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Przeszukiwanie obszarów ortogonalnych 

Problem: 

Dany jest zbiór n punktów na płaszczy-

źnie. Pragniemy znaleźć podzbiór tych 

punktów, które zawierają się w danym 

prostokącie [x1,x2][y1,y2]. Zadanie to 

jest stawiane wielokrotnie dla różnych 

prostokątów, ale tego samego zbioru 

punktów. 

 

Szybkie wyszukiwanie interesującego 

nas zbioru może być utrudnione, gdy 

wiele punktów ma takie same niektóre 

współrzędne (założenie o rozróżnialności 

współrzędnych jest nierealistyczne ze 

względów praktycznych). W takiej sytu-

acji możemy zastosować liczby złożone.  



Liczby złożone. 

 

Zastępujemy współrzędne, które są liczbami rzeczywistymi, przez 

elementy tak zwanej przestrzeni liczb złożonych. Elementy tej przestrzeni 

są parami liczb rzeczywistych. Liczbę złożoną dwóch liczb rzeczywistych 

a i b oznaczamy przez (a|b). Definiujemy porządek liniowy w przestrzeni 

liczb złożonych stosując porządek leksykograficzny. Zatem, dla dwóch 

liczb złożonych (a1|b1) i (a2|b2), mamy 

(a1|b1)<(a2|b2)  a1 < a2 lub (a1 = a2 i b1 < b2). 

Załóżmy teraz, że dany jest zbiór P zawierający n punktów na 

płaszczyźnie. Punkty są różne, ale wiele punktów może mieć takie same 

współrzędne x lub y. Zastępujemy każdy punkt p:=(px,py) przez nowy 

punkt p’:=((px|py),(py|px)), który ma liczby złożone jako wartości 

współrzędnych. W ten sposób otrzymujemy nowy zbiór P’ zawierający n 

punktów. Pierwsze współrzędne dowolnych dwóch punktów z P’ są 

różne. To samo pozostaje prawdą dla drugiej współrzędnej.  



Przypuśćmy teraz, że chcemy podać punkty, które leżą w obszarze 

R:=[x1,x2][y1,y2]. To znaczy, że musimy również określić obszar zapytania w 

przestrzeni liczb złożonych. Przekształcony obszar  jest definiowany w 

następujący sposób: 

R’ := [(x1|-∞),(x2|+∞)][(y1|-∞),(y2|+∞)]. 

Pozostaje do udowodnienia, że nasze podejście jest poprawne, to znaczy, że 

punkty z P’, które wyliczamy zadając pytanie odnośnie R’, dokładnie 

odpowiadają punktom z P, które leżą w R. 

 

Lemat. 

Niech p będzie punktem a R prostokątnym obszarem. Wtedy p  R  p’  R’. 

Dowód.  

Niech R:=[x1,x2][y1,y2] i p:=(px,py). Z definicji, p leży w R wtedy i tylko 

wtedy, gdy x1 ≤ px ≤ x2 i y1 ≤ py ≤y2. Łatwo można zobaczyć, że zachodzi to 

wtedy i tylko wtedy, gdy (x1|-∞) ≤ (px|py) ≤ (x2|+∞) i (y1|-∞) ≤ (py|px) ≤ (y2|+∞), 

czyli wtedy i tylko wtedy, gdy p’ leży w R’.  



Zauważmy, że nie potrzeba faktycznie pamiętać przekształconych pun-

któw. Wystarczy pamiętać tylko punkty ze zbioru P, pod warunkiem, że 

będziemy porównywać ich współrzędne w przestrzeni liczb złożonych. 

  

Podejście korzystające z liczb złożonych można również zastosować w 

wyższych wymiarach.  

 

Reasumując, tam, gdzie będzie nam to potrzebne w celu stworzenia odpo-

wiedniej struktury danych, możemy zakładać, że wszystkie współrzędne 

punktów ze zbioru P są różne. 

 

 

 



Kd drzewo 

 

Kd drzewo to drzewo binarne, którego liśćmi są 
punkty z P a węzłami wewnętrznymi - proste 
równoległe do osi układu współrzędnych. 
Synami węzła odpowiadającego prostej 
pionowej są węzły odpowiadające prostym 
poziomym i vice versa.  

Jako korzeń wybieramy prostą pionową 
przechodzącą przez punkt z danego zbioru 
będący jego medianą względem współrzędnych 
x-owych. Dzielimy dany zbiór na dwa 
podzbiory, do których należą punkty 
odpowiednio nie większe od mediany i większe 
od niej (operujemy na liczbach złożonych). 

