
Geometria obliczeniowa
Wykład 1

1. Lokalizacja punktu.

2. Otoczka wypukła.

Założenia ogólne:

- rozpatrujemy problemy, których dane są w postaci ogólnej, tzn. nie

generują szczególnych przypadków, np. nie ma trzech punktów

współliniowych (czterech współokręgowych), punkty skrajne są

określone jednoznacznie, wszystkie współrzędne punktów są różne itp.

- obliczenia są wykonywane dokładnie, tzn. w obliczeniach nie uwzględ-

niamy błędów zaokrągleń,

- złożoność obliczeniową określamy liczbą działań dominujących

(zazwyczaj będą to porównania) względem rozmiaru danych.

Lokalizacja punktu.

Dla danego punktu p sprawdź, czy p
znajduje się wewnątrz, czy na zewnątrz
n-kąta prostego reprezentowanego
przez ciąg kolejnych krawędzi.

poprowadź z p pionową półprostą l ;

k:=0;

wybierz bok wielokąta f ;

repeat

 if l przecina f

 then k:=k+1;

 f:=kolejny bok wielokąta ;

until wszystkie boki wielokąta zostały
zbadane ;

if k parzyste then p jest na zewnątrz

 else p jest wewnątrz ;

 k = 0 1 2 0 1 2 3

Złożoność algorytmu.

Czas działania algorytmu jest proporcjonalny do liczby krawędzi

wielokąta, czyli jest O(n).

Szczególną uwagę należy zwrócić na sytuacje, gdy wybrana półprosta

zawiera wierzchołek lub krawędź wielokąta. Problem ten można

rozwiązać np. obracając wielokąt o mały kąt względem badanego punktu

(lub wybierając inny kierunek prostej).

Jeśli jest to trudne z przyczyn numerycznych, musimy w algorytmie

osobno rozpatrywać takie szczególne przypadki (analizujemy sąsiednie

krawędzie – w zależności od ich położenia zliczamy przecięcie lub nie).

Lokalizacja punktu względem wielokąta wypukłego.

Definicja.

Górnym (dolnym) łańcuchem wielokąta wypukłego nazywamy ciąg jego

krawędzi między skrajnie lewym a skrajnie prawym wierzchołkiem

wielokąta odwiedzanych zgodnie z ruchem wskazówek zegara (przeciwnie

do ruchu wskazówek zegara).

Wyszukiwanie przecięcia łańcucha i prostej.

 Tablica Zrównoważone drzewo poszukiwań

Półprosta poprowadzona z danego punktu przecina każdy z łańcuchów

wielokąta wypukłego w co najwyżej jednym punkcie.

Przeszukując strukturę możemy to sprawdzić w czasie O(log n).

Zatem problem lokalizacji punktu względem wielokąta wypukłego

możemy rozwiązać w czasie logarytmicznym.

Ogólny problem lokalizacji punktu w przestrzeni trójwymiarowej

możemy rozwiązać podobnie jak w dwóch wymiarach. Badamy

przecięcia półprostej o początku w danym punkcie p ze ścianami

danego wielościanu.

Problem ten możemy rozwiązać w czasie O(n).

Otoczka wypukła.

Definicja.

Dany zbiór S zawierający n

punktów na płaszczyźnie. Otoczką

wypukłą zbioru S nazywamy

najmniejszy wielokąt wypukły

zawierający zbiór S.

Fakt.

Otoczka wypukła jest wyznaczona

jednoznacznie.

Lemat.

Złożoność algorytmu znajdującego

otoczkę wypukłą jest Ω(n log n).

Dowód.

Problem sortowania jest reduko-

walny do problemu otoczki wy-

pukłej.

Dowolnemu ciągowi arytmetycz-

nemu przypisujemy zbiór

punktów

Punkty te leżą na paraboli.

Ich otoczka wypukła jednozna-

cznie określa porządek punktów.

n

1ii
)(a


}.)(aa:)a,{(a n

1iij

2

jj 


Algorytm Jarvisa.

 znajdź punkt i0 z S o najmniejszej

współrzędnej y-owej; i:=i0 ;

repeat

for j  i do

znajdź punkt k taki, że żaden

punkt z S nie leży na prawo

od prostej zawierającej ; ik

dodaj do otoczki ; ik

until i=i0 ;

i:=k ;

Złożoność algorytmu.

