
Geometria obliczeniowa 
Wykład 3 

Metoda zamiatania. 

1. Triangulacja wielokąta monotonicznego. 

2. Podział wielokąta prostego na wielokąty 

monotoniczne. 

3. Znajdowanie par przecinających się odcinków.  

4. Znajdowanie pary najbliższych punktów. 

 



Triangulacja wielokąta monotonicznego. 

 

Definicja. 

Wielokąt prosty nazywamy ściśle mono-

tonicznym względem prostej k (wyzna-

czającej kierunek monotoniczności), gdy 

jego brzeg można podzielić na dwa 

spójne łańcuchy takie, że dowolna prosta 

prostopadła do k przecina każdy z 

łańcuchów w co najwyżej jednym 

punkcie.  

Wielokąt jest monotoniczny, gdy prze-

cięcie dowolnej prostej prostopadłej do k 

z dowolnym łańcuchem jest spójne. 

 

 

k 

k 



Algorytm. 

znajdź górny i dolny łańcuch wielokąta 
względem kierunku monotoniczności; 

posortuj wierzchołki i wstaw je do listy L; 

usuń pierwsze dwa wierzchołki z L i wstaw 
je na stos Q;  

while L   do 

    p:=FRONT(L); POP(L); 

    q:=FRONT(Q);  

    if p i q należą do różnych łańcuchów  

        then while Q   do  

                    r:=FRONT(Q); POP(Q);  

                    połącz p z r; 

        else POP(Q); r:=FRONT(Q);  

               while |pqr| <  do  

                   połącz p z r; 

                   q:=r; POP(Q); r:=FRONT(Q); 

    wstaw q i p na stos Q; 

k 



Poprawność i złożoność algorytmu. 

 

Poprawność algorytmu wynika z faktu, że punkty znajdujące się na stosie 

Q muszą tworzyć wklęsłą łamaną. Z ostatniego punktu taka łamana jest 

widoczna niezależnie od strony, po której się znajduje. 

 

Algorytm działa w czasie O(n), gdyż w każdym kroku wykonuje liczbę 

operacji proporcjonalną  do liczby wierzchołków zdjętych ze stosu Q + 

pewna stała. Posortowanie wierzchołków wymaga czasu O(n), gdyż 

polega na scaleniu wierzchołków z obu łańcuchów w jedną listę. 



Podział wielokąta prostego na wielokąty 

monotoniczne. 

 

Do rozwiązania tego problemu wykorzy-

stamy metodę zamiatania. 

Miotła będzie równoległa do osi x-ów. 

 

Definicje. 

Pomocnikiem krawędzi e wielokąta P nazy-

wamy wierzchołek v, który jest prawym 

końcem równoległego do miotły odcinka 

łączącego v z e, leżącego powyżej miotły i 

najbliższego niej, którego wnętrze jest 

zawarte we wnętrzu P. 

Wielokąt nazywamy y-monotonicznym, gdy 

jest monotoniczny względem osi y-ów. 

v 

e 

e 

v 



Wyróżniamy pięć rodzajów wierzchołków 

wielokąta w zależności od pozycji miotły 

przechodzącej przez dany wierzchołek 

(badamy wewnętrzne kąty wielokąta) : 

 

- początkowy, gdy obie wychodzące z niego 

krawędzie leżą poniżej miotły i tworzą kąt < , 

- dzielący, gdy obie wychodzące z niego 

krawędzie leżą poniżej miotły i tworzą kąt > ,  

- końcowy, gdy obie wychodzące z niego 

krawędzie leżą powyżej miotły i tworzą kąt < , 

- łączący, gdy obie wychodzące z niego 

krawędzie leżą powyżej miotły i tworzą kąt > , 

- prawidłowy, gdy jedna z wychodzących z 

niego krawędzi leży poniżej a druga powyżej 

miotły. 

 



Lemat. 

Wielokąt, który nie ma wierzchołków 

dzielących i łączących, jest y-monoto-

niczny. 

Dowód. 

