
Geometria obliczeniowa
Wykład 4

Przeszukiwanie obszarów ortogonalnych

1. Liczby złożone

2. Kd drzewa

3. Drzewa obszarów

4. Kaskadowanie

5. Warstwowe drzewo obszarów

6. Drzewa przeszukiwań priorytetowych

7. Drzewa przedziałów

Przeszukiwanie obszarów ortogonalnych

Problem:

Dany jest zbiór n punktów na płaszczy-

źnie. Pragniemy znaleźć podzbiór tych

punktów, które zawierają się w danym

prostokącie [x1,x2][y1,y2]. Zadanie to

jest stawiane wielokrotnie dla różnych

prostokątów, ale tego samego zbioru

punktów.

Szybkie wyszukiwanie interesującego

nas zbioru może być utrudnione, gdy

wiele punktów ma takie same niektóre

współrzędne (założenie o rozróżnialności

współrzędnych jest nierealistyczne ze

względów praktycznych). W takiej sytu-

acji możemy zastosować liczby złożone.

Liczby złożone.

Zastępujemy współrzędne, które są liczbami rzeczywistymi, przez

elementy tak zwanej przestrzeni liczb złożonych. Elementy tej przestrzeni

są parami liczb rzeczywistych. Liczbę złożoną dwóch liczb rzeczywistych

a i b oznaczamy przez (a|b). Definiujemy porządek liniowy w przestrzeni

liczb złożonych stosując porządek leksykograficzny. Zatem, dla dwóch

liczb złożonych (a1|b1) i (a2|b2), mamy

(a1|b1)<(a2|b2)  a1 < a2 lub (a1 = a2 i b1 < b2).

Załóżmy teraz, że dany jest zbiór P zawierający n punktów na

płaszczyźnie. Punkty są różne, ale wiele punktów może mieć takie same

współrzędne x lub y. Zastępujemy każdy punkt p:=(px,py) przez nowy

punkt p’:=((px|py),(py|px)), który ma liczby złożone jako wartości

współrzędnych. W ten sposób otrzymujemy nowy zbiór P’ zawierający n

punktów. Pierwsze współrzędne dowolnych dwóch punktów z P’ są

różne. To samo pozostaje prawdą dla drugiej współrzędnej.

Przypuśćmy teraz, że chcemy podać punkty, które leżą w obszarze

R:=[x1,x2][y1,y2]. To znaczy, że musimy również określić obszar zapytania w

przestrzeni liczb złożonych. Przekształcony obszar jest definiowany w

następujący sposób:

R’ := [(x1|-∞),(x2|+∞)][(y1|-∞),(y2|+∞)].

Pozostaje do udowodnienia, że nasze podejście jest poprawne, to znaczy, że

punkty z P’, które wyliczamy zadając pytanie odnośnie R’, dokładnie

odpowiadają punktom z P, które leżą w R.

Lemat.

Niech p będzie punktem a R prostokątnym obszarem. Wtedy p  R  p’  R’.

Dowód.

Niech R:=[x1,x2][y1,y2] i p:=(px,py). Z definicji, p leży w R wtedy i tylko

wtedy, gdy x1 ≤ px ≤ x2 i y1 ≤ py ≤y2. Łatwo można zobaczyć, że zachodzi to

wtedy i tylko wtedy, gdy (x1|-∞) ≤ (px|py) ≤ (x2|+∞) i (y1|-∞) ≤ (py|px) ≤ (y2|+∞),

czyli wtedy i tylko wtedy, gdy p’ leży w R’.

Zauważmy, że nie potrzeba faktycznie pamiętać przekształconych pun-

któw. Wystarczy pamiętać tylko punkty ze zbioru P, pod warunkiem, że

będziemy porównywać ich współrzędne w przestrzeni liczb złożonych.

Podejście korzystające z liczb złożonych można również zastosować w

wyższych wymiarach.

Reasumując, tam, gdzie będzie nam to potrzebne w celu stworzenia odpo-

wiedniej struktury danych, możemy zakładać, że wszystkie współrzędne

punktów ze zbioru P są różne.

Kd drzewo

Kd drzewo to drzewo binarne, którego liśćmi są
punkty z P a węzłami wewnętrznymi - proste
równoległe do osi układu współrzędnych.
Synami węzła odpowiadającego prostej
pionowej są węzły odpowiadające prostym
poziomym i vice versa.

Jako korzeń wybieramy prostą pionową
przechodzącą przez punkt z danego zbioru
będący jego medianą względem współrzędnych
x-owych. Dzielimy dany zbiór na dwa
podzbiory, do których należą punkty
odpowiednio nie większe od mediany i większe
od niej (operujemy na liczbach złożonych).

