
Geometria obliczeniowa
Wykład 2

1. Otoczka wypukła (c. d.) :

- algorytm Chana,

- algorytm przybliżony,

- algorytm dynamiczny,

- dla wielokąta prostego.

2. Punkty dominujące.

3. Triangulacja wielokąta przekątnymi.

4. Optymalna triangulacja wielokąta wypukłego.

5. Podział wielokąta prostego na wielokąty wypukłe.

Algorytm Chana.

Podobnie do algorytmu Kirkpatricka i Seidela jest to optymalny algorytm

znajdujący otoczkę wypukłą dla danego zbioru punktów P wrażliwy na

wynik.

Jest prostszy do implementacji.

Jeden krok algorytmu składa się z dwóch faz:

- w pierwszej tworzymy otoczki wypukłe dla (nieposortowanych)

podzbiorów zbioru P wykorzystując dowolny algorytm znajdujący

otoczkę wypukłą w czasie O(n log n),

- w drugiej stosujemy algorytm Jarvisa, badając styczne do otoczek

wypukłych zbudowanych w pierwszej fazie.

Algorytm ten może też być użyty do konstrukcji otoczki wypukłej w

przestrzeni trójwymiarowej w czasie O(n log h).

Algorytm Chana.

p – punkt o najmniejszej

współrzędnej y-owej

kontynuuj:=true ;

for t=0 to log log n do

 if kontynuuj then

 podziel dany zbiór punktów P

 na podzbiory rozmiaru 22

 i znajdź otoczkę wypukłą dla

 każdego z nich;

 zaczynając od p wykonaj co

 najwyżej 22 kroków marszu

 Jarvisa względem prostych

 stycznych do danych otoczek;

 if marsz Jarvisa skończył się w p

 then kontynuuj:=false;

t

 t

Złożoność algorytmu.

Twierdzenie.

Algorytm znajduje otoczkę wypukłą w czasie O(n log h), gdzie h jest liczbą

wierzchołków otoczki.

Dowód.

Istotne jest tylko log log h kroków, w czasie których znajdujemy otoczkę.

W pierwszej fazie każdego kroku algorytmu dzielimy zbiór punktów na

O(n/k) podzbiorów rozmiaru k (gdzie k jest odpowiednią potęgą 2).

Stąd koszt tej fazy wynosi O(n/k) x O(k log k) = O(n log k).

Znalezienie punktów styczności w drugiej fazie wymaga czasu O(log k)

(znajdując otoczkę zapamiętujemy jej łańcuchy w postaci umożliwiającej

wyszukiwanie binarne (tablica, drzewo AVL)).

Stąd koszt drugiej fazy wynosi O(k) x O(n/k) x O(log k) = O(n log k).

Zatem złożoność algorytmu wynosi:

)log()()()2log(222
loglog1

loglog

0

loglog

0

hnOnOnOnO
h

h

t

t
h

t

t









 


 

Przybliżona otoczka wypukła.

Zalety rozwiązań przybliżonych:

szybkość, prostota.

Wady: niedokładność wyniku.

xmin:= skrajnie lewy punkt z S;

xmax:= skrajnie prawy punkt z S;

podziel przestrzeń między xmin a

xmax na k przystających pasów;

w każdym pasie i obszarach zew-

nętrznych znajdź punkty skrajne

względem współrzędnej y;

znajdź otoczkę wypukłą dla wy-

branych punktów;

Twierdzenie.

Dowolny punkt pCH, który nie należy do przybliżonej otoczki

wypukłej, znajduje się w odległości co najwyżej (xmax-xmin)/k od tej

otoczki.

Dowód.

Punkt p znajduje się nie dalej od brzegu przybliżonej otoczki wypukłej niż

wynosi szerokość pasa.

Lemat.

Algorytm ma złożoność czasową O(n+k).

Dowód. Przekształcamy podział tak, aby pasy miały całkowitoliczbową

szerokość. Rozdzielamy punkty kubełkowo i znajdujemy skrajne punkty

w pasach. Budujemy na nich otoczkę stosując zamiatanie.