Algorytm Jarvisa działa w czasie O(n2) (koszt znalezienia punktu

skrajnego dla każdego z wierzchołków otoczki jest liniowy), lecz w

przypadku, gdy liczba wierzchołków otoczki jest ograniczona przez stałą

c, jego złożoność jest liniowa – O(cn).

Algorytm działa również w przestrzeni trójwymiarowej (w czasie O(n2)).

Rzutujemy punkty na płaszczyznę i znajdujemy krawędź otoczki

wypukłej, znajdujemy przeciwobraz tej krawędzi i płaszczyznę

zawierającą go. Następnie znajdujemy punkty wyznaczające płaszczyzny,

które nie rozdzielają zbioru S (zawierają ściany otoczki), obracając daną

płaszczyznę względem kolejno wyznaczanych krawędzi.

W literaturze algorytm ten często jest nazywany marszem Jarvisa

lub algorytmem owijania prezentów (gift wrapping).

Algorytm dziel i rządź.

F:={S};

while rozmiar dowolnego zbioru z F

przekracza daną stałą k do

 dziel zbiory względem mediany

 x-owych współrzędnych punktów;

znajdź otoczki wypukłe zbiorów z F

używając algorytmu naiwnego;

while otoczka zbioru S nie została

znaleziona do

 sklejaj otoczki sąsiadujących

zbiorów w kolejności odwrotnej

do podziału rodziny F;

Łączenie sąsiednich otoczek.

Niech l(a,b) oznacza prostą wyznaczoną
przez punkty a i b. Styczna do zbiorów
A i B to prosta przechodząca przez
elementy obu zbiorów i wyznaczająca
półpłaszczyznę zawierającą oba zbiory.

a := skrajnie prawy wierzchołek lewej
otoczki A ;

b := skrajnie lewy wierzchołek prawej
otoczki B ;

while l(a,b) nie jest styczna do A i B do

 while l(a,b) nie jest dolną

 (górną) styczną do B do

 b := dolny (górny) sąsiad b;
 while l(a,b) nie jest dolną

 (górną) styczną do A do

 a := dolny (górny) sąsiad a;

Czas połączenia dwóch otoczek wynosi O(w(A)+w(B)), gdzie w(A)

i w(B) są rozmiarami otoczek.

Zatem jedna faza algorytmu (łączenie otoczek pokrywających cały zbiór

S) ma złożoność O(n), gdzie n jest rozmiarem S.

Złożoność algorytmu „dziel i rządź” można opisać równaniem

T(n)=2T(n/2)+O(n), czyli wynosi O(n log n).

Zamiast rekurencyjnie dzielić zbiór S możemy go najpierw posortować,

a następnie podzielić na dostatecznie małe podzbiory.

Czy dowolny podział zbioru S na małe podzbiory ma wpływ na złożoność

czasową algorytmu „dziel i rządź” ?

Algorytm „dziel i rządź” znajduje również otoczkę wypukłą punktów

w przestrzeni trójwymiarowej w czasie O(n log n).

Przedstawiona metoda łączenia otoczek nazywa się „podnoszeniem

mostów”. Jej autorami są Preparata i Hong.

Algorytm Kirkpatricka i Seidela.

F:={S};

while rozmiar dowolnego zbioru z F

przekracza daną stałą k do

 dziel zbiory względem mediany

 x-owych współrzędnych punktów;

 znajdź górny (dolny) most między

podzbiorami F z sąsiadujących

podziałów, jeśli taki most nie

został znaleziony wcześniej ;

znajdź pozostałe krawędzie otoczki w

każdym podziale;

Zauważmy, że w tym przypadku nie liczymy otoczek wypukłych dla

elementów podziału, ale znajdujemy mosty w inny sposób (metodą „prune

and search”, którą omówimy w jednym z kolejnych wykładów).

Omawiany algorytm (podobnie jak np. algorytm Jarvisa) jest „output

sensitive” tzn. jego złożoność zależy od rozmiaru wyniku.

Niech k będzie rozmiarem otoczki wypukłej.

