
Geometria obliczeniowa 
Wykład 2 

1. Otoczka wypukła (c. d.) : 

- algorytm Chana, 

- algorytm przybliżony, 

- algorytm dynamiczny, 

- dla wielokąta prostego. 

2. Punkty dominujące. 

3. Triangulacja wielokąta przekątnymi. 

4. Optymalna triangulacja wielokąta wypukłego. 

5. Podział wielokąta prostego na wielokąty wypukłe. 

 

 



Algorytm Chana. 

 

Podobnie do algorytmu Kirkpatricka i Seidela jest to optymalny algorytm 

znajdujący otoczkę wypukłą dla danego zbioru punktów P wrażliwy na 

wynik. 

Jest prostszy do implementacji. 

Jeden krok algorytmu składa się z dwóch faz: 

- w pierwszej tworzymy otoczki wypukłe dla (nieposortowanych) 

podzbiorów zbioru P wykorzystując dowolny algorytm znajdujący 

otoczkę wypukłą w czasie O(n log n), 

- w drugiej stosujemy algorytm Jarvisa, badając styczne do otoczek 

wypukłych zbudowanych w pierwszej fazie.  

 

Algorytm ten może też być użyty do konstrukcji otoczki wypukłej w 

przestrzeni trójwymiarowej w czasie O(n log h). 



Algorytm Chana. 

p – punkt o najmniejszej 

współrzędnej y-owej 

kontynuuj:=true ; 

for t=0 to log log n  do 

    if kontynuuj then 

        podziel dany zbiór punktów P   

        na podzbiory rozmiaru 22   

        i znajdź otoczkę wypukłą dla  

        każdego z nich; 

        zaczynając od p wykonaj co 

        najwyżej 22  kroków marszu 

        Jarvisa względem prostych  

        stycznych do danych otoczek; 

        if marsz Jarvisa skończył się w p 

            then kontynuuj:=false;   

         

t 

 t 



Złożoność algorytmu. 

 

Twierdzenie. 

Algorytm znajduje otoczkę wypukłą w czasie O(n log h), gdzie h jest liczbą 

wierzchołków otoczki. 

Dowód. 

Istotne jest tylko log log h kroków, w czasie których znajdujemy otoczkę. 

W pierwszej fazie każdego kroku algorytmu dzielimy zbiór punktów na 

O(n/k) podzbiorów rozmiaru k (gdzie k jest odpowiednią potęgą 2). 

Stąd koszt tej fazy wynosi O(n/k) x O(k log k) = O(n log k). 

Znalezienie punktów styczności w drugiej fazie wymaga czasu O(log k) 

(znajdując otoczkę zapamiętujemy jej łańcuchy w postaci umożliwiającej 

wyszukiwanie binarne (tablica, drzewo AVL)). 

Stąd koszt drugiej fazy wynosi O(k) x O(n/k) x O(log k) = O(n log k). 

Zatem złożoność algorytmu wynosi:   
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Przybliżona otoczka wypukła. 

 

Zalety rozwiązań przybliżonych: 

szybkość, prostota. 

Wady: niedokładność wyniku. 

 

xmin:= skrajnie lewy punkt z S; 

xmax:= skrajnie prawy punkt z S; 

podziel przestrzeń między xmin a 

xmax na k przystających pasów; 

w każdym pasie i obszarach zew-

nętrznych znajdź punkty skrajne 

względem współrzędnej y; 

znajdź otoczkę wypukłą dla wy-

branych punktów; 

 



Twierdzenie. 

Dowolny punkt pCH, który nie należy do przybliżonej otoczki 

wypukłej, znajduje się w odległości co najwyżej (xmax-xmin)/k od tej 

otoczki. 

Dowód. 

Punkt p znajduje się nie dalej od brzegu przybliżonej otoczki wypukłej niż 

wynosi szerokość pasa. 

 

Lemat. 

Algorytm ma złożoność czasową O(n+k). 

Dowód. Przekształcamy podział tak, aby pasy miały całkowitoliczbową 

szerokość. Rozdzielamy punkty kubełkowo i znajdujemy skrajne punkty 

w pasach. Budujemy na nich otoczkę stosując zamiatanie. 