Algorytm ten działa również w przestrzeni trójwymiarowej w czasie

O(n+k2 log k).

Dynamiczna otoczka wypukła.

Dla danego ciągu wstawień i usunięć

punktów ze zbioru S, chcemy stale

utrzymywać aktualną otoczkę wypukłą.

Otoczkę zapamiętujemy w postaci dwóch

łańcuchów: górnego i dolnego.

Łańcuchy przechowywane są w zrówno-

ważonym drzewie poszukiwań binarnych.

Każdy liść tej struktury odpowiada punk-

towi w S, zaś każdy węzeł odpowiada

mostowi między łańcuchami określanymi

przez oba poddrzewa. Zapamiętujemy

dwukierunkowe wskaźniki między liśćmi

i węzłami, aby móc szybko znajdować

mosty i aktualizować strukturę.

Przykład.

Lemat.

Mostkowanie dwóch rozłącznych

łańcuchów wypukłych, zawiera-

jących łącznie n punktów, można

wykonać w czasie O(log n).

Dowód.

Jest dziewięć przypadków (z dokład-

nością do symetrii). Dzięki wyko-

rzystaniu struktury zrównoważonego

drzewa poszukiwań binarnych,

rozwiązanie każdego z nich wymaga

logarytmicznego czasu.

Zaznaczone na czerwono fragmenty

łańcuchów nie wpływają na wynik

mostkowania.

Twierdzenie.

Koszt każdego wstawienia lub usunięcia punktu wynosi O(log2 n).

Dowód.

Wstawiając lub usuwając punkt ze struktury znajdujemy ścieżkę od

korzenia do odpowiedniego liścia. Następnie aktualizujemy drzewo na tej

ścieżce dokonując rotacji w celu jego zrównoważenia oraz znajdując mosty

między łańcuchami otoczek punktów odpowiadających liściom poddrzew o

korzeniach w potomkach badanego węzła. W każdym węźle poświęcamy

na to O(1)+O(log n) czasu. Zatem aktualizacja struktury wzdłuż całej

ścieżki wymaga czasu O(log2 n).

Algorytm ten zawdzięczamy Overmarsowi i van Leuwenowi.

Istnieją bardziej skomplikowane algorytmy, które umożliwiają aktualizację

otoczki w zamortyzowanym czasie O(log n).

Otoczka wypukła wielokąta prostego.

Definicja.

Wielokątem prostym nazywamy

obszar ograniczony przez pojedynczy,

domknięty, wielokątny łańcuch, który

nie przecina się ze sobą.

Definicja.

Zagłębieniem wielokąta prostego

nazywamy obszar znajdujący się na

zewnątrz wielokąta, ale wewnątrz

jego otoczki wypukłej.

Wierzchołki uwypuklenia będziemy

przechowywać na stosie Q.

Obliczamy uwypuklenie wielokąta osobno

dla jego górnego i dolnego łańcucha.

Analizujemy zależności między

-ostatnim punktem danego łańcucha

wielokąta r,

- ostatnim wierzchołkiem aktualnie

stworzonego uwypuklenia q,

- jego poprzednikiem u i badanym

następnikiem v na brzegu wielokąta oraz

- poprzednikiem w na uwypukleniu.

Mamy 4 przypadki.

1. Punkt v znajduje się w zagłębieniu

ograniczonym przez prostą l przechodzącą

przez w i q – aktualne uwypuklenie nie

zmienia się do momentu aż brzeg

wielokąta przetnie prostą l.

q

w

u

r

v

l

2. Punkt v znajduje się po przeciw-
nej stronie prostej l przechodzącej
przez w i q niż punkt r – punkt v
staje się ostatnim wierzchołkiem
aktualnego uwypuklenia. Spraw-
dzamy, czy wierzchołki z Q i v
tworzą łamaną wypukłą. Jeśli nie,
to usuwamy ze stosu wierzchołki
wpadające do wnętrza uwypukle-
nia i wstawiamy v.