Złożoność algorytmu Kirkpatricka i Seidela opisuje równanie:

T(n,k) = (maxq+r=k T(n/2,q) + T(n/2,r)) + O(n),

którego rozwiązaniem jest T(n,k) = O(n log k).

Złożoność pesymistyczna tego algorytmu wynosi O(n log n).

Metoda zamiatania.

Ustalamy pewną hiperpłaszczyznę (np. prostą w R2, płaszczyznę w R3).

Nazywamy ją miotłą.

Przesuwamy miotłę w wyznaczonym kierunku (kierunku zamiatania).

Pozycje, w których miotła zatrzymuje się nazywamy zdarzeniami.

Informacje o nich przechowujemy w strukturze zdarzeń.

Informacje potrzebne do obliczeń przechowujemy w strukturze(-ach)

stanu. Struktura stanu jest aktualizowana w każdym zdarzeniu.

Niezmiennik metody zamiatania polega na tym, że na zamiecionym

obszarze znane jest rozwiązanie badanego problemu dla zdarzeń

należących do tego obszaru.

Algorytm zamiatania.

Struktura zdarzeń – lista L uporządko-

wanych po x-ach punktów z S.

Struktura stanu – dwukierunkowa lista

CH opisująca otoczkę dla „zamie-

cionych” punktów.

i:=pierwszy element L; CH:=puste;

while i  nil do

 znajdź styczne do otoczki z CH

 zawierające i;

 aktualizuj CH i L;

Złożoność algorytmu.

Algorytm działa w czasie O(n log n) :

- uporządkowanie punktów wymaga czasu O(n log n),

- znalezienie stycznych do aktualnej otoczki zawierających badany punkt

wymaga czasu O(n) (zależy od liczby usuwanych wierzchołków

i rozmiaru zbioru S),

- usunięcie wierzchołków „pochłanianych” przez tworzoną otoczkę

wymaga czasu O(n).

Algorytm zamiatania działa również w przestrzeni trójwymiarowej w

czasie O(n2).

Algorytm Grahama.

znajdź punkt c z S o najmniejszej
współrzędnej y-owej;

posortuj biegunowo względem c
pozostałe punkty z S i stwórz listę L;

wstaw c i pierwsze dwa elementy z
L do stosu CH;

z:=kolejny element z L;

while z  nil do

zdejmij dwa elementy x,y ze stosu
CH;

 if |xyz|  

 then wstaw x,z do CH

 else wstaw x,y,z do CH;

 z:=kolejny element z L;

return CH;

Złożoność algorytmu.

Algorytm działa w czasie O(n log n) :

- uporządkowanie punktów wymaga czasu O(n log n),

- czas znalezienia otoczki wynosi O(n) (jest proporcjonalny do sumy

liczby usuwanych wierzchołków i rozmiaru zbioru S).

Algorytm Grahama nie ma bezpośredniego odpowiednika w wymiarach

wyższych niż 2 z uwagi na niemożność liniowego uporządkowania

danych punktów.

Algorytm przyrostowy.

weź trzy punkty ze zbioru S i stwórz

z nich otoczkę CH;

for i:=4 to n do

 if i-ty punkt z S nie należy do

 wnętrza CH

 then

 znajdź styczne do CH prze-

 chodzące przez ten punkt;

 aktualizuj CH;

Złożoność algorytmu.

Struktura CH jest wzbogaconym, zrównoważonym drzewem poszukiwań

binarnych (porządek wyznacza kolejność punktów na otoczce, ich

współrzędne są pamiętane w węzłach drzewa). Możemy też użyć

zrównoważonych drzew BST dla dolnego i górnego łańcucha CH.

Koszt sprawdzenia, czy badany punkt leży na zewnątrz aktualnej otoczki

wypukłej jest logarytmiczny.

Liczba usuwanych wierzchołków jest O(n) a koszt każdego usunięcia jest

logarytmiczny. Podobnie jest dla wstawień wierzchołków do CH.

Zatem algorytm ma koszt O(n log n).

W trzech wymiarach algorytm ma złożoność O(n2).

