
Geometria obliczeniowa 
Wykład 1 

1. Lokalizacja punktu. 

2. Otoczka wypukła. 



Założenia ogólne: 

- rozpatrujemy problemy, których dane są w postaci ogólnej, tzn. nie 

generują szczególnych przypadków, np. nie ma trzech punktów 

współliniowych (czterech współokręgowych), punkty skrajne są 

określone jednoznacznie, wszystkie współrzędne punktów są różne itp. 

- obliczenia są wykonywane dokładnie, tzn. w obliczeniach nie uwzględ-

niamy błędów zaokrągleń,  

- złożoność obliczeniową określamy liczbą działań dominujących 

(zazwyczaj będą to porównania) względem rozmiaru danych. 



Lokalizacja punktu. 

Dla danego punktu p sprawdź, czy p 
znajduje się wewnątrz, czy na zewnątrz 
n-kąta prostego reprezentowanego 
przez ciąg kolejnych krawędzi. 

 

poprowadź z p pionową półprostą l ; 

k:=0;  

wybierz bok wielokąta f ; 

repeat 

     if  l przecina f 

          then k:=k+1; 

     f:=kolejny bok wielokąta ; 

until wszystkie boki wielokąta zostały 
zbadane ;  

if  k parzyste then p jest na zewnątrz 

                      else p jest wewnątrz ; 

 

 

 k = 0 1 2   0 1 2 3   



Złożoność algorytmu. 

Czas działania algorytmu jest proporcjonalny do liczby krawędzi 

wielokąta, czyli jest O(n). 

 

Szczególną uwagę należy zwrócić na sytuacje, gdy wybrana półprosta 

zawiera wierzchołek lub krawędź wielokąta. Problem ten można 

rozwiązać np. obracając wielokąt o mały kąt względem badanego punktu 

(lub wybierając inny kierunek prostej). 

Jeśli jest to trudne z przyczyn numerycznych, musimy w algorytmie 

osobno rozpatrywać takie szczególne przypadki (analizujemy sąsiednie 

krawędzie – w zależności od ich położenia zliczamy przecięcie lub nie).   



Lokalizacja punktu względem wielokąta wypukłego. 

 

Definicja. 

Górnym (dolnym) łańcuchem wielokąta wypukłego nazywamy ciąg jego 

krawędzi między skrajnie lewym a skrajnie prawym wierzchołkiem 

wielokąta odwiedzanych zgodnie z ruchem wskazówek zegara (przeciwnie 

do ruchu wskazówek zegara). 

 



Wyszukiwanie przecięcia łańcucha i prostej. 

 

                     Tablica                            Zrównoważone drzewo poszukiwań 



Półprosta poprowadzona z danego punktu przecina każdy z łańcuchów 

wielokąta wypukłego w co najwyżej jednym punkcie. 

Przeszukując strukturę możemy to sprawdzić w czasie O(log n). 

Zatem problem lokalizacji punktu względem wielokąta wypukłego 

możemy rozwiązać w czasie logarytmicznym. 

 

Ogólny problem lokalizacji punktu w przestrzeni trójwymiarowej 

możemy rozwiązać podobnie jak w dwóch wymiarach. Badamy 

przecięcia półprostej o początku w danym punkcie p ze ścianami 

danego wielościanu.  

Problem ten możemy rozwiązać w czasie O(n).  

   



Otoczka wypukła.  

 

Definicja. 

Dany zbiór S zawierający n 

punktów na płaszczyźnie. Otoczką 

wypukłą zbioru S nazywamy 

najmniejszy wielokąt wypukły 

zawierający zbiór S. 

 

Fakt.  

Otoczka wypukła jest wyznaczona 

jednoznacznie.  

 

 

 

 

 



Lemat. 

Złożoność algorytmu znajdującego 

otoczkę wypukłą jest Ω(n log n). 

Dowód. 

Problem sortowania jest reduko-

walny do problemu otoczki wy-

pukłej. 

Dowolnemu ciągowi arytmetycz-

nemu             przypisujemy zbiór 

punktów  

 

Punkty te leżą na paraboli. 

Ich otoczka wypukła jednozna-

cznie określa porządek punktów. 
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Algorytm Jarvisa. 

 znajdź punkt i0 z S o najmniejszej  

współrzędnej y-owej; i:=i0 ; 

repeat 

for j  i do 

znajdź punkt k taki, że żaden 

punkt z S nie leży na prawo 

od prostej zawierającej       ;  ik

dodaj       do otoczki ; ik

until i=i0 ; 

i:=k ; 

 

 

 

 

 



Złożoność algorytmu. 