3. Punkt v znajduje się w kącie wy-
znaczonym przez półprostą o po-
czątku w w i przechodzącą przez q
oraz bliższą z półprostych o po-
czątku w q i przechodzących przez
r lub u - punkt v staje się ostatnim
wierzchołkiem aktualnego uwypu-
klenia. Wstawiamy go na stos Q.

l

w

u

q

v

r

w q

v

u r

w q

v
u

r

4. Punkt v znajduje się w kącie o wierz-

chołku w punkcie q i ramionach wyzna-

czonych przez punkty w i r, ale nie należy

do zagłębienia, którego wierzchołkiem

jest u – aktualne uwypuklenie nie zmienia

się do momentu aż brzeg wielokąta

przetnie prostą przechodzącą przez q i r.

Niech ciąg (qi) dla i = 1, 2, ... oznacza

wierzchołki tworzonego uwypuklenia, a

ciąg (pi) dla i = 1, 2, ..., n określa wierz-

chołki górnego (dolnego) łańcucha bada-

nego wielokąta pamiętane w kolejce P.

FRONT(P) oznacza pierwszy element P,

a POP(P), POP(Q) – usunięcie początku P

lub Q. Niech q0=(p1x,-) (q0=(p1x,+)).

w q

u

v

r

Algorytm (Lee).

P:={p1, p2, ... , pn}; Q  q0; u:=q0;

Q  p1; POP(P); i:=1; j:=1;

while P   do

 v:=FRONT(P);

 if |qi-1qiv| then

 if |uqiv| then

 if |pnqiv| then Q  v; u:=pj-1;

 else

 while |pnqiFRONT(P)| do

 POP(P); j:=j+1

 else while |qiqi-1FRONT(P)| do

 POP(P); j:=j+1

 else while |qi-1qiv|> do POP(Q);

 Q  v; u:=pj-1;

Złożoność algorytmu.

Twierdzenie.

Otoczkę wypukłą wielokąta prostego zawierającego n wierzchołków

można zbudować w optymalnym czasie (n) i pamięci (n).

Dowód.

Czas potrzebny na analizę jednego wierzchołka wielokąta jest stały w

przypadku, gdy nie powoduje to zmian otoczki. W przeciwnym

przypadku stały jest czas zamortyzowany (sumarycznie wykonujemy co

najwyżej liniową liczbę korekt otoczki, podobnie jak w algorytmie

Grahama).

Punkty dominujące.

Definicja.

Punkt p1 dominuje nad punktem p2 wzglę-

dem współrzędnej x, gdy x(p1) > x(p2).

W pierwszej ćwiartce układu współrzęd-

nych R2 punkt p jest dominujący w zbio-

rze S, gdy żaden punkt z S nie dominuje

nad nim względem obu współrzędnych.

Inaczej: punkt p jest dominujący w zbio-

rze S, gdy można dosunąć do p nieograni-

czony prostokąt o bokach równoległych

do osi współrzędnych, który nie zawiera w

swoim wnętrzu punktów z S.

Podobnie możemy zdefiniować punkty

dominujące w innych ćwiartkach i dla

wyższych wymiarów.

Algorytm zamiatania.

posortuj zbiór S względem x;

D = {p1}; max = min = py1;

for i = 2 to n do

 if pyi  max then D = D  {pi};

 max = pyi;

 if pyi  min then D = D  {pi};

 min = pyi;

D = D  {pn}; max = min = pyn;

for i = n-1 to 1 do

 if pyi  max then D = D  {pi};

 max = pyi;

 if pyi  min then D = D  {pi};

 min = pyi;

Złożoność algorytmu wynosi O(n log n).

Triangulacja wielokąta przekątnymi.

Definicja.

Przekątną wielokąta F nazywamy
otwarty odcinek łączący dwa
niesąsiednie wierzchołki wielokąta F i
leżący wewnątrz F.

Definicja.

Podział wielokąta na trójkąty przez
maksymalny zbiór nieprzecinających
się przekątnych nazywamy
triangulacją wielokąta.

Fakt.

