Geometria obliczeniowa
Wyktad 3

Metoda zamiatania.

1.
2.

Triangulacja wielokata monotonicznego.

Podzial wielokata prostego na wielokaty
monotoniczne.

Znajdowanie par przecinajgcych si¢ odcinkow.

/Znajdowanie pary najblizszych punktow.

Triangulacja wielokgta monotonicznego.

Definicja.

Wielokat prosty nazywamy scisle mono-
tonicznym wzgledem prostej k (wyzna-
czajacej kierunek monotonicznosci), gdy
jego brzeg mozna podzieli¢ na dwa
spOjne tancuchy takie, ze dowolna prosta
prostopadta do k przecina kazdy z
tancuchow w co najwyzej jednym
punkcie.

Wielokat jest monotoniczny, gdy prze-
ciecie dowolnej prostej prostopadtej do k
z dowolnym tancuchem jest spojne.

K

<

Algorytm.

znajdz gorny 1 dolny tancuch wielokata
wzgledem kierunku monotonicznosci;
posortuj wierzchotki 1 wstaw je do listy L;

usun pierwsze dwa wierzcholki z L 1 wstaw
je nastos Q;

while L # & do
P:=FRONT(L); POP(L);
q:=FRONT(Q);
If p 1 qnalezg do réznych tancuchow
then while Q # & do
r'=FRONT(Q); POP(Q);
potaczpzr;
else POP(Q); r:-=FRONT(Q);
while |Zpgr| < = do
polaczp zr;
q:=r; POP(Q); rr=FRONT(Q);
wstaw q I p na stos Q;

Poprawnos¢ 1 ztozonos¢ algorytmu.

Poprawnos¢ algorytmu wynika z faktu, ze punkty znajdujace si¢ na stosie
Q muszg tworzy¢ wkleslg tamang. Z ostatniego punktu taka tamana jest
widoczna niezaleznie od strony, po ktorej si¢ znajduje.

Algorytm dziata w czasie O(n), gdyz w kazdym kroku wykonuje liczbg

operacji proporcjonalng do liczby wierzcholtkow zdjetych ze stosu Q +
pewna stata. Posortowanie wierzchotkow wymaga czasu O(n), gdyz
polega na scaleniu wierzchotkow z obu tfancuchdéw w jedna liste.

Podziat wielokata prostego na wielokaty
monotoniczne.

Do rozwigzania tego problemu wykorzy-
stamy metode zamiatania.

Miotta bedzie rownolegta do osi x-Ow.

Definicje.

Pomocnikiem krawedzi e wielokata P nazy-
wamy wierzchotek v, ktory jest prawym
koncem réwnolegtego do miotly odcinka
taczacego v z e, lezacego powyzej miotly 1
najblizszego niej, ktorego wnetrze jest
zawarte we wnetrzu P.

Wielokat nazywamy y-monotonicznym, gdy
jest monotoniczny wzgledem osi1 y-Ow.

Wyrdzniamy pie¢ rodzajow wierzchotkow
wielokata w zaleznosci od pozycji miotty
przechodzacej przez dany wierzchotek
(badamy wewngtrzne katy wielokata) :

- poczatkowy, gdy obie wychodzace z niego
krawedzie lezg ponizej miotly i1 tworza kat < m,
- dzielacy, gdy obie wychodzgace z niego
krawedzie lezg ponizej miotty 1 tworza kat > ,
- koncowy, gdy obie wychodzace z niego
krawedzie lezg powyzej miotly 1 tworzg kat <,
- laczacy, gdy obie wychodzace z niego
krawedzie leza powyzej miotly 1 tworza kat > ,
- prawidlowy, gdy jedna z wychodzacych z
niego krawedzi lezy ponizej a druga powyzej
miotly.

Lemat.