 

Algorytm ten działa również w przestrzeni trójwymiarowej w czasie 

O(n+k2 log k).  



Dynamiczna otoczka wypukła. 

 

Dla danego ciągu wstawień i usunięć 

punktów ze zbioru S, chcemy stale 

utrzymywać aktualną otoczkę wypukłą. 

 

Otoczkę zapamiętujemy w postaci dwóch 

łańcuchów: górnego i dolnego. 

Łańcuchy przechowywane są w zrówno-

ważonym drzewie poszukiwań binarnych. 

Każdy liść tej struktury odpowiada punk-

towi w S, zaś każdy węzeł odpowiada 

mostowi między łańcuchami określanymi 

przez oba poddrzewa. Zapamiętujemy 

dwukierunkowe wskaźniki między liśćmi 

i węzłami, aby móc szybko znajdować 

mosty i aktualizować strukturę.  



Przykład. 



Lemat. 

Mostkowanie dwóch rozłącznych 

łańcuchów wypukłych, zawiera-

jących łącznie n punktów, można 

wykonać w czasie O(log n). 

Dowód. 

Jest dziewięć przypadków (z dokład-

nością do symetrii). Dzięki wyko-

rzystaniu struktury zrównoważonego 

drzewa poszukiwań binarnych, 

rozwiązanie każdego z nich wymaga 

logarytmicznego czasu.  

Zaznaczone na czerwono fragmenty 

łańcuchów nie wpływają na wynik 

mostkowania. 



Twierdzenie. 

Koszt każdego wstawienia lub usunięcia punktu wynosi O(log2 n). 

Dowód. 

Wstawiając lub usuwając punkt ze struktury znajdujemy ścieżkę od 

korzenia do odpowiedniego liścia. Następnie aktualizujemy drzewo na tej 

ścieżce dokonując rotacji w celu jego zrównoważenia oraz znajdując mosty 

między łańcuchami otoczek punktów odpowiadających liściom poddrzew o 

korzeniach w potomkach badanego węzła. W każdym węźle poświęcamy 

na to O(1)+O(log n) czasu. Zatem aktualizacja struktury wzdłuż całej 

ścieżki wymaga czasu O(log2 n). 

 

Algorytm ten zawdzięczamy Overmarsowi i van Leuwenowi. 

 

Istnieją bardziej skomplikowane algorytmy, które umożliwiają aktualizację 

otoczki w zamortyzowanym czasie O(log n). 

 

 



Otoczka wypukła wielokąta prostego. 

 

Definicja. 

Wielokątem prostym nazywamy 

obszar ograniczony przez pojedynczy, 

domknięty, wielokątny łańcuch, który 

nie przecina się ze sobą. 

 

Definicja. 

Zagłębieniem wielokąta prostego 

nazywamy obszar znajdujący się na 

zewnątrz wielokąta, ale wewnątrz 

jego otoczki wypukłej.  

 

Wierzchołki uwypuklenia będziemy 

przechowywać na stosie Q. 



Obliczamy uwypuklenie wielokąta osobno 

dla jego górnego i dolnego łańcucha. 

Analizujemy zależności między  

-ostatnim punktem danego łańcucha 

wielokąta r,  

- ostatnim wierzchołkiem aktualnie 

stworzonego uwypuklenia q,  

- jego poprzednikiem u i badanym 

następnikiem v na brzegu wielokąta oraz  

- poprzednikiem w na uwypukleniu. 

Mamy 4 przypadki.  

1. Punkt v znajduje się w zagłębieniu 

ograniczonym przez prostą l przechodzącą 

przez w i q – aktualne uwypuklenie nie 

zmienia się do momentu aż brzeg 

wielokąta przetnie prostą l. 
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2. Punkt v znajduje się po przeciw-
nej stronie prostej l przechodzącej 
przez w i q niż punkt r – punkt v 
staje się ostatnim wierzchołkiem 
aktualnego uwypuklenia. Spraw-
dzamy, czy wierzchołki z Q i v 
tworzą łamaną wypukłą. Jeśli nie, 
to usuwamy ze stosu wierzchołki 
wpadające do wnętrza uwypukle-
nia i wstawiamy v. 

