s/2!. Maksymalna odleglo$¢ miedzy dwoma punktami w

takim kwadracie wynosi s/2(-12), Zatem s/20-12) > ¢, czyli log(s/c) + Y2 > i.
Glebokos¢ drzewa jest o jeden wigksza niz maksymalna gltebokos$¢ wezta

wewnetrznego.

Lemat.

Drzewo czworkowe o gigbokosci d przechowujgce zbior n punktow ma
O((d+1)n) weztdow 1 mozna je zbudowac¢ w czasie O((d+1)n).

Dowod.

Liczba we¢zidw wewngetrznych na kazdym poziomie szacuje si¢ przez

liczb¢ przechowywanych w nich punktow, czyli n. Liczba lisci jest rowna
3x(liczba weztow wewngetrznych)+1 (dowod przez indukcje).

Podziat kwadratu jest zrownowazony,
gdy dlugosci bokéw dowolnych
dwoch sgsiednich kwadratow rdznig

w

si¢ co najwyzej dwukrotnie. Drzewo AlC D E
czworkowe odpowiadajace takiemu
podziatow1 nazywamy zréownowazo- E
nym.

B A C
Lemat.

Niech T bedzie drzewem czwoOr-
kowym o glebokosci d. Sgsiada
danego wezta v w T w dowolnym
kierunku mozna znalez¢ w czasie
O(d+1).

Dowdd.

Przeszukujemy drzewo czworkowe w
poszukiwaniu sgsiada (idgc w gore 1
w dot).

Algorytm rownowazenia drzewa czworkowego.

wstaw wszystkie liscie z T do kolejki L;
while L nie jest pusta do
usun lisc pz L
If Q(u) powinien zosta¢ podziclony
then przeksztal¢ p w wezet wewnetrzny 1 dodaj cztery liscie;
jesli u przechowuje punkt, to przepisz go do odpowiedniego liscia;
wstaw cztery nowe liscie do L;
znajdz sgsiadow Q(), ktoérzy powinni zosta¢ podzieleni 1 wstaw

ich do L:
return T;

Lemat.
Niech T bedzie drzewem czworkowym o m wezlach 1 glgbokosci d. Drzewo
Tg powstate w wyniku zrownowazenia T bedzie mie¢ O(m) weztow 1 mozna

je zbudowac¢ w czasie O((d+1)m).

Dowaod.

Nazwiymy kwadraty odpowiadajace weztom drzewa T starymi, a dodawane w
Tg —nowymi. Pokazemy, ze wokot kwadratu (starego lub nowego) dzielonego
W procesie rownowazenia, co hajmniej jeden z oSmiu otaczajacych go
kwadratow tego samego rozmiaru jest stary. Zatozmy, ze tak nie jest.
Wybierzmy najmniejszy kwadrat Q,, ktéry nie ma danej wtasnosci. Skoro
kwadrat ten jest dzielony, to przylega do niego kwadrat Q, o boku co najmniej
czterokrotnie mniejszym. Wezmy kwadrat Q5 majgcy bok dwukrotnie mniejszy
od Q,, sasiadujacy z nim i zawierajacy Q,. Q; jest dzielony 1 wokot niego sa
same nowe kwadraty (bo nalezg do nowych kwadratow sgsiadujacych z Q,).
Zatem dochodzimy do sprzecznosci z zatozeniem o minimalnosci Q. Koszt
tworzenia nowych weztow mozemy przypisa¢ weztom odpowiadajgcym starym
kwadratom sgsiadujgcym z kwadratami dzielonymi — ich liczba jest co
najwyzej 8 razy wigksza od rozmiaru T. Zatem rozmiar Ty jest co najwyzej 41
razy (8x(nowy dzielony+jego dzieci)+1) =(8x(1+4)+1) wickszy od T.

Czas potrzebny do obstugi jednego wezta wynosi O(d+1). Zatem ztozonos¢
algorytmu rownowazenia wynosi O((d+1)m).