Następnie w ten sam sposób dzielimy każdy
podzbiór względem y-ów itd.

Przyjmijmy, że pionowa (pozioma) prosta
będzie dzielić zbiór punktów P na zbiór P2
punktów leżących na prawo (powyżej) od tej
prostej i zbiór P1 := P – P2.

procedure BUILDTREE(P,depth)

if P zawiera tylko jeden punkt

 then return liść pamiętający ten punkt

 else if depth jest parzyste

 then podziel P pionową prostą

 l na zbiory P1 i P2

 else podziel P poziomą prostą

 l na zbiory P1 i P2;

 vl  BUILDTREE(P1,depth+1);

 vp  BUILDTREE(P2,depth+1);

 stwórz węzeł v – ojca vl i vp oraz

 zapamiętaj w nim l;

return v

1
2

3
4

5
6

7
8

9

h

g

f

e

d

c

b

a

a

f b

c

7

e

1 2

g

9 6

h

3 4 d

5 8

Niech ls(v) (rs(v)) oznacza lewego

(prawego) syna wierzchołka v, a obszar(l)

jest obszarem, który dzieli prosta l.

procedure SEARCHKD(v,R)

if v jest liściem

 then if v  R then zwróć v

 else if obszar(ls(v))  R

 then zwróć wszystkie liście pod-

 drzewa o korzeniu w ls(v)

 else if obszar(ls(v)) przecina R

 then SEARCHKD(ls(v),R)

 if obszar(rs(v))  R

 then zwróć wszystkie liście pod-

 drzewa o korzeniu w rs(v)

 else if obszar(rs(v)) przecina R

 then SEARCHKD(rs(v),R)

a

f b

c

7

e

1 2

g

9 6

h

3 4 d

5 8

a

b

c

d

5 5

c

7 7

b

e

2

a

f

g

9

g

f

h

3

h

1

8

h

g

f

e

d

c

b

a

2
3

4

5
6

7

9

Lemat.

Kd drzewo ma rozmiar liniowy względem rozmiaru zbioru i można je zbudować
w czasie O(n log n).

Dowód.

Czas potrzebny na stworzenie kd drzewa jest opisany przez następujące równania
rekurencyjne: T(n) = O(1) dla n =1 oraz T(n) = O(n) + 2T(n/2) dla n > 1, czyli
T(n) = O(n log n).

Lemat.

Wykorzystując kd drzewa, znalezienie wszystkich punktów z n-elementowego
zbioru P należących do danego prostokąta R wymaga czasu , gdzie k
jest liczbą znalezionych punktów.

Dowód.

Policzmy, ile porównań potrzebujemy w celu znalezienia obszarów przeciętych
przez brzeg prostokąta R. Obszary wewnątrz prostokąta zawierają elementy
zbioru, więc jest ich O(k).

Rozważmy jedną z prostych zawierających bok prostokąta R i stwórzmy równania
rekurencyjne na liczbę porównań po wykonaniu dwóch kroków wyszukiwania.
Mają one postać: Q(n) = O(1) dla n = 1 oraz Q(n) = 3+2Q (n/4) dla n > 1, a ich
rozwiązaniem jest Q(n)=O(n1/2). .

k)nO(

Konstrukcję kd drzewa możemy uogólnić również na wyższe wymiary.

Dla n-elementowego zbioru punktów P trzymamy wtedy drzewo rozmiaru

O(n), które można skonstruować w czasie O(n log n).

Czas odpowiedzi na zapytanie o punkty należące do prostopadłościanu R

w d wymiarowej przestrzeni wynosi O(k+n(d-1)/d), gdzie k jest liczbą

znalezionych punktów.

Drzewa obszarów (range tree).

Drzewa obszarów tworzymy następująco:

Punkty z danego zbioru P uporządkowane
względem współrzędnych x-owych umie-
szczamy w liściach wzbogaconego, zrów-
noważonego drzewa poszukiwań binar-
nych T.

Dodatkowo każdy wierzchołek v drzewa
T wskazuje na wzbogacone, zrównowa-
żone drzewo poszukiwań binarnych, w
którym wszystkie punkty poddrzewa
drzewa T o korzeniu v uporządkowane są
względem współrzędnej y-owej.

W węzłach drzewa T (oraz drzew
stowarzyszonych) pamiętamy wartość
współrzędnej x (y) wyznaczającej podział
na prawe i lewe poddrzewa.