~——_
~~~~~~
-~

Wielokat, ktory nie ma wierzchotkow ;
dzielacych 1 taczacych, jest y-monoto- ’
niczny. | \

Dowaod. \ / \
Zalézmy, ze wielokat nie jest y-mono-
toniczny. Wtedy przecigcie poziome] | o

prostej 1 z wielokatem tworzy co naj- b o

mniej dwa spojne przekroje. Istnieje

odcinek na zewnatrz wielokata tgczacy

je. Wezmy ciag krawedzi wielokata e 7
taczacych konce tego odcinka i 0
nieprzecinajacy prostej. Najbardziej S

odlegly od 1 wierzchotek takiej tamane; / \

_______________

jest wierzchotkiem dzielacym lub / \ \
taczacym. \ . ;



Naszym zadaniem bedzie dodanie prze-
katnych likwidujacych wierzcholki tg-
czace 1 dzielace.

Strukturg zdarzen bedzie lista L uporzad-
kowanych malejaco wzgledem y-ow
wierzchotkow danego wielokata P.

Strukturg stanu bedzie wzbogacone,
zrOwnowazone drzewo poszukiwan
binarnych T przechowujace w liSciach
cigg aktualnie przecinanych przez miotle¢
krawedzi ograniczajacych wielokat P z
lewej strony wraz z dowigzaniami do ich
pomocnikow.




W zaleznosci od rodzaju wierzchotka v,

ktory odwiedza miotta wykonywane sg na-

. . VvV
stgpujace procedury. Niech e, (e,) 0znacza
lewa (prawg) krawedz o koncu w wierz-
chotku poczatkowym, koncowym, dzielagcym

lub faczacym. Niech e, oznacza krawedz le-
zacg bezposrednio na lewo od v.

Wierzchotek poczatkowy .
wstaw e, do T;

pomocnik(e)) = v;

Wierzcholek koncowy. A

If pomocnik(e)) jest wierzchotkiem tgczagcym V
then wstaw przekatng miedzy v

| pomocnik(e));
usune z T;



Wierzcholek dzielacy.

znajdz w T krawedz e, ;

wstaw przekatng miedzy v i pomocnik(e,);
pomocnik(e,) :=v;

wstaw e, do T i pomocnik(e,) := v,

Wierzcholek taczacy.
If pomocnik(e,) jest wierzchotkiem taczacym
then wstaw przekatng miedzy v i
pomocnik(e,);
usun e, z T;
znajdz w T krawedz e, ;
If pomocnik(e,) jest wierzchotkiem taczacym
then wstaw przekatng miedzy v i
pomocnik(e,);
pomocnik(e,) :=v;




Wierzchotek prawidlowy.

Niech e, (e4) bedzie krawedzig powyzej
(ponizej) v.

If wnetrze P lezy na prawo od v
then if pomocnik(e,) jest
wierzchotkiem tgczagcym
then wstaw przekatng mi¢dzy
Vv I pomocnik(e,);
usun €y Z T;
wstaw e, do T 1 pomocnik(ey) :=v;
else znajdzw T krawedz e, ;
If pomocnik(e,) jest wierzchotkiem
laczacym
then wstaw przekatng miedzy v i
pomocnik(e,);
pomocnik(e,) :=v;




Algorytm podziatu wielokgta P na
wielokaty monotoniczne.

L :={py, P, ..., P} T 1= puste ;
while L = & do

v := FRONT(L);

POP(L);

wywolaj procedure
odpowiadajacg rodzajowi v;




Lemat.

Powyzszy algorytm znajduje zbi6r nieprzecinajgcych si¢ przekatnych,
ktore dzielg wielokat prosty P na wielokaty monotoniczne.

Dowaod.

Algorytm likwiduje wierzchotki taczace 1 dzielace, wiec otrzymujemy
podziat na wielokaty monotoniczne.

Wierzcholek przestaje by¢ dzielacy w momencie zamiecenia.
Wierzchotek taczacy jest pomocnikiem najblizsze) krawedzi z lewe;
strony. Przestaje taki by¢ najpdzniej po osiggni¢ciu dolnego konca tej
krawedzi (ale moze wczesniej, gdy na prawo od krawedzi pojawi si¢