Algorytm Jarvisa działa w czasie O(n2) (koszt znalezienia punktu 

skrajnego dla każdego z wierzchołków otoczki jest liniowy), lecz w 

przypadku, gdy liczba wierzchołków otoczki jest ograniczona przez stałą 

c, jego złożoność jest liniowa – O(cn).  

 

Algorytm działa również w przestrzeni trójwymiarowej (w czasie O(n2)). 

Rzutujemy punkty na płaszczyznę i znajdujemy krawędź otoczki 

wypukłej, znajdujemy przeciwobraz tej krawędzi i płaszczyznę 

zawierającą go. Następnie znajdujemy punkty wyznaczające płaszczyzny, 

które nie rozdzielają zbioru S (zawierają ściany otoczki), obracając daną 

płaszczyznę względem kolejno wyznaczanych krawędzi. 

 

W literaturze algorytm ten często jest nazywany marszem Jarvisa 

lub algorytmem owijania prezentów (gift wrapping). 



Algorytm dziel i rządź. 

 

F:={S}; 

while rozmiar dowolnego zbioru z F 

przekracza daną stałą k do 

 dziel zbiory względem mediany 

 x-owych współrzędnych punktów; 

znajdź otoczki wypukłe zbiorów z F 

używając algorytmu naiwnego; 

while otoczka zbioru S nie została 

znaleziona do  

 sklejaj otoczki sąsiadujących 

zbiorów w kolejności odwrotnej 

do podziału rodziny F;      



Łączenie sąsiednich otoczek. 

Niech l(a,b) oznacza prostą wyznaczoną 
przez punkty a i b. Styczna do zbiorów  
A i B to prosta przechodząca przez 
elementy obu zbiorów i wyznaczająca 
półpłaszczyznę zawierającą oba zbiory. 

a := skrajnie prawy wierzchołek lewej 
otoczki A ; 

b := skrajnie lewy wierzchołek   prawej 
otoczki B ; 

while l(a,b) nie jest styczna do A i B do 

 while l(a,b) nie jest dolną 

                   (górną) styczną do B do  

                   b := dolny (górny) sąsiad b; 
 while l(a,b) nie jest dolną 

                   (górną) styczną do A do  

                   a := dolny (górny) sąsiad a;  

 



Czas połączenia dwóch otoczek wynosi O(w(A)+w(B)), gdzie w(A)  

i w(B) są rozmiarami otoczek. 

Zatem jedna faza algorytmu (łączenie otoczek pokrywających cały zbiór  

S) ma złożoność O(n), gdzie n jest rozmiarem S. 

Złożoność algorytmu „dziel i rządź” można opisać równaniem  

T(n)=2T(n/2)+O(n), czyli wynosi O(n log n). 

Zamiast rekurencyjnie dzielić zbiór S możemy go najpierw posortować,  

a następnie podzielić na dostatecznie małe podzbiory. 

Czy dowolny podział zbioru S na małe podzbiory ma wpływ na złożoność  

czasową algorytmu „dziel i rządź” ?  

Algorytm „dziel i rządź” znajduje również otoczkę wypukłą punktów  

w przestrzeni trójwymiarowej w czasie O(n log n).  

Przedstawiona metoda łączenia otoczek nazywa się „podnoszeniem  

mostów”. Jej autorami są Preparata i Hong. 



Algorytm Kirkpatricka i Seidela. 

 

F:={S}; 

while rozmiar dowolnego zbioru z F 

przekracza daną stałą k do 

 dziel zbiory względem mediany 

 x-owych współrzędnych punktów; 

 znajdź górny (dolny) most między 

podzbiorami F z sąsiadujących 

podziałów, jeśli taki most nie 

został znaleziony wcześniej ; 

znajdź pozostałe krawędzie otoczki w 

każdym podziale; 



Zauważmy, że w tym przypadku nie liczymy otoczek wypukłych  dla 

elementów podziału, ale znajdujemy mosty w inny sposób (metodą „prune 

and search”, którą omówimy w jednym z kolejnych wykładów). 

 

Omawiany algorytm (podobnie jak np. algorytm Jarvisa) jest „output 

sensitive” tzn. jego złożoność zależy od rozmiaru wyniku.   

Niech k będzie rozmiarem otoczki wypukłej. 