{# na przykładzie nie ma struktur
stowarzyszonych dla liści ani wartości
współrzędnych w węzłach #}

2
3

4
5

1

1

1
1

1

5

5

5

5

3

3

3

2

2

2 4

4

4

3

5 1

1 5

1

1 5

3

5

4 2

2 4

2

Niech xm (ym) oznacza odpowiednią współ-
rzędną mediany zbioru. Niech HP oznacza
strukturę stowarzyszoną dla zbioru P.

procedure BUILDRT(P)

if P zawiera tylko jeden punkt v

 then stwórz liść w T i strukturę H{v}

 else podziel P na dwa zbiory Pl i Pr

 względem xm ;

 vl  BUILDRT(Pl);

 vp  BUILDRT(Pr);

 stwórz HP, zapamiętaj w niej punkty

 i ich współrzędne y-owe (scalanie);

 stwórz węzeł v będący ojcem vl i vp,

 zapamiętaj w nim xm i połącz z HP ;

return v ;

{# struktur H{v} nie ma na rysunku z uwagi
na brak miejsca, w węzłach powinny być
współrzędne zamiast etykiet punktów #}

2
3

4

5

1

1

5

3 2

4

3

Niech R := [x1,x2][y1,y2] oraz vx określa wę-
zeł rozejścia się ścieżek poszukiwania x1 i x2.

procedure SEARCHRT(T,R)

znajdź vx ;

if vx jest liściem

 then sprawdź czy odpowiadający mu

 punkt należy do R

 else v  ls(vx);

 while v nie jest liściem do

 if x1  xv

 then znajdź w strukturze stowarzy-

 szonej dla rs(v) punkty z R;

 v  ls(v)

 else v  rs(v);

 sprawdź czy punkt z liścia jest w R ;

 wykonaj symetryczne operacje do

 powyższych zaczynając od v  rs(vx);

2
3

4

5

1

1

1
1

1

5

5

5

5

3

3

3

2

2

2 4

4

4

vx

3

5 5

2 4 4 3

Lemat.

Drzewo obszarów dla n-elementowego zbioru punktów na płaszczyźnie

wymaga O(n log n) pamięci i może zostać skonstruowane również w czasie

O(n log n).

Lemat.

Znalezienie z pomocą drzewa obszarów wszystkich punktów z n-elementowe-

go zbioru P należących do danego prostokąta R wymaga czasu O(k + log2 n),

gdzie k jest liczbą znalezionych punktów.

Konstrukcję drzewa obszarów można również rozszerzyć na wyższe wymiary.

Dla n-elementowego zbioru P w d wymiarowej przestrzeni drzewo obszarów

ma rozmiar O(n logd-1 n) i można je zbudować w czasie O(n logd-1 n).

Odpowiedź na zapytanie o punkty należące do prostopadłościanu R otrzy-

mujemy w czasie O(k + logd n), gdzie k jest liczbą znalezionych punktów.

Kaskadowanie (cascading).

Jeśli mamy dwa uporządkowane zbiory liczb, z których jeden jest

podzbiorem drugiego, to chcąc wyszukać w każdym z nich ten sam

element nie musimy tego robić dwukrotnie.

Zamiast tego, tworząc zbiory możemy dodać wskaźniki łączące

odpowiednie pary elementów.

 1 2 3 4 5 6 7 8 9 10 11 12

 2 4 5 7 10 11

W taki sam sposób możemy określić zależności między drzewami

stowarzyszonymi w strukturze drzewa obszarów.

Warstwowe drzewo obszarów (layered

range tree).

Na ostatnim poziomie wyszukiwania

zamiast drzew stowarzyszonych stosu-

jemy tablice z dowiązaniami pomiędzy

nimi.

Wskaźniki z komórki zawierającej wartość

v prowadzą do najmniejszej nie mniejszej

niż v wartości w każdym z poddrzew.

Przechodzimy z tablicy do tablicy zgodnie

ze ścieżką wyznaczoną na poprzednim

poziomie wyszukiwania określając

jednocześnie elementy należące do zakresu

wyznaczonego przez ostatnią badaną

współrzędną.

Wyszukiwanie binarne wykonujemy tylko

w tablicy odpowiadającej momentowi

rozejścia się ścieżek wyszukiwań zakresu

dla poprzedniego poziomu.

2
3

4

5

1

1 5

3 2 4

 5 4 1 3 2

5 1 3 4 2

5 1 3

Konstrukcję warstwowego drzewa obszarów można również rozszerzyć na

wyższe wymiary.

Lemat.

Dla n-elementowego zbioru P w d  2 wymiarowej przestrzeni warstwowe

drzewo obszarów ma rozmiar O(n logd-1 n) i można je zbudować w czasie

O(n logd-1 n). Odpowiedź na zapytanie o punkty należące do prostopadłościanu

R otrzymujemy w czasie O(k + logd-1 n), gdzie k jest liczbą znalezionych

punktów.