Załóżmy, że wielokąt nie jest y-mono-

toniczny. Wtedy przecięcie poziomej 

prostej l z wielokątem tworzy co naj-

mniej dwa spójne przekroje. Istnieje 

odcinek na zewnątrz wielokąta łączący 

je. Weźmy ciąg krawędzi wielokąta 

łączących końce tego odcinka i 

nieprzecinający prostej. Najbardziej 

odległy od l wierzchołek takiej łamanej 

jest wierzchołkiem dzielącym lub 

łączącym. 

l 

l 



Naszym zadaniem będzie dodanie prze-

kątnych likwidujących wierzchołki łą-

czące i dzielące. 

 

Strukturą zdarzeń będzie lista L uporząd-

kowanych malejąco względem y-ów 

wierzchołków danego wielokąta P. 

 

Strukturą stanu będzie wzbogacone, 

zrównoważone drzewo poszukiwań 

binarnych T przechowujące w liściach 

ciąg aktualnie przecinanych przez miotłę 

krawędzi ograniczających wielokąt P z 

lewej strony wraz z dowiązaniami do ich 

pomocników. 



W zależności od rodzaju wierzchołka v, 
który odwiedza miotła wykonywane są na-
stępujące procedury. Niech el (ep) oznacza 
lewą (prawą) krawędź o końcu w wierz-
chołku początkowym, końcowym, dzielącym 
lub łączącym. Niech ev oznacza krawędź le-
żącą bezpośrednio na lewo od v. 

 

Wierzchołek początkowy . 

wstaw el do T; 

pomocnik(el) := v; 

 

Wierzchołek końcowy. 

if pomocnik(el) jest wierzchołkiem łączącym 

    then wstaw przekątną miedzy v  

             i pomocnik(el); 

usuń el z T; 

v 

v 



Wierzchołek dzielący. 

znajdź w T krawędź ev ;   

wstaw przekątną między v i pomocnik(ev); 

pomocnik(ev) := v; 

wstaw ep do T i pomocnik(ep) := v; 

 

Wierzchołek łączący. 

if pomocnik(ep) jest wierzchołkiem łączącym 

    then wstaw przekątną między v i 

             pomocnik(ep); 

usuń ep z T; 

znajdź w T krawędź ev ; 

if pomocnik(ev) jest wierzchołkiem łączącym 

    then wstaw przekątną między v i 

             pomocnik(ev); 

pomocnik(ev) := v; 

v 

v 



Wierzchołek prawidłowy. 

Niech eg (ed) będzie krawędzią powyżej 

(poniżej) v. 

if wnętrze P leży na prawo od v 

    then if pomocnik(eg) jest  

                wierzchołkiem łączącym 

                then wstaw przekątną między  

                         v i pomocnik(eg); 

            usuń eg z T; 

            wstaw ed do T i pomocnik(ed) := v; 

    else  znajdź w T krawędź ev ; 

            if pomocnik(ev) jest wierzchołkiem  

                łączącym 

                then wstaw przekątną między v i 

                       pomocnik(ev); 

            pomocnik(ev) := v; 



Algorytm podziału wielokąta P na 

wielokąty monotoniczne. 

 

L := {p1, p2, ..... , pn}; T := puste ; 

while L   do 

    v := FRONT(L); 

    POP(L); 

    wywołaj procedurę  

    odpowiadającą rodzajowi v;  



Lemat. 

Powyższy algorytm znajduje zbiór nieprzecinających się przekątnych, 

które dzielą wielokąt prosty P na wielokąty monotoniczne. 

Dowód. 

Algorytm likwiduje wierzchołki łączące i dzielące, więc otrzymujemy 

podział na wielokąty monotoniczne. 

Wierzchołek przestaje być dzielący w momencie zamiecenia. 

Wierzchołek łączący jest pomocnikiem najbliższej krawędzi z lewej 

strony.  Przestaje taki być najpóźniej po osiągnięciu dolnego końca tej 

krawędzi (ale może wcześniej, gdy na prawo od krawędzi pojawi się  

inny wierzchołek). 

