
Geometria obliczeniowa
Wykład 3

Metoda zamiatania.

1. Triangulacja wielokąta monotonicznego.

2. Podział wielokąta prostego na wielokąty

monotoniczne.

3. Znajdowanie par przecinających się odcinków.

4. Znajdowanie pary najbliższych punktów.

Triangulacja wielokąta monotonicznego.

Definicja.

Wielokąt prosty nazywamy ściśle mono-

tonicznym względem prostej k (wyzna-

czającej kierunek monotoniczności), gdy

jego brzeg można podzielić na dwa

spójne łańcuchy takie, że dowolna prosta

prostopadła do k przecina każdy z

łańcuchów w co najwyżej jednym

punkcie.

Wielokąt jest monotoniczny, gdy prze-

cięcie dowolnej prostej prostopadłej do k

z dowolnym łańcuchem jest spójne.

k

k

Algorytm.

znajdź górny i dolny łańcuch wielokąta
względem kierunku monotoniczności;

posortuj wierzchołki i wstaw je do listy L;

usuń pierwsze dwa wierzchołki z L i wstaw
je na stos Q;

while L   do

 p:=FRONT(L); POP(L);

 q:=FRONT(Q);

 if p i q należą do różnych łańcuchów

 then while Q   do

 r:=FRONT(Q); POP(Q);

 połącz p z r;

 else POP(Q); r:=FRONT(Q);

 while |pqr| <  do

 połącz p z r;

 q:=r; POP(Q); r:=FRONT(Q);

 wstaw q i p na stos Q;

k

Poprawność i złożoność algorytmu.

Poprawność algorytmu wynika z faktu, że punkty znajdujące się na stosie

Q muszą tworzyć wklęsłą łamaną. Z ostatniego punktu taka łamana jest

widoczna niezależnie od strony, po której się znajduje.

Algorytm działa w czasie O(n), gdyż w każdym kroku wykonuje liczbę

operacji proporcjonalną do liczby wierzchołków zdjętych ze stosu Q +

pewna stała. Posortowanie wierzchołków wymaga czasu O(n), gdyż

polega na scaleniu wierzchołków z obu łańcuchów w jedną listę.

Podział wielokąta prostego na wielokąty

monotoniczne.

Do rozwiązania tego problemu wykorzy-

stamy metodę zamiatania.

Miotła będzie równoległa do osi x-ów.

Definicje.

Pomocnikiem krawędzi e wielokąta P nazy-

wamy wierzchołek v, który jest prawym

końcem równoległego do miotły odcinka

łączącego v z e, leżącego powyżej miotły i

najbliższego niej, którego wnętrze jest

zawarte we wnętrzu P.

Wielokąt nazywamy y-monotonicznym, gdy

jest monotoniczny względem osi y-ów.

v

e

e

v

Wyróżniamy pięć rodzajów wierzchołków

wielokąta w zależności od pozycji miotły

przechodzącej przez dany wierzchołek

(badamy wewnętrzne kąty wielokąta) :

- początkowy, gdy obie wychodzące z niego

krawędzie leżą poniżej miotły i tworzą kąt < ,

- dzielący, gdy obie wychodzące z niego

krawędzie leżą poniżej miotły i tworzą kąt > ,

- końcowy, gdy obie wychodzące z niego

krawędzie leżą powyżej miotły i tworzą kąt < ,

- łączący, gdy obie wychodzące z niego

krawędzie leżą powyżej miotły i tworzą kąt > ,

- prawidłowy, gdy jedna z wychodzących z

niego krawędzi leży poniżej a druga powyżej

miotły.

Lemat.

Wielokąt, który nie ma wierzchołków

dzielących i łączących, jest y-monoto-

niczny.

Dowód.

Załóżmy, że wielokąt nie jest y-mono-

toniczny. Wtedy przecięcie poziomej

prostej l z wielokątem tworzy co naj-

mniej dwa spójne przekroje. Istnieje

odcinek na zewnątrz wielokąta łączący

je. Weźmy ciąg krawędzi wielokąta

łączących końce tego odcinka i

nieprzecinający prostej. Najbardziej

odległy od l wierzchołek takiej łamanej

jest wierzchołkiem dzielącym lub

łączącym.

l

l

Naszym zadaniem będzie dodanie prze-

kątnych likwidujących wierzchołki łą-

czące i dzielące.

Strukturą zdarzeń będzie lista L uporząd-

kowanych malejąco względem y-ów

wierzchołków danego wielokąta P.

Strukturą stanu będzie wzbogacone,

zrównoważone drzewo poszukiwań

binarnych T przechowujące w liściach

ciąg aktualnie przecinanych przez miotłę

krawędzi ograniczających wielokąt P z

lewej strony wraz z dowiązaniami do ich

pomocników.