Następnie w ten sam sposób dzielimy każdy 
podzbiór względem y-ów itd.  

Przyjmijmy, że pionowa (pozioma) prosta 
będzie dzielić zbiór punktów P na zbiór P2 
punktów leżących na prawo (powyżej) od tej 
prostej i zbiór P1 := P – P2.  



procedure BUILDTREE(P,depth) 

if P zawiera tylko jeden punkt 

    then return liść pamiętający ten punkt 

    else  if depth jest parzyste  

                then podziel P pionową prostą 

                        l na zbiory P1 i P2 

                else podziel P poziomą prostą 

                        l na zbiory P1 i P2; 

            vl  BUILDTREE(P1,depth+1); 

            vp  BUILDTREE(P2,depth+1); 

            stwórz węzeł v – ojca vl i vp oraz 

            zapamiętaj w nim l; 

return v  
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Niech ls(v) (rs(v)) oznacza lewego 

(prawego) syna wierzchołka v, a obszar(l) 

jest obszarem, który dzieli prosta l. 

procedure SEARCHKD(v,R) 

if v jest liściem  

    then if  v  R then zwróć v 

    else if obszar(ls(v))  R 

                then zwróć wszystkie liście pod- 

                        drzewa o korzeniu w ls(v) 

                else if obszar(ls(v)) przecina R 

                           then SEARCHKD(ls(v),R) 

           if obszar(rs(v))  R 

                then zwróć wszystkie liście pod- 

                        drzewa o korzeniu w rs(v) 

                else if obszar(rs(v)) przecina R 

                           then SEARCHKD(rs(v),R) 
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Lemat. 

Kd drzewo ma rozmiar liniowy względem rozmiaru zbioru i można je zbudować 
w czasie O(n log n). 

Dowód. 

Czas potrzebny na stworzenie kd drzewa jest opisany przez następujące równania 
rekurencyjne: T(n) = O(1) dla n =1 oraz T(n) = O(n) + 2T(n/2) dla n > 1, czyli 
T(n) = O(n log n). 

 

Lemat. 

Wykorzystując kd drzewa, znalezienie wszystkich punktów z n-elementowego 
zbioru P należących do danego prostokąta R wymaga czasu                    , gdzie k 
jest liczbą znalezionych punktów. 

Dowód. 

Policzmy, ile porównań potrzebujemy w celu znalezienia obszarów przeciętych 
przez brzeg prostokąta R. Obszary wewnątrz prostokąta zawierają elementy 
zbioru, więc jest ich O(k).  

Rozważmy jedną z prostych zawierających bok prostokąta R i stwórzmy równania 
rekurencyjne na liczbę porównań po wykonaniu dwóch kroków wyszukiwania. 
Mają one postać:  Q(n) = O(1) dla  n = 1 oraz Q(n) = 3+2Q (n/4) dla n > 1, a ich 
rozwiązaniem jest Q(n)=O(n1/2).                        . 

k)nO( 



Konstrukcję kd drzewa możemy uogólnić również na wyższe wymiary. 

 

Dla n-elementowego zbioru punktów P trzymamy wtedy drzewo rozmiaru 

O(n), które można skonstruować w czasie O(n log n). 

Czas odpowiedzi na zapytanie o punkty należące do prostopadłościanu R 

w d wymiarowej przestrzeni wynosi O(k+n(d-1)/d), gdzie k jest liczbą 

znalezionych punktów.  



Drzewa obszarów (range tree). 

 

Drzewa obszarów tworzymy następująco:  

Punkty z danego zbioru P uporządkowane 
względem współrzędnych x-owych umie-
szczamy w liściach wzbogaconego, zrów-
noważonego drzewa poszukiwań binar-
nych T. 

Dodatkowo każdy wierzchołek v drzewa 
T wskazuje na wzbogacone, zrównowa-
żone drzewo poszukiwań binarnych, w 
którym wszystkie punkty poddrzewa 
drzewa T o korzeniu v uporządkowane są 
względem współrzędnej y-owej. 

W węzłach drzewa T (oraz drzew 
stowarzyszonych) pamiętamy wartość 
współrzędnej x (y) wyznaczającej podział 
na prawe i lewe poddrzewa. 

{# na przykładzie nie ma struktur 
stowarzyszonych dla liści ani wartości 
współrzędnych w węzłach #}   
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Niech xm (ym) oznacza odpowiednią współ-
rzędną mediany zbioru. Niech HP oznacza 
strukturę stowarzyszoną dla zbioru P. 