Każda triangulacja jest dualna do
drzewa, którego węzły odpowiadają

trójkątom a krawędzie - przekątnym.

Lemat.

W każdym wielokącie istnieje wierzchołek, w

którym kąt ma rozwartość mniejszą niż .

Twierdzenie.

W każdym wielokącie o n > 3 wierzchołkach

istnieje przekątna.

Dowód. Konstrukcyjny. Znajdujemy wierz-

chołek v, przy którym kąt ma rozwartość mniej-

szą niż . Badamy trójkąt utworzony przez ten

wierzchołek i wierzchołki sąsiednie u i w. Jeśli

do tego trójkąta nie należy żaden inny wierz-

chołek, to odcinek jest przekątną. W prze-

ciwnym przypadku w trójkącie uvw znajdujemy

wierzchołek wielokąta, którego odległość od

 jest największa. Wtedy odcinek jest

przekątną wielokąta.

uw

uw

vz

v

u
w

v

u
w

z

Wniosek.

Powyższa metoda pozwala na znalezienie przekątnej w czasie liniowym

względem liczby wierzchołków.

Wniosek.

Przekątna dzieli wielokąt na dwie części. Powtarzając tę procedurę otrzy-

mujemy algorytm triangulacji wielokąta o n wierzchołkach w czasie O(n2).

Fakt.

Triangulacja wielokąta może być, ale zwykle nie jest, jednoznaczna.

Optymalna ważona triangulacja wielokątów

wypukłych.

Definicja.

Dla danego wielokąta wypukłego P i funkcji

wagowej w() zdefiniowanej na trójkątach o

krawędziach ze zbioru boków i przekątnych

wielokąta P, znajdź triangulację o minimalnej

sumie wag trójkątów wchodzących w jej skład.

Jedną z naturalnych funkcji wagowych jest suma

długości boków trójkąta. Wtedy wagą triangu-

lacji jest suma długości boków wielokąta P oraz

podwojona suma długości jego przekątnych.

Zatem minimalną wagę ma triangulacja o

minimalnej sumie długości przekątnych.

Prezentowany algorytm jest algorytmem dynamicznym tzn. w

obliczeniach wykorzystywane są wyniki otrzymane wcześniej.

Aby rozwiązać ten problem obliczamy kolejno wartości optymalnych

triangulacji dla wielokątów wyznaczanych przez pary, trójki, czwórki....

kolejnych wierzchołków wielokąta P. Niech v1, ..., vn będą wierzchołkami

wielokąta P, a t[i,j] oznacza aktualnie minimalną wagę triangulacji

wielokąta wyznaczanego przez wierzchołki vi, ... , vj.

Aby obliczyć optymalną triangulację dla wielokąta R o wierzchołkach vs,

vs+1, ... , vw, poszukujemy minimalnej wagi triangulacji wyznaczonej

przez trójkąt T (vsvwvt, gdzie t  {s+1, ..., w-1}) oraz minimalne

triangulacje wielokątów powstałych z wielokąta R po wycięciu trójkąta T

(wielokąty mogą być zdegenerowane). Zauważmy, że optymalne

triangulacje takich wielokątów są obliczane we wcześniejszej fazie

działania algorytmu.

P
R

s

w

T

t

Algorytm dynamiczny.

for i := 1 to n-1 do t[i,i+1] := 0;

for m := 3 to n do

 for i := 1 to n-m+1 do

 j := i+m-1; t[i,j] := ;

 for k := i+1 to j-1 do

 q := t[i,k]+t[k,j]+w(vivkvj);

 if q < t[i,j] then t[i,j] := q;

Lemat.

Algorytm ma złożoność

 .   











n

m

mn

i

mi

ik

nO
3

1

1

2

1

3)()1(

Podział wielokąta prostego na wielokąty wypukłe.

Lemat.

Niech  oznacza minimalną liczbę wielokątów wypukłych, na które moż-

na podzielić dany wielokąt odcinkami (niekoniecznie przekątnymi). Niech

r będzie liczbą kątów wewnętrznych wielokąta o rozwartości większej niż

. Wtedy: r/2 + 1    r +1.