Złożoność algorytmu Kirkpatricka i Seidela opisuje równanie: 

T(n,k) = (maxq+r=k T(n/2,q) + T(n/2,r)) + O(n), 

którego rozwiązaniem jest T(n,k) = O(n log k). 

 

Złożoność pesymistyczna tego algorytmu wynosi O(n log n). 

 



Metoda zamiatania. 

 

Ustalamy pewną hiperpłaszczyznę (np. prostą w R2, płaszczyznę w R3). 

Nazywamy ją miotłą. 

Przesuwamy miotłę w wyznaczonym kierunku (kierunku zamiatania). 

Pozycje, w których miotła zatrzymuje się nazywamy zdarzeniami. 

Informacje o nich przechowujemy w strukturze zdarzeń. 

Informacje potrzebne do obliczeń przechowujemy w strukturze(-ach) 

stanu. Struktura stanu jest aktualizowana w każdym zdarzeniu. 

Niezmiennik metody zamiatania polega na tym, że na zamiecionym 

obszarze znane jest rozwiązanie badanego problemu dla zdarzeń 

należących do tego obszaru.  



Algorytm zamiatania. 

Struktura zdarzeń – lista L uporządko- 

wanych po x-ach punktów z S. 

Struktura stanu – dwukierunkowa lista 

CH opisująca otoczkę dla „zamie-

cionych” punktów. 

 

i:=pierwszy element L; CH:=puste; 

while i  nil do 

     znajdź styczne do otoczki z CH  

 zawierające i; 

     aktualizuj CH i L;  

 



Złożoność algorytmu. 

Algorytm działa w czasie O(n log n) :  

- uporządkowanie punktów wymaga czasu O(n log n),  

- znalezienie stycznych do aktualnej otoczki zawierających badany punkt 

wymaga czasu O(n) (zależy od liczby usuwanych wierzchołków 

i rozmiaru zbioru S), 

- usunięcie wierzchołków „pochłanianych” przez tworzoną otoczkę 

wymaga czasu O(n).  

 

Algorytm zamiatania działa również w przestrzeni trójwymiarowej w 

czasie O(n2).  



Algorytm Grahama. 

 

znajdź punkt c z S o najmniejszej 
współrzędnej y-owej; 

posortuj biegunowo względem c 
pozostałe punkty z S i stwórz listę L; 

wstaw c i pierwsze dwa elementy z 
L do stosu CH;  

z:=kolejny element z L;  

while z  nil do 

zdejmij dwa elementy x,y ze stosu 
CH; 

     if |xyz|    

          then wstaw x,z do CH 

          else wstaw x,y,z do CH; 

                  z:=kolejny element z L; 

return CH; 



Złożoność algorytmu. 

Algorytm działa w czasie O(n log n) :  

- uporządkowanie punktów wymaga czasu O(n log n),  

- czas znalezienia otoczki wynosi O(n) (jest proporcjonalny do sumy 

liczby usuwanych wierzchołków i rozmiaru zbioru S). 

 

Algorytm Grahama nie ma bezpośredniego odpowiednika w wymiarach 

wyższych niż 2 z uwagi na niemożność liniowego uporządkowania 

danych punktów.  



Algorytm przyrostowy. 

 

weź trzy punkty ze zbioru S i stwórz 

z nich otoczkę CH; 

for i:=4 to n do 

     if  i-ty punkt z S nie należy do 

     wnętrza CH 

          then 

                znajdź styczne do CH prze- 

                chodzące przez ten punkt; 

                aktualizuj CH;  

 



Złożoność algorytmu. 

Struktura CH jest wzbogaconym, zrównoważonym drzewem poszukiwań 

binarnych (porządek wyznacza kolejność punktów na otoczce, ich 

współrzędne są pamiętane w węzłach drzewa). Możemy też użyć 

zrównoważonych drzew BST dla dolnego i górnego łańcucha CH. 

Koszt sprawdzenia, czy badany punkt leży na zewnątrz aktualnej otoczki 

wypukłej jest logarytmiczny. 

Liczba usuwanych wierzchołków jest O(n) a koszt każdego usunięcia jest 

logarytmiczny. Podobnie jest dla wstawień wierzchołków do CH. 

Zatem algorytm ma koszt O(n log n). 

 

W trzech wymiarach algorytm ma złożoność O(n2). 

 

 



Algorytm Quickhull 

CH – lista opisująca wierzchołki 
otoczki z dowiązaniami do list 
punktów na zewnątrz otoczki. 