 

procedure BUILDRT(P) 

if P zawiera tylko jeden punkt v 

    then stwórz liść w T i strukturę H{v}  

    else podziel P na dwa zbiory Pl i Pr 

           względem xm ; 

           vl  BUILDRT(Pl); 

           vp  BUILDRT(Pr); 

           stwórz HP, zapamiętaj w niej punkty 

           i ich współrzędne y-owe (scalanie);  

           stwórz węzeł v będący ojcem vl i vp, 

           zapamiętaj w nim xm i połącz z HP ; 

return v ; 

{# struktur H{v} nie ma na rysunku z uwagi 
na brak miejsca, w węzłach powinny być 
współrzędne zamiast etykiet punktów #} 
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Niech R := [x1,x2][y1,y2] oraz vx określa wę-
zeł rozejścia się ścieżek poszukiwania x1 i x2. 

procedure SEARCHRT(T,R) 

znajdź vx ; 

if  vx jest liściem  

    then sprawdź czy odpowiadający mu  

             punkt należy do R 

    else v  ls(vx); 

           while v nie jest liściem do 

               if  x1  xv  

                   then znajdź w strukturze stowarzy- 

                           szonej dla rs(v) punkty z R; 

                           v  ls(v) 

                   else  v  rs(v); 

          sprawdź czy punkt z liścia jest w R ;                   

          wykonaj symetryczne operacje do 

          powyższych zaczynając od v  rs(vx); 
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Lemat. 

Drzewo obszarów dla n-elementowego zbioru punktów na płaszczyźnie 

wymaga O(n log n) pamięci i może zostać skonstruowane również w czasie 

O(n log n).  

 

Lemat. 

Znalezienie z pomocą drzewa obszarów wszystkich punktów z n-elementowe-

go zbioru P należących do danego prostokąta R wymaga czasu O(k + log2 n), 

gdzie k jest liczbą znalezionych punktów. 

 

Konstrukcję drzewa obszarów można również rozszerzyć na wyższe wymiary. 

  

Dla n-elementowego zbioru P w d wymiarowej przestrzeni drzewo obszarów 

ma rozmiar O(n logd-1 n) i można je zbudować w czasie O(n logd-1 n). 

Odpowiedź na zapytanie o punkty należące do prostopadłościanu R otrzy-

mujemy w czasie O(k + logd n), gdzie k jest liczbą znalezionych punktów.    



Kaskadowanie (cascading). 

Jeśli mamy dwa uporządkowane zbiory liczb, z których jeden jest 

podzbiorem drugiego, to chcąc wyszukać w każdym z nich ten sam 

element nie musimy tego robić dwukrotnie. 

Zamiast tego, tworząc zbiory możemy dodać wskaźniki łączące 

odpowiednie pary elementów. 
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                          2     4     5     7    10   11   

 

W taki sam sposób możemy określić zależności między drzewami 

stowarzyszonymi w strukturze drzewa obszarów. 



Warstwowe drzewo obszarów (layered 

range tree). 

Na ostatnim poziomie wyszukiwania 

zamiast drzew stowarzyszonych stosu-

jemy tablice z dowiązaniami pomiędzy 

nimi. 

Wskaźniki z komórki zawierającej wartość 

v prowadzą do najmniejszej nie mniejszej 

niż v wartości w każdym z poddrzew.  

Przechodzimy z tablicy do tablicy zgodnie 

ze ścieżką wyznaczoną na poprzednim 

poziomie wyszukiwania określając 

jednocześnie elementy należące do zakresu 

wyznaczonego przez ostatnią badaną 

współrzędną. 

Wyszukiwanie binarne wykonujemy tylko 

w tablicy odpowiadającej momentowi 

rozejścia się ścieżek wyszukiwań zakresu 

dla poprzedniego poziomu. 
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Konstrukcję warstwowego drzewa obszarów można również rozszerzyć na 

wyższe wymiary. 

  

Lemat. 

Dla n-elementowego zbioru P w d  2 wymiarowej przestrzeni warstwowe 

drzewo obszarów ma rozmiar O(n logd-1 n) i można je zbudować w czasie    

O(n logd-1 n). Odpowiedź na zapytanie o punkty należące do prostopadłościanu 

R otrzymujemy w czasie O(k + logd-1 n), gdzie k jest liczbą znalezionych 

punktów.    
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Drzewa przeszukiwań priorytetowych 

(priority search tree). 