W zależności od rodzaju wierzchołka v,
który odwiedza miotła wykonywane są na-
stępujące procedury. Niech el (ep) oznacza
lewą (prawą) krawędź o końcu w wierz-
chołku początkowym, końcowym, dzielącym
lub łączącym. Niech ev oznacza krawędź le-
żącą bezpośrednio na lewo od v.

Wierzchołek początkowy .

wstaw el do T;

pomocnik(el) := v;

Wierzchołek końcowy.

if pomocnik(el) jest wierzchołkiem łączącym

 then wstaw przekątną miedzy v

 i pomocnik(el);

usuń el z T;

v

v

Wierzchołek dzielący.

znajdź w T krawędź ev ;

wstaw przekątną między v i pomocnik(ev);

pomocnik(ev) := v;

wstaw ep do T i pomocnik(ep) := v;

Wierzchołek łączący.

if pomocnik(ep) jest wierzchołkiem łączącym

 then wstaw przekątną między v i

 pomocnik(ep);

usuń ep z T;

znajdź w T krawędź ev ;

if pomocnik(ev) jest wierzchołkiem łączącym

 then wstaw przekątną między v i

 pomocnik(ev);

pomocnik(ev) := v;

v

v

Wierzchołek prawidłowy.

Niech eg (ed) będzie krawędzią powyżej

(poniżej) v.

if wnętrze P leży na prawo od v

 then if pomocnik(eg) jest

 wierzchołkiem łączącym

 then wstaw przekątną między

 v i pomocnik(eg);

 usuń eg z T;

 wstaw ed do T i pomocnik(ed) := v;

 else znajdź w T krawędź ev ;

 if pomocnik(ev) jest wierzchołkiem

 łączącym

 then wstaw przekątną między v i

 pomocnik(ev);

 pomocnik(ev) := v;

Algorytm podziału wielokąta P na

wielokąty monotoniczne.

L := {p1, p2, , pn}; T := puste ;

while L   do

 v := FRONT(L);

 POP(L);

 wywołaj procedurę

 odpowiadającą rodzajowi v;

Lemat.

Powyższy algorytm znajduje zbiór nieprzecinających się przekątnych,

które dzielą wielokąt prosty P na wielokąty monotoniczne.

Dowód.

Algorytm likwiduje wierzchołki łączące i dzielące, więc otrzymujemy

podział na wielokąty monotoniczne.

Wierzchołek przestaje być dzielący w momencie zamiecenia.

Wierzchołek łączący jest pomocnikiem najbliższej krawędzi z lewej

strony. Przestaje taki być najpóźniej po osiągnięciu dolnego końca tej

krawędzi (ale może wcześniej, gdy na prawo od krawędzi pojawi się

inny wierzchołek).

Z definicji pomocnika wynika, że w chwili dodawania przekątnej między

miotłą a odcinkiem łączącym go z odpowiadającą mu krawędzią nie ma

innych elementów. Zatem można go połączyć z aktualnie badanym

wierzchołkiem przekątną nie przecinającą się z żadną inną.

Lemat.

Prosty wielokąt o n wierzchołkach można powyższym algorytmem podzielić

na y-monotoniczne wielokąty w czasie O(n log n) używając O(n) pamięci.

Dowód.

Sortowanie wierzchołków wymaga czasu O(n log n).

Przetworzenie jednego wierzchołka wymaga czasu logarytmicznego, więc

zamiatanie wykonujemy w czasie O(n log n).

Wszystkie wykorzystywane struktury danych mają liniowy rozmiar.

Triangulacja otrzymanych wielokątów monotonicznych wymaga czasu O(n),

więc dowolny wielokąt prosty można striangulować w czasie O(n log n).

Twierdzenie (Chazelle).

Dowolny wielokąt prosty można striangulować w czasie O(n).

Znajdowanie par przecinających się odcinków.

Problem: Dla zbioru n odcinków S na płaszczyźnie znajdź wszystkie pary

przecinających się odcinków z S.

Problem przecinających się odcinków można łatwo rozwiązać w czasie

O(n2). W tym celu wystarczy sprawdzić oddzielnie każdą parę odcinków.

Takie rozwiązanie jest optymalne, gdy liczba par przecinających się

odcinków jest kwadratowa.

Chcemy znaleźć algorytm wrażliwy na wynik, tzn. algorytm, którego

złożoność będzie zależeć od rozmiaru rozwiązania.

Metoda zamiatania.

Miotła będzie zamiatać wzdłuż osi x-ów.