 

znajdź w S punkty skrajne względem 
współrzędnych i wstaw je do CH; 

wybierz punkt wewnątrz otoczki; 

while są punkty z S na zewnątrz 

otoczki do 

     przyporządkuj punkty z S kątom 

     tworzonym przez wybrany punkt  

     i wierzchołki aktualnej otoczki CH; 

     w każdym kącie znajdź punkt z S 

     najbardziej odległy od otoczki; 

     dodaj wybrane punkty do otoczki; 

return CH;  



Złożoność algorytmu. 

Pesymistyczna złożoność algorytmu wynosi O(n2).  

 

Jeśli rozmiar otoczki wypukłej jest ograniczony przez stałą c, to złożoność 

algorytmu wynosi O(cn). 

 

Algorytm również działa w przestrzeni trójwymiarowej. 

Po znalezieniu zbioru punktów powiększających otoczkę, znajdujemy jej 

ściany przed dokonaniem kolejnego podziału zbioru punktów leżących na 

zewnątrz otoczki. Pesymistyczna złożoność tego algorytmu wynosi O(n2). 



Oczekiwana złożoność algorytmów znajdywania otoczki wypukłej. 

 

Staramy się oszacować oczekiwaną liczbę wierzchołków otoczki wypukłej 

dla losowego układu punktów. Wynik zależy od wyboru przestrzeni 

probabilistycznej. Mamy: 

-dla równomiernego rozkładu punktów w wielokącie wypukłym – O(log n) 

[Rênyi-Sulanke], 

- dla równomiernego rozkładu punktów w kole – O(n1/3) [Raynaud], 

- rozkładu normalnego na płaszczyźnie – O(log1/2 n) [Raynaud]. 

 

W zależności od wyboru modelu mamy też odpowiednie oczekiwane 

złożoności dla algorytmów Jarvisa i Quickhull. 



 

 

 

Dziękuję za uwagę. 



Ćwiczenia 1. 

 

1. Jak sprawdzić, po której stronie prostej przechodzącej przez punkty p i q 

znajduje się punkt r ? 

2. Pokaż, że problem lokalizacji punktu w przestrzeni trójwymiarowej 

możemy rozwiązać w czasie O(n). (wielościan jest zadany w postaci 

uporządkowanych list sąsiedztwa z dowiązaniami) 

3. Udowodnij, że otoczka wypukła jest wyznaczona jednoznacznie.  

4. Czy dowolny podział zbioru S na małe podzbiory ma wpływ na złożoność 

czasową algorytmu „dziel i rządź” ?  

5. Udowodnij, że algorytm „dziel i rządź” znajduje otoczkę wypukłą 

punktów w przestrzeni trójwymiarowej w czasie O(n log n). 

6. Jak znaleźć styczne w algorytmie Kirkpatricka-Seidela ? 

7. Pokaż, że pesymistyczna złożoność algorytmu zamiatania w przestrzeni 

trójwymiarowej wynosi (n2).  

8. Pokaż, że pesymistyczna złożoność algorytmu QUICKHULL w 

przestrzeni dwuwymiarowej wynosi (n2).  



9. Niech S będzie zbiorem n (być może przecinających się) jednostkowych 

okręgów na płaszczyźnie. Chcielibyśmy obliczyć otoczkę wypukłą S. 

 - Pokaż, że brzeg otoczki wypukłej składa się z odcinków i kawałków 

okręgów z S. 

 - Pokaż, że każdy okrąg może wystąpić co najwyżej raz na brzegu otoczki 

wypukłej. 

 - Niech S' będzie zbiorem punktów, które są środkami okręgów z S. Pokaż, 

że okrąg z S pojawia się na brzegu otoczki wypukłej wtedy i tylko wtedy, 

gdy środek tego okręgu leży na otoczce wypukłej S'. 

 - Podaj algorytm obliczania otoczki wypukłej S w czasie O(n log n). 

 - (*) Podaj algorytm obliczania otoczki wypukłej w czasie O(n log n) w 

przypadku, w którym okręgi z S mają różne promienie. 

10. Dla n danych punktów na płaszczyźnie zbuduj w czasie O(n log n) 

wielokąt prosty (tzn. łamaną zamkniętą, której krawędzie nie przecinają się) 

o wierzchołkach w tych punktach. 

11. Niech S będzie zbiorem n punktów na płaszczyźnie a współrzędne tych 

punktów będą liczbami całkowitymi od 0 do nd-1, gdzie d jest stałą. Podaj 

algorytm znajdujący otoczkę wypukłą S w czasie liniowym.  