inny wierzchotek).

Z definicji pomocnika wynika, ze w chwili dodawania przekatnej migdzy
miottg a odcinkiem tgczacym go z odpowiadajacg mu krawedzig nie ma
innych elementéw. Zatem mozna go potaczy¢ z aktualnie badanym
wierzchotkiem przekatng nie przecinajacg si¢ z zadng inng.



Lemat.

Prosty wielokat o n wierzchotkach mozna powyzszym algorytmem podzieli¢
na y-monotoniczne wielokaty w czasie O(n log n) uzywajac O(n) pamigci.
Dowaod.

Sortowanie wierzchotkéw wymaga czasu O(n log n).

Przetworzenie jednego wierzchotka wymaga czasu logarytmicznego, wigc
zamiatanie wykonujemy w czasie O(n log n).

Wszystkie wykorzystywane struktury danych majg lintowy rozmiar.

Triangulacja otrzymanych wielokagtow monotonicznych wymaga czasu O(n),
wigc dowolny wielokat prosty mozna striangulowac w czasie O(n log n).

Twierdzenie (Chazelle).
Dowolny wielokat prosty mozna striangulowac¢ w czasie O(n).



Znajdowanie par przecinajacych si¢ odcinkow.

Problem: Dla zbioru n odcinkéw S na plaszczyznie znajdz wszystkie pary
przecinajacych si¢ odcinkow z S.

Problem przecinajacych si¢ odcinkdw mozna tatwo rozwigza¢ w czasie
O(n?). W tym celu wystarczy sprawdzi¢ oddzielnie kazda pare odcinkow.
Takie rozwigzanie jest optymalne, gdy liczba par przecinajacych si¢
odcinkow jest kwadratowa.

Chcemy znalez¢ algorytm wrazliwy na wynik, tzn. algorytm, ktorego
ztozonos¢ bedzie zaleze¢ od rozmiaru rozwigzania.



Metoda zamiatania.

Miotta bedzie zamiata¢ wzdtuz osi x-Ow.

W kazdym potozeniu miotty odcinkami przetworzonymi nazywamy
wszystkie odcinki, ktorych konce znajduja sie na lewo od niej. Odcinkami
aktywnymi sa odcinki aktualnie przecinajace miotle. Do zbioru odcinkow
oczekujgcych naleza odcinki o obu koncach na prawo od miotty.

Bedziemy korzystac¢ z dwoch struktur danych.

Struktura zdarzen Q jest zrownowazonym drzewem poszukiwan binar-
nych zawierajgcym uporzadkowane rosngco wzgledem x-O6w konce
odcinkow oraz punkty przecie¢ wszystkich par odcinkow aktywnych,
ktore kiedykolwiek byty sgsiadami w strukturze stanu.

Struktura stanu T jest wzbogaconym, zréwnowazonym drzewem poszu-
kiwan binarnych przechowujacym w lisciach zbior odcinkow aktywnych
uporzadkowanych wzgledem wspotrzednych y-owych.



Po dojs$ciu miotly do kolejnego punktu
zdarzenia mamy trzy mozliwosci.

Zdarzenie jest poczatkiem odcinka s z S.

wstaw s do T; uaktualnij dowigzania;
If w jest sagsiadem s w T
then if w przecina s w punkcie p
then wstaw p do Q;

Zdarzenie jest koncem odcinka s z S.
usun s z T; vaktualniy dowigzania;
If s miat w T dwoch sasiadow w, z
then if w przecina z w punkcie p
then wstaw p do Q, jesli go tam
jeszcze nie ma;

\




Zdarzenie jest punktem przeciecia
odcinkow s,z € S.

Zamien kolenos¢s1zw T;
If w jest sgsiadem s
then if w przecina s w punkcie p
then wstaw p do Q , jesli go tam
jeszcze nie ma;
If v jest sgsiadem z
then if v przecina z w punkcie g
then wstaw q do Q , jesli go tam
jeszcze nie ma;

Lemat.