W każdym położeniu miotły odcinkami przetworzonymi nazywamy

wszystkie odcinki, których końce znajdują się na lewo od niej. Odcinkami

aktywnymi są odcinki aktualnie przecinające miotłę. Do zbioru odcinków

oczekujących należą odcinki o obu końcach na prawo od miotły.

Będziemy korzystać z dwóch struktur danych.

Struktura zdarzeń Q jest zrównoważonym drzewem poszukiwań binar-

nych zawierającym uporządkowane rosnąco względem x-ów końce

odcinków oraz punkty przecięć wszystkich par odcinków aktywnych,

które kiedykolwiek były sąsiadami w strukturze stanu.

Struktura stanu T jest wzbogaconym, zrównoważonym drzewem poszu-

kiwań binarnych przechowującym w liściach zbiór odcinków aktywnych

uporządkowanych względem współrzędnych y-owych.

Po dojściu miotły do kolejnego punktu

zdarzenia mamy trzy możliwości.

Zdarzenie jest początkiem odcinka s z S.

wstaw s do T; uaktualnij dowiązania;

if w jest sąsiadem s w T

 then if w przecina s w punkcie p

 then wstaw p do Q;

Zdarzenie jest końcem odcinka s z S.

usuń s z T; uaktualnij dowiązania;

if s miał w T dwóch sąsiadów w, z

 then if w przecina z w punkcie p

 then wstaw p do Q, jeśli go tam

 jeszcze nie ma;

Zdarzenie jest punktem przecięcia
odcinków s,z  S.

Zamień kolejność s i z w T;

if w jest sąsiadem s

 then if w przecina s w punkcie p

 then wstaw p do Q , jeśli go tam

 jeszcze nie ma;

if v jest sąsiadem z

 then if v przecina z w punkcie q

 then wstaw q do Q , jeśli go tam

 jeszcze nie ma;

Lemat.

Punkt przecięcia dwóch aktywnych
odcinków leżący po prawej stronie,
najbliżej miotły znajduje się w
strukturze Q.

Algorytm (Bentley-Ottmann).

wstaw do Q końce odcinków z S;

T := puste;

while Q pusty do

 q := minimalny element w Q;

 usuń q z Q;

 wywołaj odpowiednią procedurę

 badającą q zależnie od jego

 rodzaju;

Twierdzenie.

Algorytm znajduje wszystkie przecięcia odcinków ze zbioru S w czasie

O((n+k) log n), gdzie k jest liczbą przecięć.

Dowód.

Jeśli dwa odcinki przecinają się, to istnieje położenie miotły poprzedzające

to zdarzenie, w którym przecinające się odcinki sąsiadują w strukturze T.

Zatem każdy punkt przecięcia jest znajdywany.

Operacje wykonywane w dowolnym kroku algorytmu wymagają czasu

logarytmicznego (stała liczba wstawień, usunięć, wyszukiwań elementów w

zrównoważonym drzewie poszukiwań binarnych). Algorytm wykonuje

2n+k kroków. Zatem jego złożoność wynosi O((n+k) log n).

Wniosek (problem decyzyjny).

Znalezienie odpowiedzi na pytanie, czy w zbiorze S istnieje para przecina-

jących się odcinków wymaga czasu O(n log n).

Szkic algorytmu Balabana.

Obszar, w którym występują odcinki podzielmy na pionowe pasy.

Porządkiem odcinków względem pionowej prostej nazywamy kolejność

ich punktów przecięć z prostą.

Wykorzystujemy strukturę drzewa binarnego do zapisu podziału na pasy.

Schodami w danym pasie nazywamy maksymalny zbiór (niekoniecznie

największy) nieprzecinających się części odcinków, z których każda łączy

oba brzegi pasa.

Po określeniu schodów w danym pasie, dzielimy pozostałe odcinki

względem mediany x-owych współrzędnych ich końców w pasie i

znajdujemy schody w nowych pasach.

Po dojściu do liści (osobne końce odcinków) zawracamy i zliczamy w

danym pasie punkty przecięć schodów z odcinkami analizowanymi na

niższych poziomach (badamy przecięcia tych odcinków z coraz szerszymi

pasami, więc każdy odcinek sprawdzamy co najwyżej logarytmicznie

wiele razy) oraz dodajemy informację o przecięciach tych odcinków .

Przykład.

1 1

3 2

2 1

Łącznie 10 przecięć.

Twierdzenie.

Algorytm Balabana jest optymalnym algorytmem czułym na wynik.

Jego złożoność czasowa wynosi O(n log n + k) i wymaga O(n) pamięci

gdzie k oznacza liczbę przecięć odcinków.

Znajdowanie pary najbliższych punktów na płaszczyźnie.