Q>

Q1

Algorytm generowania siatek dla zbioru S
odcinkow na ptaszczyznie o kierunkach bedacych
wielokrotno$ciami nt/4.

zbuduj drzewo czworkowe T na zbiorze S
wewnatrz kwadratu Q;

stworz drzewo zrownowazone Tg ;
for kazdy 1is¢ p drzewa Tg do
If odcinek z S przecina wnetrze Q(p)
then dodaj to przecigcie jako nowa krawedz
else if wierzcholki trojkatow sg tylko w ro-
gach Q(w)
then dodaj przekatna Q(p) jako no-
wa krawedz

else dodaj punkt w srodku Q(p) i po-
tacz go nowymi krawedziami ze
wszystkimi wierzchotkami trgj-
katow na brzegu Q();

Drzewo BSP (Binary Space Partition).

Binarny podziat przestrzeni, w ktorej znajduje si¢ dany zbi16r obiektow S, po-
lega na podziale przestrzeni hiperptaszczyznami (w przypadku R? — prostymi)
tak, aby po zakonczeniu podziatu w kazdym obszarze znajdowat si¢ fragment
tylko jednego obiektu (poréwnaj z kd drzewem). Jesli hiperplaszczyzny sg
wyznaczane przez obiekty z S, to taki podziat nazywamy autopodziatem.

Strukture opisujaca podzial przestrzeni nazywac bedziemy drzewem BSP,
ktore jest drzewem binarnym T o nastepujgcych wiasnosciach:

- Jesli card(S) < 1, to T jest lisciem. W lisciu jest pamig¢tany odpowiedni frag-
ment obiektu (o ile istnigje).

- Jesli card(S) > 1, to korzen v drzewa T pamieta hiperptaszczyzng h, wraz ze
zbiorem S(v) obiektow, ktore sa catkowicie zawarte w h,,. Lewym synem v
jest korzen drzewa BSP T~ dla zbioru S-:= {h-, N s: s € S}, a prawym — ko-
rzen drzewa BSP T dla zbioru S* := {h*, n s: s € S}, gdzie h-, i h*, 0znacza-
ja odpowiednio polprzestrzenie ponizej 1 powyzej hiperptaszczyzny h,,.

Zalozmy, ze zbior S zawiera n nieprzeci-
najacych sie odcinkow na plaszczyznie.

procedure 2DBSP(S)
If card(S) <1

then stworz drzewo T sktadajace si¢ z

liscia, w ktorym jest pamigtany S;

return T
else S* « {I*(s;) ns:s € S},
Tt < 2DBSP(SY);
S« {I(s) N s:s e S} (1)
T- < 2DBSP(S);
stworz drzewo BSP z korzeniem v, 9 9
lewym poddrzewem T-, prawym —
THiS(v)={s e S:scl(s)}; G 0 e @

return T @

Twierdzenie.

Przy zatozeniu losowych danych, oczekiwana liczba fragmentow tworzonych
przez algorytm wynosi O(n log n). Odpowiednie drzewo BSP mozna obliczy¢ w
oczekiwanym czasie O(n? log n).

Dowaod.

Niech s; bedzie odcinkiem ze zbioru S. Sproébujemy obliczy¢ oczekiwang liczbe
przecie¢ odcinkow o indeksach wigkszych od i prosta I(s;) zawierajaca s;. Niech
dist;(s;) bedzie rowne liczbie odcinkow przecinajgcych I(s;) migdzy s; a S , jeshi
I(s,) przecma S; Oraz +oo w przeciwnym przypadku.