Punkt przecig¢cia dwoch aktywnych
odcinkow lezacy po prawej stronie,
najblizej miotly znajduje si¢ w
strukturze Q.




Algorytm (Bentley-Ottmann).

wstaw do Q konce odcinkow z S;
T ;= puste,
while Q pusty do
g := minimalny element w Q;
usun q z Q;
wywotaj odpowiednig procedure
badajacg q zaleznie od jego
rodzaju;




Twierdzenie.

Algorytm znajduje wszystkie przeciecia odcinkoOw ze zbioru S w czasie
O((n+k) log n), gdzie k jest liczbg przeciec.
Dowaod.

Jesli dwa odcinki przecinajg sig, to istnieje potozenie miotly poprzedzajace
to zdarzenie, w ktorym przecinajace si¢ odcinki sgsiadujg w strukturze T.
Zatem kazdy punkt przecigcia jest znajdywany.

Operacje wykonywane w dowolnym kroku algorytmu wymagajg czasu
logarytmicznego (stala liczba wstawien, usunie¢, wyszukiwan elementow w
zroOwnowazonym drzewie poszukiwan binarnych). Algorytm wykonuje
2n+k krokow. Zatem jego ztozonos¢ wynosi O((n+k) log n).

Whiosek (problem decyzyjny).

Znalezienie odpowiedzi na pytanie, czy w zbiorze S istnieje para przecina-
jacych si¢ odcinkdéw wymaga czasu O(n log n).



Szkic algorytmu Balabana.

Obszar, w ktorym wystepuja odcinki podzielmy na pionowe pasy.
Porzadkiem odcinkow wzgledem pionowej prostej nazywamy kolejnos¢
ich punktow przeciec z prostg.

Wykorzystujemy strukture drzewa binarnego do zapisu podziatu na pasy.

Schodami w danym pasie nazywamy maksymalny zbi6r (niekoniecznie
najwiekszy) nieprzecinajgcych sie czesci odcinkow, z ktorych kazda taczy
oba brzegi pasa.

Po okresleniu schodow w danym pasie, dzielimy pozostate odcinki
wzgledem mediany x-owych wspotrzednych ich koncow w pasie i
znajdujemy schody w nowych pasach.

Po dojsciu do lisci (osobne konce odcinkdow) zawracamy 1 zliczamy w
danym pasie punkty przecie¢ schodow z odcinkami analizowanymi na
nizszych poziomach (badamy przeciecia tych odcinkdéw z coraz szerszymi
pasami, wigc kazdy odcinek sprawdzamy co najwyzej logarytmicznie
wiele razy) oraz dodajemy informacj¢ o przecigciach tych odcinkow .



Przyktad.

t.acznie 10 przecied.



Twierdzenie.
Algorytm Balabana jest optymalnym algorytmem czutym na wynik.

Jego ztozono$¢ czasowa wynosi O(n log n + k) 1 wymaga O(n) pamigci
gdzie k oznacza liczbg¢ przecie¢ odcinkow.



Znajdowanie pary najblizszych punktow na ptaszczyznie.

Problem: W zbiorze S zawierajacym n punktow na plaszczyznie znajdz
pare¢ wyznaczajgcg odcinek o naymniejszej dtugosci.

Problem ten mozna tatwo rozwigza¢ w czasie O(n?) badajac wszystkie
pary punktow.

Wykorzystamy algorytm zamiatania w celu znalezienia rozwigzania
problemu w czasie O(n log n).



Miotta poruszac si¢ bedzie wzdtuz osi x-Ow.

Punktami aktywnymi bedziemy nazywac punkty z S znajdujace si¢ w lewo-
stronnie otwartym pasie X o szerokosci rownej najmniejsze] odlegtosci
miedzy dotychczas zamiecionymi punktami. Poczatkowo szerokos¢ pasa
jest nieskonczona. Niech 1x oznacza minimalny indeks punktu z X.

Strukturg zdarzen jest uporzadkowana lista L punktow z S.