Definicja.

Dla danego podziału wielokąta przekątnymi, istotną przekątną nazywamy

taką, której usunięcie powoduje powstanie wielokąta niewypukłego

(mającego kąt wewnętrzny o rozwartości większej niż ).

Fakt.

Istotne przekątne nie są wyznaczone

jednoznacznie.

Lemat.

Wierzchołek kąta wewnętrznego o

rozwartości większej niż  jest koń-

cem co najwyżej dwóch przekątnych

istotnych.

Dowód.

Proste zawierające ramiona kąta

wyznaczają dwie półpłaszczyzny.

Do każdej z nich może należeć co

najwyżej jedna przekątna istotna.

Algorytm Hertela i Mehlhorna.

znajdź dowolną triangulację

wielokąta;

usuń wszystkie przekątne, które nie

są istotne;

Nieistotne przekątne można wy-

eliminować w czasie O(n) (w sta-

łym czasie sprawdzamy, czy po

usunięciu danej przekątnej, przy

którymś z wierzchołków powstanie

kąt większy od ) .

Twierdzenie.

Liczba wielokątów wypukłych otrzymanych z pomocą algorytmu

Hertela-Mehlhorna jest co najwyżej czterokrotnie większa niż

minimalna liczba takich wielokątów.

Dowód.

Algorytm Hertela-Mehlhorna tworzy co najwyżej 2r+1 wielokątów.

Na podstawie poprzednich lematów mamy: 2r+1  2r+4  4(r/2+1)  4.

Optymalny podział wielokąta prostego na wielokąty wypukłe można

znaleźć w czasie O(n+r3) (Chazelle-Dobkin), gdzie r jest liczbą kątów

wewnętrznych o rozwartości większej niż ).

Dziękuję za uwagę.

Ćwiczenia 2.

1. Udowodnij, że algorytm znajdywania przybliżonej otoczki wypukłej metodą

podziału płaszczyzny na pasy działa w przestrzeni trójwymiarowej w czasie

O(n+k2 log k).

2. Podaj przykłady n-kątów, których triangulacja jest lub nie jest jednoznaczna.

3. Niech S={p1,p2, ... , pn} będzie zbiorem punktów w R3 takim, że x(p1) < x(p2) <

... < x(pn). Wykaż, że mimo znajomości porządku S w kierunku x znalezienie

otoczki wypukłej S i tak wymaga czasu (n log n).

4.Dla danych n prostych na płaszczyźnie stwórz algorytm znajdujący otoczkę

wypukłą punktów wyznaczonych przez przecięcia tych prostych działający w

czasie subkwadratowym (np. O(n log n)).

5. Dla danego zbioru S zawierającego n punktów na płaszczyźnie stwórz w czasie

O(n log n) strukturę danych rozmiaru O(n), która umożliwi sprawdzenie w

czasie O(log n), czy dany punkt q jest dominujący w zbiorze S  {q}.

6. Otoczką dominacji zbioru S nazywamy zbiór punktów dominujących w S.

Głębokość dominacji punktu p w S, to liczba otoczek dominacji, które trzeba

odrzucić przed odrzuceniem p. Stwórz algorytm wyznaczający głębokość

dominacji każdego punktu z S w czasie O(n log n).

7. Udowodnij lub zaprzecz: każde drzewo binarne jest grafem dualnym

triangulacji jakiegoś wielokąta.

8. Jak wiele triangulacji ma n-kąt wypukły ?

9. Dany jest nieuporządkowany zbiór przekątnych tworzących triangulację

wielokąta (wierzchołki są etykietowane kolejnymi liczbami naturalnymi).

Stwórz algorytm budujący dualne drzewo triangulacji w czasie O(n).

10. Niech  oznacza minimalną liczbę wielokątów wypukłych, na które można

podzielić dany wielokąt (niekoniecznie przekątnymi). Niech r będzie liczbą

kątów wewnętrznych wielokąta o rozwartości większej niż . Wtedy:  r/2

+ 1    r +1.