Wtedy prawdopodoblenstwo ze prosta I(s;) przecina s; mozemy oszacowac przez
P(I(S) przecinas;) <1/ (dlst (S)+2), gdyz kazdy z odcmkow lezacych migdzy s; as;
musi zosta¢ wybrany pOZIllC] niz s; oraz wybor s; musi poprzedzac s; (im wigce;
odcinkow tym oszacowanie jest grubsze)

Stqd E(liczba przeci¢¢ generowanych przez s; (W obu kierunkach)) <

X U(disti(s)+2) <2 X2 o U(k+2) <2 (Inn + v) = O(In n).
Skoro dla jednego odcinka oczekiwana liczba przecie¢ innych odcinkow wynosi
O(In n), wiec dla catego zbioru S otrzymujemy oszacowanie O(n In n). Poniewaz
zb10r S zawiera n odcinkow, wigc oczekiwana liczba wszystkich fragmentow,
jakie moga powsta¢ w trakcie dziatania algorytmu szacuje si¢ przez n + O(n In n),
czyli jest O(n log n). Kazdy krok podziatu wymaga czasu O(n), wigc oczekiwany
czas konstrukcji drzewa wynosi O(n? log n).

Lemat.

Przy zatozeniu losowych danych, oczeki-
wana liczba fragmentow obiektow tworzo-
nych przez algorytm w R3 wynosi O(n?).

Lemat.
Istniejg zbiory n nieprzecinajgcych si¢ troj-
katow w R3, dla ktorych kazdy autopodziat

(ale niekoniecznie kazdy podziat) ma
rozmiar Q(n?).

Lemat.

Dla dowolnego zbioru n nieprzecinajacych
sie trojkatow w R3 istnieje drzewo BSP
rozmiaru O(n?).

Istnieje konfiguracja n nieprzecinajgcych
sie trojkatow w R3, dla ktorej rozmiar
kazdego drzewa BSP jest QQ(n?).

Dziekuje za uwage.

Cwiczenia 5.

1. Niech I bedzie zbiorem przedziatow na prostej. Chcemy pamigtac
przedziaty tak, aby moc efektywnie okreslac te przedziaty, ktore sg
catkowicie zawarte w danym przedziale [x{,X,]. opisz strukture danych,
ktora uzywa O(n log n) pamigci 1 daje odpowiedz na takie zapytanie w
czasie O(log n + k), gdzie k jest liczbg odpowiedzi.

2. Dany jest zbior S zawierajacy n roziacznych odcinkow na ptaszczyznie.
Znajdz te odcinki, ktore przecinajg pionowy promien biegnacy ku gorze z
punktu (q,,q,) do nieskonczonosci.

a) Opisz struktur¢ danych dla tego problemu, ktoéra uzywa O(n log n)

pamigci 1 ma czas odpowiedzi na zapytanie O(log n + k), gdzie k jest
liczbg podawanych odpowiedzi.

b) Jak zbudowac takg strukture w czasie O(n log n) ?

3. Niech S bedzie zbiorem n roztgcznych odcinkdéw na ptaszczyznie. W czasie
O(n log n) 1 uzywajac O(n log n) pamie¢ci skonstruyj strukture, z pomoca
ktorej mozna znalez¢ odcinki przecinajgce pionowy odcinek zapytania w
czasie O(k + log? n), gdzie k jest liczba znalezionych odcinkdw.

. Wykorzystujac O(n) procesorow CRCW PRAM (z jednoznacznym
zapisem) znajdz w czasie statym pierwsze wystgpienie jedynki w n-
elementowym ciggu 0-1.

. Wykorzystujac O(n log n) procesorow CREW PRAM stworz drzewo
odcinkow dla danego zbioru n odcinkow S w czasie O(log n).

. Zatézmy, ze mamy drzewa czworkowe na obrazach pikselowych I, 1 I,. Oba
obrazy maja rozmiar 2K x 2K i zawieraja tylko dwie intensywnosci 01 1.
Podaj algorytm operacji boolowskich na tych obrazach, tzn. I, v I, i I; A L.

. Podaj przyktad zbioru S zawierajacego n roztagcznych odcinkow na
plaszczyznie takiego, ze dowolny autopodziat S ma gl¢bokos¢ Q2(n).

. Niech C bedzie zbiorem n roztgcznych kot o promieniu 1 na ptaszczyznie.
Pokaz, ze dla C istnieje drzewo BSP rozmiaru O(n).