Z definicji pomocnika wynika, że w chwili dodawania przekątnej między 

miotłą a odcinkiem łączącym go z odpowiadającą mu krawędzią nie ma 

innych elementów. Zatem można go połączyć z aktualnie badanym 

wierzchołkiem przekątną nie przecinającą się z żadną inną.  



Lemat. 

Prosty wielokąt o n wierzchołkach można powyższym algorytmem podzielić 

na y-monotoniczne wielokąty w czasie O(n log n) używając O(n) pamięci. 

Dowód. 

Sortowanie wierzchołków wymaga czasu O(n log n). 

Przetworzenie jednego wierzchołka wymaga czasu logarytmicznego, więc 

zamiatanie wykonujemy w czasie O(n log n). 

Wszystkie wykorzystywane struktury danych mają liniowy rozmiar. 

 

Triangulacja otrzymanych wielokątów monotonicznych wymaga czasu O(n), 

więc dowolny wielokąt prosty można striangulować w czasie O(n log n). 

 

Twierdzenie (Chazelle). 

Dowolny wielokąt prosty można striangulować w czasie O(n). 



Znajdowanie par przecinających się odcinków. 

 

Problem: Dla zbioru n odcinków S na płaszczyźnie znajdź wszystkie pary 

przecinających się odcinków z S.  

 

Problem przecinających się odcinków można łatwo rozwiązać w czasie 

O(n2). W tym celu wystarczy sprawdzić oddzielnie każdą parę odcinków. 

Takie rozwiązanie jest optymalne, gdy liczba par przecinających się 

odcinków jest kwadratowa. 

 

Chcemy znaleźć algorytm wrażliwy na wynik, tzn. algorytm, którego 

złożoność będzie zależeć od rozmiaru rozwiązania.  



Metoda zamiatania. 

 

Miotła będzie zamiatać wzdłuż osi x-ów. 

W każdym położeniu miotły odcinkami przetworzonymi nazywamy 

wszystkie odcinki, których końce znajdują się na lewo od niej. Odcinkami 

aktywnymi są odcinki aktualnie przecinające miotłę. Do zbioru odcinków 

oczekujących należą odcinki o obu końcach na prawo od miotły. 

 

Będziemy korzystać z dwóch struktur danych. 

Struktura zdarzeń Q jest zrównoważonym drzewem poszukiwań binar-

nych zawierającym uporządkowane rosnąco względem x-ów końce 

odcinków oraz punkty przecięć wszystkich par odcinków aktywnych, 

które kiedykolwiek były sąsiadami w strukturze stanu. 

Struktura stanu T jest wzbogaconym, zrównoważonym drzewem poszu-

kiwań binarnych przechowującym w liściach zbiór odcinków aktywnych 

uporządkowanych względem współrzędnych y-owych.  



Po dojściu miotły do kolejnego punktu 

zdarzenia mamy trzy możliwości. 

 

Zdarzenie jest początkiem odcinka s z S. 

wstaw s do T; uaktualnij dowiązania; 

if w jest sąsiadem s w T  

    then if w przecina s w punkcie p 

        then wstaw p do Q;  

 

Zdarzenie jest końcem odcinka s z S. 

usuń s z T; uaktualnij dowiązania; 

if s miał w T dwóch sąsiadów w, z  

    then if w przecina z w punkcie p 

        then wstaw p do Q, jeśli go tam 

                 jeszcze nie ma;  



Zdarzenie jest punktem przecięcia 
odcinków s,z  S. 

Zamień kolejność s i z w T;  

if w jest sąsiadem s  

    then if w przecina s w punkcie p 

        then wstaw p do Q , jeśli go tam 

                 jeszcze nie ma;  

if v jest sąsiadem z  

    then if v przecina z w punkcie q 

        then wstaw q do Q , jeśli go tam 

                 jeszcze nie ma; 

 

Lemat. 