 

3. Punkt v znajduje się w kącie wy-
znaczonym przez półprostą o po-
czątku w w i przechodzącą przez q 
oraz bliższą z półprostych o po-
czątku w q i przechodzących przez 
r lub u - punkt v staje się ostatnim 
wierzchołkiem aktualnego uwypu-
klenia. Wstawiamy go na stos Q. 
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4. Punkt v znajduje się w kącie o wierz-

chołku w punkcie q i ramionach wyzna-

czonych przez punkty w i r, ale nie należy 

do zagłębienia, którego wierzchołkiem 

jest u – aktualne uwypuklenie nie zmienia 

się do momentu aż brzeg wielokąta 

przetnie prostą przechodzącą przez q i r. 

 

Niech ciąg (qi) dla i = 1, 2, ... oznacza 

wierzchołki tworzonego uwypuklenia, a 

ciąg (pi) dla i = 1, 2, ..., n określa wierz-

chołki górnego (dolnego) łańcucha bada-

nego wielokąta pamiętane w kolejce P. 

FRONT(P) oznacza pierwszy element P, 

a POP(P), POP(Q) – usunięcie początku P 

lub Q. Niech q0=(p1x,-) (q0=(p1x,+)). 
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Algorytm (Lee). 

P:={p1, p2, ... , pn}; Q  q0; u:=q0; 

Q  p1; POP(P); i:=1; j:=1;  

while P   do 

    v:=FRONT(P);  

    if |qi-1qiv| then 

        if |uqiv| then 

            if |pnqiv| then Q  v; u:=pj-1; 

                else  

                while |pnqiFRONT(P)| do 

                    POP(P); j:=j+1 

            else while |qiqi-1FRONT(P)| do  

                       POP(P); j:=j+1 

    else while |qi-1qiv|> do POP(Q); 

           Q  v; u:=pj-1; 



Złożoność algorytmu. 

 

Twierdzenie. 

Otoczkę wypukłą wielokąta prostego zawierającego n wierzchołków 

można zbudować w optymalnym czasie (n) i pamięci (n). 

Dowód. 

Czas potrzebny na analizę jednego wierzchołka wielokąta jest stały w 

przypadku, gdy nie powoduje to zmian otoczki. W przeciwnym 

przypadku stały jest czas zamortyzowany (sumarycznie wykonujemy co 

najwyżej liniową liczbę korekt otoczki, podobnie jak w algorytmie 

Grahama).  



Punkty dominujące. 

 

Definicja. 

Punkt p1 dominuje nad punktem p2 wzglę-

dem współrzędnej x, gdy x(p1) > x(p2). 

W pierwszej ćwiartce układu współrzęd-

nych R2 punkt p jest dominujący w zbio-

rze S, gdy żaden punkt z S nie dominuje 

nad nim względem obu współrzędnych. 

 

Inaczej: punkt p jest dominujący w zbio-

rze S, gdy można dosunąć do p nieograni-

czony prostokąt o bokach równoległych 

do osi współrzędnych, który nie zawiera w 

swoim wnętrzu punktów z S.  

Podobnie możemy zdefiniować punkty 

dominujące w innych ćwiartkach  i dla 

wyższych wymiarów. 

 

 



Algorytm zamiatania. 

posortuj zbiór S względem x;  

D = {p1}; max = min = py1; 

for i = 2 to n do 

 if pyi  max then D = D  {pi};  

      max = pyi; 

 if pyi  min then D = D  {pi};  

     min = pyi;  

D = D  {pn}; max = min = pyn; 

for i = n-1 to 1 do 

 if pyi  max then D = D  {pi};  

      max = pyi; 

 if pyi  min then D = D  {pi};  

     min = pyi;  

 

Złożoność algorytmu wynosi O(n log n). 



Triangulacja wielokąta przekątnymi. 

 

Definicja. 

Przekątną wielokąta F nazywamy 
otwarty odcinek łączący dwa 
niesąsiednie wierzchołki wielokąta F i 
leżący wewnątrz F. 

 

Definicja. 

Podział wielokąta na trójkąty przez 
maksymalny zbiór nieprzecinających 
się przekątnych nazywamy 
triangulacją wielokąta.  

 

Fakt. 