Strukturg stanu bedzie zrownowazone drzewo poszukiwan binarnych T
przechowujace zbior punktow aktywnych uporzagdkowanych wzgledem
wspotrzedne) .

Lemat.
Punkty w pasie X mozna uporzadkowac¢ wzgledem wspotrzedne) .
Dowaod.

Poniewaz pas jest lewostronnie otwarty 1 ma szerokos¢ rowng najmniejsze]
odlegtosci miedzy dotychczas zamiecionymi punktami, wigc zadne dwa
punkty w pasie nie mogg mie¢ tej samej wspotrzednej y-owej.



Algorytm.

L :={p,, Ps: ----- , P}; T = puste ;
dmin:= +oo; IX:= 1;
while L= & do
v ;= FRONT(L);
POP(L);
while d(ix,v) > dmin do
T:=T- {pix};
IX:= IX+1;
znajdz w T punkty odlegte od v wzgle-
dem wspotrzednej y o mniej niz dmin;
w:= punkt w X najblizszy v;
d:=d(v,w) (d := +o0 jesli w nie istnieje);
T:=Tu{v},
if d < dmin then
dmin :=d;
C:={v,w},




Lemat.
W kazdym kroku algorytmu badamy co najwyzej 5 par punktow.

Twierdzenie.

Dla danego zbioru n punktow na ptaszczyznie najblizszg pare punktow
mozemy znalez¢ w czasie O(n log n).

Dowaod.

Strukture T uaktualniamy co najwyzej O(n) razy. Kosztuje to O(n log n).
Dla kazdego zdarzenia wykonujemy stalg liczbe operacji, z ktorych kazda
kosztuje co nayjwyzej O(log n). Poniewaz zdarzen jest n, wiec ztozonos¢
algorytmu wynosi O(n log n).



Dziekuje za uwage.



Cwiczenia 3.

1. Udowodnij, ze kazdy wielokat umozliwia triangulacje, nawet jesli ma
dziury. Co mozna powiedziec o liczbie trojkatow w triangulacji ?

2. Udowodnij lub zaprzecz: dla kazdego wielokgta monotonicznego istnieje
triangulacja, ktorej graf dualny jest fancuchem, tzn. kazdy wezet tego
grafu ma stopien 2.

3. Podaj algorytm, ktory w czasie O(n log n) oblicza przekatng dzielaca
prosty wielokat o n wierzchotkach na dwa wielokaty z co najwyzej | 2n/3
+2 wierzchotkami w kazdym z nich.

4. Niech P bedzie prostym wielokgtem o n wierzchotkach, ktory podzielono
na monotoniczne czgsci. Udowodnij, ze suma rozmiardw tych czesci jest
O(n).



5. Niech S bedzie zbiorem n trojkatow na ptaszczyznie. Brzegi trojkatow sg
rozlgczne, ale jest mozliwe, ze trojkat lezy calkowicie wewnatrz drugiego
trojkata. Niech P bedzie zbiorem n punktow na ptaszczyznie. Podaj algorytm
dziatajacy w czasie O(n log n), ktory znajduje punkty lezace poza
trojkatami.

6. Niech S bedzie zbiorem n roztagcznych trojkatow na ptaszczyznie. Chcemy
znalez¢ zbi6r n-1 odcinkow o nastepujacych wlasnosciach:

- kazdy odcinek taczy punkty brzegowe dwoch trojkatow,

- odcinki nie przecinajg si¢ 1 ich wnetrza sg roztgczne z trojkgtami,

- c13gi odcinkow tacza razem wszystkie trojkaty, tzn. z kazdego trojkata
mozna dojs¢ do dowolnego innego.

Stworz algorytm dziatajacy w czasie O(n log n).

7. Majac dany cigg kolejnych krawedzi wielokata prostego oblicz w czasie
liniowym jego pole.



8. Niech S bedzie zbiorem n okregdw na plaszczyznie. Opisz algorytm
zamiatania obliczajgcy wszystkie punkty przecig¢ okregow. (okregi
moga zawiera¢ si¢ jeden w drugim)

9. W kazdym kroku algorytmu znajdowania najblizszej pary punktow
badamy co najwyzej 5 par punktow.