Punkt przecięcia dwóch aktywnych 
odcinków leżący po prawej stronie, 
najbliżej miotły znajduje się w 
strukturze Q. 



Algorytm (Bentley-Ottmann). 

 

wstaw do Q końce odcinków z S; 

T := puste; 

while Q pusty do 

    q := minimalny element w Q; 

    usuń q z Q; 

    wywołaj odpowiednią procedurę  

    badającą q zależnie od jego  

    rodzaju; 

 



Twierdzenie. 

Algorytm znajduje wszystkie przecięcia odcinków ze zbioru S w czasie 

O((n+k) log n), gdzie k jest liczbą przecięć. 

Dowód. 

Jeśli dwa odcinki przecinają się, to istnieje położenie miotły poprzedzające 

to zdarzenie, w którym przecinające się odcinki sąsiadują w strukturze T. 

Zatem każdy punkt przecięcia jest znajdywany.  

Operacje wykonywane w dowolnym kroku algorytmu wymagają czasu 

logarytmicznego (stała liczba wstawień, usunięć, wyszukiwań elementów w 

zrównoważonym drzewie poszukiwań binarnych). Algorytm wykonuje 

2n+k kroków. Zatem jego złożoność wynosi O((n+k) log n). 

 

Wniosek (problem decyzyjny). 

Znalezienie odpowiedzi na pytanie, czy w zbiorze S istnieje para przecina-

jących się odcinków wymaga czasu O(n log n). 



Szkic algorytmu Balabana. 

 

Obszar, w którym występują odcinki podzielmy na pionowe pasy. 

Porządkiem odcinków względem pionowej prostej nazywamy kolejność 

ich punktów przecięć z prostą. 

Wykorzystujemy strukturę drzewa binarnego do zapisu podziału na pasy. 

Schodami w danym pasie nazywamy maksymalny zbiór (niekoniecznie 

największy) nieprzecinających się części odcinków, z których każda łączy 

oba brzegi pasa. 

Po określeniu schodów w danym pasie, dzielimy pozostałe odcinki 

względem mediany x-owych współrzędnych ich końców w pasie i 

znajdujemy schody w nowych pasach. 

Po  dojściu do liści (osobne końce odcinków) zawracamy i zliczamy w 

danym pasie punkty przecięć  schodów z odcinkami analizowanymi na 

niższych poziomach (badamy przecięcia tych odcinków z coraz szerszymi 

pasami, więc każdy odcinek sprawdzamy co najwyżej logarytmicznie 

wiele razy) oraz dodajemy informację o przecięciach tych odcinków . 



Przykład. 

1 1 

3 2 

2 1 

Łącznie 10 przecięć. 



Twierdzenie. 

Algorytm Balabana jest optymalnym algorytmem czułym na wynik. 

Jego złożoność czasowa wynosi O(n log n + k) i wymaga O(n) pamięci 

gdzie k oznacza liczbę przecięć odcinków. 

 



Znajdowanie pary najbliższych punktów na płaszczyźnie. 

 

Problem: W zbiorze S zawierającym n punktów na płaszczyźnie znajdź 

parę wyznaczającą odcinek o najmniejszej długości.  

 

Problem ten można łatwo rozwiązać w czasie O(n2) badając wszystkie 

pary punktów.  

Wykorzystamy algorytm zamiatania w celu znalezienia rozwiązania 

problemu w czasie O(n log n). 

 

 

 



Miotła poruszać się będzie wzdłuż osi x-ów.  

Punktami aktywnymi będziemy nazywać punkty z S znajdujące się w lewo-
stronnie otwartym pasie X o szerokości równej najmniejszej odległości 
między dotychczas zamiecionymi punktami. Początkowo szerokość pasa 
jest nieskończona. Niech ix oznacza minimalny indeks punktu z X. 

 

Strukturą zdarzeń jest uporządkowana lista L punktów z S. 

Strukturą stanu będzie zrównoważone drzewo poszukiwań binarnych T 
przechowujące zbiór punktów aktywnych uporządkowanych względem 
współrzędnej y.   

 

Lemat. 