7 9

4 8 5 6

3 2

Drzewa przeszukiwań priorytetowych

(priority search tree).

Załóżmy, że prostokąt R jest lewostronnie

nieograniczony (R := [-,x][y1,y2]).

Niech p1 będzie punktem o minimalnej x-

owej współrzędnej, a ym - medianą y-

owych współrzędnych pozostałych

punktów.

Niech Pd = {p  P-{p1}: yp  ym}

oraz Pg = {p  P-{p1}: yp > ym}

Tworzymy drzewo binarne T, którego

korzeniem jest p1 a jego synami są ko-

rzenie drzew stworzonych odpowiednio

dla zbiorów Pd i Pg. W węzłach przecho-

wujemy informacje o wartościach median.

1

2

3

4

5
6

7

9

8

1

Niech vy określa punkt rozejścia się ścieżek
poszukiwania y1 i y2 , a p(v) oznacza punkt
odpowiadający wierzchołkowi v.

procedure SEARCHPST(T, R)

znajdź vy ;

for każdy węzeł v na ścieżkach poszukiwań
y1 i y2 do

 if p(v)  R then zwróć p(v) ;

for każdy węzeł v na ścieżce poszukiwań y1
w lewym poddrzewie vy do

 if w v ścieżka poszukiwań idzie w lewo

 then wyszukaj punkty należące do R

 w poddrzewie o korzeniu w rs(v);

for każdy węzeł v na ścieżce poszukiwań y2
w prawym poddrzewie vy do

 if w v ścieżka poszukiwań idzie w prawo

 then wyszukaj punkty należące do R

 w poddrzewie o korzeniu w ls(v);

1

2

3

4

5
6

7

9

8

1

3 2

4

7

8 5 6

9

vy 1

3 3

4 4

2

5 5 8 8 6 6

9 7 7

Lemat.

Drzewo przeszukiwań priorytetowych dla n-elementowego zbioru P punktów na
płaszczyźnie używa O(n) pamięci i można je zbudować w czasie O(n log n).

Lemat.

Wyszukiwanie punktów należących do R w poddrzewie nieodwiedzonego syna
węzła v na ścieżce poszukiwań y1 lub y2 wymaga czasu O(1+kv), gdzie kv
oznacza liczbę punktów z R znalezionych w poddrzewie.

Dowód.

Jeśli wierzchołek w poddrzewie odpowiada punktowi z R, to wszystkie punkty
leżące na ścieżce z korzenia (syna v) do w też są w R. Zatem liczba sprawdzeń
jest proporcjonalna do liczby znalezionych punktów + sprawdzenia dla v (gdy
nie znaleziono żadnego punktu).

Lemat.

Stosując drzewo przeszukiwań priorytetowych możemy określić wszystkie
punkty z P należące do R w czasie O(k + log n), gdzie k jest liczbą znalezionych
punktów.

Drzewo przedziałów (interval tree).

Rozważmy teraz przypadek, gdy zamiast punktów mamy do czynienia z n-ele-

mentowym zbiorem I pionowych lub poziomych odcinków. Chcemy znaleźć

te z nich, które przecinają prostokąt R := [x1,x2][y1,y2].

Te odcinki, które mają przynajmniej jeden koniec wewnątrz prostokąta mo-

żemy znaleźć wykorzystując wcześniej omówione struktury.

Dlatego teraz będziemy tylko badać odcinki przecinające przeciwległe boki

prostokąta. Załóżmy, że I jest zbiorem odcinków poziomych.

Niech xm będzie medianą x-owych współrzędnych końców odcinków z I.

Zdefiniujmy: Il := {[xp,xk]  I: xk < xm }, Im := {[xp,xk]  I: xp  xm  xk },

Ir := {[xp,xk]  I: xm < xp }.

Stworzymy drzewo binarne, którego korzeniem będzie xm a jego synami będą

mediany (o ile istnieją) wierzchołków ze zbiorów Il i Ir. Z korzeniem wiążemy

dwie uporządkowane (ku medianie) listy odpowiednio lewych i prawych

końców odcinków należących do Im. To samo robimy ze zbiorami Il i Ir.

4l 7l 9l
(9) (9) (7) (4) (7) (4)

8l 1r
(8) (8) (3,1) (1,3)

procedure BUILDIT(I)

if I = 

 then zwróć pusty liść

 else stwórz węzeł v i zapamiętaj w

 nim xm ;

 oblicz Im, stwórz uporządkowane listy

 lewych (Ll) i prawych (Lr) końców

 odcinków z Im i podłącz je do v;

 ls(v)  BUILDIT(Il);

 rs(v)  BUILDIT(Ir);

 return;

Niech vx oznacza medianę xm zapamiętaną w

węźle v.