Problem: W zbiorze S zawierającym n punktów na płaszczyźnie znajdź

parę wyznaczającą odcinek o najmniejszej długości.

Problem ten można łatwo rozwiązać w czasie O(n2) badając wszystkie

pary punktów.

Wykorzystamy algorytm zamiatania w celu znalezienia rozwiązania

problemu w czasie O(n log n).

Miotła poruszać się będzie wzdłuż osi x-ów.

Punktami aktywnymi będziemy nazywać punkty z S znajdujące się w lewo-
stronnie otwartym pasie X o szerokości równej najmniejszej odległości
między dotychczas zamiecionymi punktami. Początkowo szerokość pasa
jest nieskończona. Niech ix oznacza minimalny indeks punktu z X.

Strukturą zdarzeń jest uporządkowana lista L punktów z S.

Strukturą stanu będzie zrównoważone drzewo poszukiwań binarnych T
przechowujące zbiór punktów aktywnych uporządkowanych względem
współrzędnej y.

Lemat.

Punkty w pasie X można uporządkować względem współrzędnej y.

Dowód.

Ponieważ pas jest lewostronnie otwarty i ma szerokość równą najmniejszej
odległości między dotychczas zamiecionymi punktami, więc żadne dwa
punkty w pasie nie mogą mieć tej samej współrzędnej y-owej.

Algorytm.

L := {p2, p3, , pn}; T := puste ;

dmin:= +; ix:= 1;

while L   do

 v := FRONT(L);

 POP(L);

 while d(ix,v)  dmin do

 T := T – {pix};

 ix:= ix+1;

 znajdź w T punkty odległe od v wzglę-
dem współrzędnej y o mniej niż dmin;
w:= punkt w X najbliższy v;

 d:=d(v,w) (d := + jeśli w nie istnieje);

 T := T  {v};

 if d < dmin then

 dmin := d;

 C := {v, w};

Lemat.

W każdym kroku algorytmu badamy co najwyżej 5 par punktów.

Twierdzenie.

Dla danego zbioru n punktów na płaszczyźnie najbliższą parę punktów

możemy znaleźć w czasie O(n log n).

Dowód.

Strukturę T uaktualniamy co najwyżej O(n) razy. Kosztuje to O(n log n).

Dla każdego zdarzenia wykonujemy stałą liczbę operacji, z których każda

kosztuje co najwyżej O(log n). Ponieważ zdarzeń jest n, więc złożoność

algorytmu wynosi O(n log n).

Dziękuję za uwagę.

Ćwiczenia 3.

1. Udowodnij, że każdy wielokąt umożliwia triangulację, nawet jeśli ma
dziury. Co można powiedzieć o liczbie trójkątów w triangulacji ?

2. Udowodnij lub zaprzecz: dla każdego wielokąta monotonicznego istnieje
triangulacja, której graf dualny jest łańcuchem, tzn. każdy węzeł tego
grafu ma stopień 2.

3. Podaj algorytm, który w czasie O(n log n) oblicza przekątną dzielącą
prosty wielokąt o n wierzchołkach na dwa wielokąty z co najwyżej 2n/3
+2 wierzchołkami w każdym z nich.

4. Niech P będzie prostym wielokątem o n wierzchołkach, który podzielono
na monotoniczne części. Udowodnij, że suma rozmiarów tych części jest
O(n).

5. Niech S będzie zbiorem n trójkątów na płaszczyźnie. Brzegi trójkątów są
rozłączne, ale jest możliwe, że trójkąt leży całkowicie wewnątrz drugiego
trójkąta. Niech P będzie zbiorem n punktów na płaszczyźnie. Podaj algorytm
działający w czasie O(n log n), który znajduje punkty leżące poza
trójkątami.

6. Niech S będzie zbiorem n rozłącznych trójkątów na płaszczyźnie. Chcemy
znaleźć zbiór n-1 odcinków o następujących własnościach:

- każdy odcinek łączy punkty brzegowe dwóch trójkątów,

- odcinki nie przecinają się i ich wnętrza są rozłączne z trójkątami,

- ciągi odcinków łączą razem wszystkie trójkąty, tzn. z każdego trójkąta
można dojść do dowolnego innego.

 Stwórz algorytm działający w czasie O(n log n).

7. Mając dany ciąg kolejnych krawędzi wielokąta prostego oblicz w czasie
liniowym jego pole.

8. Niech S będzie zbiorem n okręgów na płaszczyźnie. Opisz algorytm
zamiatania obliczający wszystkie punkty przecięć okręgów. (okręgi
mogą zawierać się jeden w drugim)

9. W każdym kroku algorytmu znajdowania najbliższej pary punktów
badamy co najwyżej 5 par punktów.