Każda triangulacja jest dualna do 
drzewa, którego węzły odpowiadają 

trójkątom a krawędzie - przekątnym. 

 



Lemat. 

W każdym wielokącie istnieje wierzchołek, w 

którym kąt ma rozwartość mniejszą niż . 

 

Twierdzenie. 

W każdym wielokącie o n > 3 wierzchołkach 

istnieje przekątna. 

Dowód.  Konstrukcyjny. Znajdujemy wierz-

chołek v, przy którym kąt ma rozwartość mniej-

szą niż . Badamy trójkąt utworzony przez ten 

wierzchołek i wierzchołki sąsiednie u i w. Jeśli 

do tego trójkąta nie należy żaden inny wierz-

chołek, to odcinek          jest przekątną. W prze-

ciwnym przypadku w trójkącie uvw znajdujemy 

wierzchołek wielokąta, którego odległość od 

         jest największa. Wtedy odcinek        jest 

przekątną wielokąta. 
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Wniosek. 

Powyższa metoda pozwala na znalezienie przekątnej w czasie liniowym 

względem liczby wierzchołków. 

 

Wniosek. 

Przekątna dzieli wielokąt na dwie części. Powtarzając tę procedurę otrzy-

mujemy algorytm triangulacji wielokąta o n wierzchołkach w czasie O(n2).  

 

Fakt. 

Triangulacja wielokąta może być, ale zwykle nie jest, jednoznaczna. 



Optymalna ważona triangulacja wielokątów 

wypukłych. 

 

Definicja. 

Dla danego wielokąta wypukłego P i funkcji 

wagowej w( ) zdefiniowanej na trójkątach o 

krawędziach ze zbioru boków i przekątnych 

wielokąta P, znajdź triangulację o minimalnej 

sumie wag trójkątów wchodzących w jej skład. 

 

Jedną z naturalnych funkcji wagowych jest suma 

długości boków trójkąta. Wtedy wagą triangu-

lacji jest suma długości boków wielokąta P oraz 

podwojona suma długości jego przekątnych. 

Zatem minimalną wagę ma triangulacja o 

minimalnej sumie długości przekątnych. 



Prezentowany algorytm jest algorytmem dynamicznym tzn. w 

obliczeniach wykorzystywane są wyniki otrzymane wcześniej.  

Aby rozwiązać ten problem obliczamy kolejno wartości optymalnych 

triangulacji dla wielokątów wyznaczanych przez pary, trójki, czwórki.... 

kolejnych wierzchołków wielokąta P. Niech v1, ..., vn będą wierzchołkami 

wielokąta P, a t[i,j] oznacza aktualnie minimalną wagę triangulacji 

wielokąta wyznaczanego przez wierzchołki vi, ... , vj. 

Aby obliczyć optymalną triangulację dla wielokąta R o wierzchołkach vs, 

vs+1, ... , vw, poszukujemy minimalnej wagi triangulacji wyznaczonej 

przez trójkąt T (vsvwvt, gdzie t  {s+1, ..., w-1}) oraz minimalne 

triangulacje wielokątów powstałych z wielokąta R po wycięciu trójkąta T 

(wielokąty mogą być zdegenerowane). Zauważmy, że optymalne 

triangulacje takich wielokątów są obliczane we wcześniejszej fazie 

działania algorytmu. 
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Algorytm dynamiczny. 

 

for i := 1 to n-1 do t[i,i+1] := 0;  

for m := 3 to n do  

    for i := 1 to n-m+1 do  

        j := i+m-1;  t[i,j] := ;  

        for k := i+1 to j-1 do  

            q := t[i,k]+t[k,j]+w(vivkvj); 

             if q < t[i,j] then t[i,j] := q;  

 

 

Lemat. 

Algorytm ma złożoność  
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Podział wielokąta prostego na wielokąty wypukłe. 

 

Lemat.  

Niech  oznacza minimalną liczbę wielokątów wypukłych, na które moż-

na podzielić dany wielokąt odcinkami (niekoniecznie przekątnymi). Niech 

r będzie liczbą kątów wewnętrznych wielokąta o rozwartości większej niż 

. Wtedy:  r/2 + 1    r +1. 

 

Definicja. 