1

2

3

4 5

6

7

8

9

6l (5,6,2) (2,5,6)

Szukamy odcinków, które zawierają

dowolny punkt q  [x1,x2].

procedure SEARCHIT(v,q)

if v nie jest liściem

 then if q < vx

 then badaj listę Ll(v) zaczynając od

 najdalszego punktu; wypisuj

 odcinki, do których należy q,

 a gdy się skończą – zatrzymaj;

 SEARCHIT(ls(v),q);

 else badaj listę Lr(v) zaczynając od

 najdalszego punktu; wypisuj

 odcinki, do których należy q,

 a gdy się skończą – zatrzymaj;

 SEARCHIT(rs(v),q);

1

2

3

4 5

6

7

8

9

6l

1r

4l

8l

7l 9l
(9) (9) (7)

(8)

(4) (7)

(8)

(4)

(5,6,2) (2,5,6)

(3,1) (1,3)

6l (2,5,6) (2,5,6)

1r
(3,1)

4l
(4)

Lemat.

Drzewo przedziałów dla n-elementowego zbioru I poziomych odcinków ma
liniowy rozmiar i wysokość O(log n). Czas konstrukcji struktury wynosi O(n
log n).

Lemat.

Znalezienie wszystkich poziomych odcinków z n-elementowego zbioru I
przecinanych daną pionową prostą z wykorzystaniem drzewa przedziałów
wymaga czasu O(k+log n), gdzie k jest liczbą znalezionych odcinków.

Jeśli chcemy znaleźć poziome odcinki przecinane przez pionowy odcinek
(bok prostokąta R), to zamiast list Ll i Lr należy użyć np. drzew przeszukiwań
priorytetowych.

Lemat.

Wszystkie poziome odcinki z n-elementowego zbioru I przecinane danym
pionowym odcinkiem możemy znaleźć z pomocą drzewa przedziałów w
czasie O(k + log2 n), gdzie k jest liczbą znalezionych odcinków.

Dziękuję za uwagę.

Ćwiczenia 4.

1. Jak wyszukiwać punkty w jednowymiarowym obszarze ?

2. Jak zdefiniować liczby złożone w wyższych wymiarach ?

3. Udowodnij, że czas odpowiedzi w kd drzewie na zapytanie o punkty
należące do kostki R w przestrzeni d-wymiarowej wynosi O(k+n(d-1)/d),
gdzie d jest stałą a k jest liczbą znalezionych punktów.

4. Częściowe skojarzenie, to zbiór punktów o określonej jednej (lub kilku)
współrzędnej.

a) Pokaż, że dwuwymiarowe kd drzewo może odpowiedzieć na zapytanie o
częściowe skojarzenie w pesymistycznym czasie O(n1/2 + k), gdzie k jest
liczbą znalezio-nych punktów.

b) Wytłumacz, jak skorzystać z dwuwymiarowego drzewa obszarów do od-
powiedzi na zapytanie o częściowe skojarzenie. Jaki jest w efekcie czas
zapytania ?

c) Opisz strukturę danych, która korzysta z liniowej pamięci i rozwiązuje
dwuwymiarowe zapytanie o częściowe skojarzenie czasie O(log n + k).
Jaki jest czas tworzenia struktury i odpowiedzi na klasyczne zapytanie ?

5. Zbuduj drzewo obszarów dla n-elementowego zbioru P w przestrzeni d-

wymiarowej.

a) Jaki ma rozmiar i w jakim czasie można je zbudować ?

b) W jakim czasie znajdujemy odpowiedź na zapytanie o punkty należące do

kostki R ?

6. Niech S1 będzie zbiorem n rozłącznych półprostych pionowych, a S2

zbiorem m rozłącznych półprostych poziomych. Opisz algorytm zamiatania,

który policzy w czasie O((n+m) log (n+m)) liczbę przecięć w S1  S2.

7. W jaki sposób stworzyć listy pomocnicze w drzewie przedziałów w czasie

O(n log n) ?

8. Niech P będzie zbiorem n punktów na płaszczyźnie posortowanych

względem współrzędnej y. Pokaż, że z posortowania P wynika, że drzewo

przeszukiwań priorytetowych dla punktów z P można zbudować w czasie

O(n).

9. Którą z poznanych struktur danych można wykorzystać do obsługi

dynamicznie zmieniającego się zbioru punktów na płaszczyźnie ? Jaki

byłby czas aktualizacji takiej struktury ?