Punkty w pasie X można uporządkować względem współrzędnej y. 

Dowód. 

Ponieważ pas jest lewostronnie otwarty i ma szerokość równą najmniejszej 
odległości między dotychczas zamiecionymi punktami, więc żadne dwa 
punkty w pasie nie mogą mieć tej samej współrzędnej y-owej.  



Algorytm. 

 

L := {p2, p3, ..... , pn}; T := puste ; 

dmin:= +; ix:= 1; 

while L   do 

    v := FRONT(L);  

    POP(L); 

    while d(ix,v)  dmin do  

        T := T – {pix}; 

        ix:= ix+1; 

    znajdź w T punkty odległe od v wzglę-
dem współrzędnej y o mniej niż dmin; 
w:= punkt w X najbliższy v;  

     d:=d(v,w) (d := + jeśli w nie istnieje); 

     T := T  {v}; 

     if d < dmin then 

         dmin := d; 

         C := {v, w};  



Lemat. 

W każdym kroku algorytmu badamy co najwyżej 5 par punktów. 

 

Twierdzenie. 

Dla danego zbioru n punktów na płaszczyźnie najbliższą parę punktów 

możemy znaleźć w czasie O(n log n). 

Dowód. 

Strukturę T uaktualniamy co najwyżej O(n) razy. Kosztuje to O(n log n). 

Dla każdego zdarzenia wykonujemy stałą liczbę operacji, z których każda 

kosztuje co najwyżej O(log n). Ponieważ zdarzeń jest n, więc złożoność 

algorytmu wynosi O(n log n).  



 

 

 

 

Dziękuję za uwagę. 



Ćwiczenia 3. 

 

1. Udowodnij, że każdy wielokąt umożliwia triangulację, nawet jeśli ma 
dziury. Co można powiedzieć o liczbie trójkątów w triangulacji ? 

 

2. Udowodnij lub zaprzecz: dla każdego wielokąta monotonicznego istnieje 
triangulacja, której graf dualny jest łańcuchem, tzn. każdy węzeł tego 
grafu ma stopień 2. 

 

3. Podaj algorytm, który w czasie O(n log n) oblicza przekątną dzielącą 
prosty wielokąt o n wierzchołkach na dwa wielokąty z co najwyżej 2n/3 
+2 wierzchołkami w każdym z nich. 

 

4. Niech P będzie prostym wielokątem o n wierzchołkach, który podzielono 
na monotoniczne części. Udowodnij, że suma rozmiarów tych części jest 
O(n). 

 



5. Niech S będzie zbiorem n trójkątów na płaszczyźnie. Brzegi trójkątów są 
rozłączne, ale jest możliwe, że trójkąt leży całkowicie wewnątrz drugiego 
trójkąta. Niech P będzie zbiorem n punktów na płaszczyźnie. Podaj algorytm 
działający w czasie O(n log n), który znajduje punkty leżące poza 
trójkątami. 

 

6. Niech S będzie zbiorem n rozłącznych trójkątów na płaszczyźnie. Chcemy 
znaleźć zbiór n-1 odcinków o następujących własnościach: 

-  każdy odcinek łączy punkty brzegowe dwóch trójkątów, 

-  odcinki nie przecinają się i ich wnętrza są rozłączne z trójkątami, 

-  ciągi odcinków łączą razem wszystkie trójkąty, tzn. z każdego trójkąta 
można dojść do dowolnego innego.  

 Stwórz algorytm działający w czasie O(n log n). 

 

7. Mając dany ciąg kolejnych krawędzi wielokąta prostego oblicz w czasie 
liniowym jego pole. 

 

  

 



 

8. Niech S będzie zbiorem n okręgów na płaszczyźnie. Opisz algorytm 
zamiatania obliczający wszystkie punkty przecięć okręgów. (okręgi 
mogą zawierać się jeden w drugim) 

 

9. W każdym kroku algorytmu znajdowania najbliższej pary punktów 
badamy co najwyżej 5 par punktów. 

 