Dla danego podziału wielokąta przekątnymi, istotną przekątną nazywamy 

taką, której usunięcie powoduje powstanie wielokąta niewypukłego 

(mającego kąt wewnętrzny o rozwartości większej niż ).  



Fakt. 

Istotne przekątne nie są wyznaczone 

jednoznacznie. 

 

Lemat. 

Wierzchołek kąta wewnętrznego o 

rozwartości większej niż  jest koń-

cem co najwyżej dwóch przekątnych 

istotnych. 

Dowód. 

Proste zawierające ramiona kąta 

wyznaczają dwie półpłaszczyzny. 

Do każdej z nich może należeć co 

najwyżej jedna przekątna istotna. 



Algorytm Hertela i Mehlhorna. 

 

znajdź dowolną triangulację 

wielokąta; 

usuń wszystkie przekątne, które nie 

są istotne; 

 

 

Nieistotne przekątne można wy-

eliminować w czasie O(n) (w sta-

łym czasie sprawdzamy, czy po 

usunięciu danej przekątnej, przy 

którymś z wierzchołków powstanie 

kąt większy od ) . 



Twierdzenie. 

Liczba wielokątów wypukłych otrzymanych z pomocą algorytmu  

Hertela-Mehlhorna jest co najwyżej czterokrotnie większa niż  

minimalna liczba takich wielokątów. 

Dowód. 

Algorytm Hertela-Mehlhorna tworzy co najwyżej 2r+1 wielokątów. 

Na podstawie poprzednich lematów mamy: 2r+1  2r+4  4(r/2+1)  4. 

 

 

Optymalny podział wielokąta prostego na wielokąty wypukłe można 

znaleźć w czasie O(n+r3) (Chazelle-Dobkin), gdzie r jest liczbą kątów 

wewnętrznych o rozwartości większej niż ). 



 

 

 

Dziękuję za uwagę. 



Ćwiczenia 2. 

 

1. Udowodnij, że algorytm znajdywania przybliżonej otoczki wypukłej metodą 

podziału płaszczyzny na pasy działa w przestrzeni trójwymiarowej w czasie 

O(n+k2 log k). 

2. Podaj przykłady n-kątów, których triangulacja jest lub nie jest jednoznaczna. 

3. Niech S={p1,p2, ... , pn} będzie zbiorem punktów w R3 takim, że x(p1) < x(p2) < 

... < x(pn). Wykaż, że mimo znajomości porządku S w kierunku x znalezienie 

otoczki wypukłej S i tak wymaga czasu (n log n). 

4.Dla danych n prostych na płaszczyźnie stwórz algorytm znajdujący otoczkę 

wypukłą punktów wyznaczonych przez przecięcia tych prostych działający w 

czasie subkwadratowym (np. O(n log n)). 

5. Dla danego zbioru S zawierającego n punktów na płaszczyźnie stwórz w czasie 

O(n log n) strukturę danych rozmiaru O(n), która umożliwi sprawdzenie w 

czasie O(log n), czy dany punkt q jest dominujący w zbiorze S  {q}. 



6. Otoczką dominacji zbioru S nazywamy zbiór punktów dominujących w S. 

Głębokość dominacji punktu p w S, to liczba otoczek dominacji, które trzeba 

odrzucić przed odrzuceniem p. Stwórz algorytm wyznaczający głębokość 

dominacji każdego punktu z S w czasie O(n log n).  

7. Udowodnij lub zaprzecz: każde drzewo binarne jest grafem dualnym 

triangulacji jakiegoś wielokąta. 

8. Jak wiele triangulacji ma n-kąt wypukły ?       

9. Dany jest nieuporządkowany zbiór przekątnych tworzących triangulację 

wielokąta (wierzchołki są etykietowane kolejnymi liczbami naturalnymi). 

Stwórz algorytm budujący dualne drzewo triangulacji w czasie O(n). 

10. Niech  oznacza minimalną liczbę wielokątów wypukłych, na które można 

podzielić dany wielokąt (niekoniecznie przekątnymi). Niech r będzie liczbą 

kątów wewnętrznych wielokąta o rozwartości większej niż . Wtedy:   r/2 

+ 1    r +1. 

 

 