 

Załóżmy, że prostokąt R jest lewostronnie 

nieograniczony (R := [-,x][y1,y2] ).  

 

Niech p1 będzie punktem o minimalnej x-

owej współrzędnej, a ym - medianą y-

owych współrzędnych pozostałych 

punktów.  

Niech Pd = {p  P-{p1}: yp  ym} 

oraz Pg = {p  P-{p1}: yp > ym} 

Tworzymy drzewo binarne T, którego 

korzeniem jest p1 a jego synami są ko-

rzenie drzew stworzonych odpowiednio 

dla zbiorów Pd i Pg. W węzłach przecho-

wujemy informacje o wartościach median. 
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Niech vy określa punkt rozejścia się ścieżek 
poszukiwania y1 i y2 , a p(v) oznacza punkt 
odpowiadający wierzchołkowi v. 

procedure SEARCHPST(T, R) 

znajdź vy ; 

for każdy węzeł v na ścieżkach poszukiwań 
y1 i y2 do 

    if p(v)  R then zwróć p(v) ; 

for każdy węzeł v na ścieżce poszukiwań y1 
w lewym poddrzewie vy do 

    if  w v ścieżka poszukiwań idzie w lewo 

        then wyszukaj punkty należące do R   

                 w poddrzewie o korzeniu w rs(v);   

for każdy węzeł v na ścieżce poszukiwań y2 
w prawym poddrzewie vy do 

    if  w v ścieżka poszukiwań idzie w prawo 

        then wyszukaj punkty należące do R   

                 w poddrzewie o korzeniu w ls(v);  
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Lemat. 

Drzewo przeszukiwań priorytetowych dla n-elementowego zbioru P punktów na 
płaszczyźnie używa O(n) pamięci i można je zbudować w czasie O(n log n).   

 

Lemat. 

Wyszukiwanie punktów należących do R w poddrzewie nieodwiedzonego syna 
węzła v na ścieżce poszukiwań y1 lub y2 wymaga czasu O(1+kv), gdzie kv 
oznacza liczbę punktów z R znalezionych w poddrzewie. 

Dowód. 

Jeśli wierzchołek w poddrzewie odpowiada punktowi z R, to wszystkie punkty 
leżące na ścieżce z korzenia (syna v) do w też są w R. Zatem liczba sprawdzeń 
jest proporcjonalna do liczby znalezionych punktów + sprawdzenia dla v (gdy 
nie znaleziono żadnego punktu). 

 

Lemat. 

Stosując drzewo przeszukiwań priorytetowych możemy określić wszystkie 
punkty z P należące do R w czasie O(k + log n), gdzie k jest liczbą znalezionych 
punktów. 



Drzewo przedziałów (interval tree).  

 

Rozważmy teraz przypadek, gdy zamiast punktów mamy do czynienia z n-ele-

mentowym zbiorem I pionowych lub poziomych odcinków. Chcemy znaleźć 

te z nich, które przecinają prostokąt R := [x1,x2][y1,y2].  

Te odcinki, które mają przynajmniej jeden koniec wewnątrz prostokąta mo-

żemy znaleźć wykorzystując wcześniej omówione struktury. 

Dlatego teraz będziemy tylko badać odcinki przecinające przeciwległe boki  

prostokąta. Załóżmy, że I jest zbiorem odcinków poziomych. 

Niech xm będzie medianą x-owych współrzędnych końców odcinków z I. 

Zdefiniujmy: Il := {[xp,xk]  I: xk < xm }, Im := {[xp,xk]  I: xp  xm  xk },  

Ir := {[xp,xk]  I: xm < xp }.  

Stworzymy drzewo binarne, którego korzeniem będzie xm a jego synami będą 

mediany (o ile istnieją) wierzchołków ze zbiorów Il i Ir. Z korzeniem wiążemy 

dwie uporządkowane (ku medianie) listy odpowiednio lewych i prawych 

końców odcinków należących do Im. To samo robimy ze zbiorami Il i Ir. 



4l 7l 9l 
(9) (9) (7) (4) (7) (4) 

8l 1r 
(8) (8) (3,1) (1,3) 

procedure BUILDIT(I) 

if  I =  

    then zwróć pusty liść 

    else stwórz węzeł v i zapamiętaj w  

           nim xm ; 

           oblicz Im, stwórz uporządkowane listy  

           lewych (Ll) i prawych (Lr) końców 

           odcinków z Im i podłącz je do v; 

           ls(v)  BUILDIT(Il); 

           rs(v)  BUILDIT(Ir); 

           return; 

 

 

Niech vx oznacza medianę xm zapamiętaną w 

węźle v. 
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Szukamy odcinków, które zawierają 

dowolny punkt q  [x1,x2]. 