Algorytm Quickhull

CH – lista opisująca wierzchołki
otoczki z dowiązaniami do list
punktów na zewnątrz otoczki.

znajdź w S punkty skrajne względem
współrzędnych i wstaw je do CH;

wybierz punkt wewnątrz otoczki;

while są punkty z S na zewnątrz

otoczki do

 przyporządkuj punkty z S kątom

 tworzonym przez wybrany punkt

 i wierzchołki aktualnej otoczki CH;

 w każdym kącie znajdź punkt z S

 najbardziej odległy od otoczki;

 dodaj wybrane punkty do otoczki;

return CH;

Złożoność algorytmu.

Pesymistyczna złożoność algorytmu wynosi O(n2).

Jeśli rozmiar otoczki wypukłej jest ograniczony przez stałą c, to złożoność

algorytmu wynosi O(cn).

Algorytm również działa w przestrzeni trójwymiarowej.

Po znalezieniu zbioru punktów powiększających otoczkę, znajdujemy jej

ściany przed dokonaniem kolejnego podziału zbioru punktów leżących na

zewnątrz otoczki. Pesymistyczna złożoność tego algorytmu wynosi O(n2).

Oczekiwana złożoność algorytmów znajdywania otoczki wypukłej.

Staramy się oszacować oczekiwaną liczbę wierzchołków otoczki wypukłej

dla losowego układu punktów. Wynik zależy od wyboru przestrzeni

probabilistycznej. Mamy:

-dla równomiernego rozkładu punktów w wielokącie wypukłym – O(log n)

[Rênyi-Sulanke],

- dla równomiernego rozkładu punktów w kole – O(n1/3) [Raynaud],

- rozkładu normalnego na płaszczyźnie – O(log1/2 n) [Raynaud].

W zależności od wyboru modelu mamy też odpowiednie oczekiwane

złożoności dla algorytmów Jarvisa i Quickhull.

Dziękuję za uwagę.

Ćwiczenia 1.

1. Jak sprawdzić, po której stronie prostej przechodzącej przez punkty p i q

znajduje się punkt r ?

2. Pokaż, że problem lokalizacji punktu w przestrzeni trójwymiarowej

możemy rozwiązać w czasie O(n). (wielościan jest zadany w postaci

uporządkowanych list sąsiedztwa z dowiązaniami)

3. Udowodnij, że otoczka wypukła jest wyznaczona jednoznacznie.

4. Czy dowolny podział zbioru S na małe podzbiory ma wpływ na złożoność

czasową algorytmu „dziel i rządź” ?

5. Udowodnij, że algorytm „dziel i rządź” znajduje otoczkę wypukłą

punktów w przestrzeni trójwymiarowej w czasie O(n log n).

6. Jak znaleźć styczne w algorytmie Kirkpatricka-Seidela ?

7. Pokaż, że pesymistyczna złożoność algorytmu zamiatania w przestrzeni

trójwymiarowej wynosi (n2).

8. Pokaż, że pesymistyczna złożoność algorytmu QUICKHULL w

przestrzeni dwuwymiarowej wynosi (n2).

9. Niech S będzie zbiorem n (być może przecinających się) jednostkowych

okręgów na płaszczyźnie. Chcielibyśmy obliczyć otoczkę wypukłą S.

 - Pokaż, że brzeg otoczki wypukłej składa się z odcinków i kawałków

okręgów z S.

 - Pokaż, że każdy okrąg może wystąpić co najwyżej raz na brzegu otoczki

wypukłej.

 - Niech S' będzie zbiorem punktów, które są środkami okręgów z S. Pokaż,

że okrąg z S pojawia się na brzegu otoczki wypukłej wtedy i tylko wtedy,

gdy środek tego okręgu leży na otoczce wypukłej S'.

 - Podaj algorytm obliczania otoczki wypukłej S w czasie O(n log n).

 - (*) Podaj algorytm obliczania otoczki wypukłej w czasie O(n log n) w

przypadku, w którym okręgi z S mają różne promienie.

10. Dla n danych punktów na płaszczyźnie zbuduj w czasie O(n log n)

wielokąt prosty (tzn. łamaną zamkniętą, której krawędzie nie przecinają się)

o wierzchołkach w tych punktach.

11. Niech S będzie zbiorem n punktów na płaszczyźnie a współrzędne tych

punktów będą liczbami całkowitymi od 0 do nd-1, gdzie d jest stałą. Podaj

algorytm znajdujący otoczkę wypukłą S w czasie liniowym.