 

procedure SEARCHIT(v,q) 

if v nie jest liściem 

    then if q < vx 

        then badaj listę Ll(v) zaczynając od  

                najdalszego punktu; wypisuj  

                odcinki, do których należy q, 

                a gdy się skończą – zatrzymaj; 

                SEARCHIT(ls(v),q); 

        else badaj listę Lr(v) zaczynając od  

                najdalszego punktu; wypisuj  

                odcinki, do których należy q, 

                a gdy się skończą – zatrzymaj; 

                SEARCHIT(rs(v),q); 
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Lemat. 

Drzewo przedziałów dla n-elementowego zbioru I poziomych odcinków ma 
liniowy rozmiar i wysokość O(log n). Czas konstrukcji struktury wynosi O(n 
log n). 

 

Lemat. 

Znalezienie wszystkich poziomych odcinków z n-elementowego zbioru I 
przecinanych daną pionową prostą z wykorzystaniem drzewa przedziałów 
wymaga czasu O(k+log n), gdzie k jest liczbą znalezionych odcinków. 

 

Jeśli chcemy znaleźć poziome odcinki przecinane przez pionowy odcinek 
(bok prostokąta R), to zamiast list Ll i Lr należy użyć np. drzew przeszukiwań 
priorytetowych. 

 

Lemat. 

Wszystkie poziome odcinki z n-elementowego zbioru I przecinane danym 
pionowym odcinkiem możemy znaleźć z pomocą drzewa przedziałów w 
czasie O(k + log2 n), gdzie k jest liczbą znalezionych odcinków.  



 

 

 

 

Dziękuję za uwagę. 



Ćwiczenia 4. 

1. Jak wyszukiwać punkty w jednowymiarowym obszarze ? 

 

2. Jak zdefiniować liczby złożone w wyższych wymiarach ?  

 

3. Udowodnij, że czas odpowiedzi w kd drzewie na zapytanie o punkty 
należące do kostki R w przestrzeni d-wymiarowej wynosi O(k+n(d-1)/d), 
gdzie d jest stałą a k jest liczbą znalezionych punktów.  

 

4. Częściowe skojarzenie, to zbiór punktów o określonej jednej (lub kilku) 
współrzędnej. 

a)  Pokaż, że dwuwymiarowe kd drzewo może odpowiedzieć na zapytanie o 
częściowe skojarzenie w pesymistycznym czasie O(n1/2 + k), gdzie k jest 
liczbą znalezio-nych punktów. 

b)  Wytłumacz, jak skorzystać z dwuwymiarowego drzewa obszarów do od-
powiedzi na zapytanie o częściowe skojarzenie. Jaki jest w efekcie czas 
zapytania ?  

c)  Opisz strukturę danych, która korzysta z liniowej pamięci i rozwiązuje 
dwuwymiarowe zapytanie o częściowe skojarzenie  czasie O(log n + k). 
Jaki jest czas tworzenia struktury i odpowiedzi na klasyczne zapytanie ?  



5. Zbuduj drzewo obszarów dla n-elementowego zbioru P w przestrzeni d-

wymiarowej.  

a) Jaki ma rozmiar i w jakim czasie można je zbudować ?  

b) W jakim czasie znajdujemy odpowiedź na zapytanie o punkty należące do 

kostki R ?  

 

6. Niech S1 będzie zbiorem n rozłącznych półprostych pionowych, a S2 

zbiorem m rozłącznych półprostych poziomych. Opisz algorytm zamiatania, 

który policzy w czasie O((n+m) log (n+m)) liczbę przecięć w S1  S2. 

 

7. W jaki sposób stworzyć listy pomocnicze w drzewie przedziałów w czasie 

O(n log n) ? 

 

8. Niech P będzie zbiorem n punktów na płaszczyźnie posortowanych 

względem współrzędnej y. Pokaż, że z posortowania P wynika, że drzewo 

przeszukiwań priorytetowych dla punktów z P można zbudować w czasie 

O(n).  

 

 



9. Którą z poznanych struktur danych można wykorzystać do obsługi 

dynamicznie zmieniającego się zbioru punktów na płaszczyźnie ? Jaki 

byłby czas aktualizacji takiej struktury ?  


