Problem set X, for December 16th

Introduction to fields.

The text for this part of the lectures is Aluffi, Chapter VII of Algebra, Chapter θ and Milne, Fields and Galois theory.

- 1. Let \overline{K} denote algebraic closure of a field K. Prove that every automorphism of K extends to an automorphism of \overline{K} .
 - (a) Prove that $\overline{\mathbb{Q}}$ has infinite number of automorphisms.
 - (b) Prove that the group of automorphims of \mathbb{R} is trivial. Hint: first show that if x > 0 and $h \in Aut(\mathbb{R})$ then h(x) > 0.
- 2. Let K be a field of characteristic p > 0. We define a Frobenius map $\Phi = \Phi_K : K \to K$ by setting $\Phi(a) = a^p$.
 - (a) Show that Φ is an endomorphism of K.
 - (b) Prove that if K is finite or algebraically closed then Φ is an automorphism.
 - (c) Prove that $\Phi_{K(x)}$ is not an automorphism of the field of rational functions K(x).
 - (d) Find the field of invariants of Φ^n , that is K^{Φ^n} .
 - (e) Prove that for every n every algebraically closed field of characterisitic p contains exactly one subfield of cardinality p^n .
 - (f) Prove: if the cardinality of K is p^n then its group of automorphims is cyclic of cardinality n and generated by Φ .
- 3. A field K is called perfect if every algebraic extension of K is separable.
 - (a) Prove that every finite field is perfect.
 - (b) Prove that a field of characteristic p > 0 is perfect if and only if its Frobenius endomorphism is an automorphism.
 - (c) Prove that K of characteristic p > 0 is perfect if and only if for every $a \in K$ the polynomial $x^p a$ has a root in K.

- 4. Recall that for a polynomial $f \in K[x]$ its field of decomposition is the smallest algebraic extension $K_f \supseteq K$ which contains all roots of f.
 - (a) Prove that $K_f \subseteq \overline{K}$ is the intersection of fields in which f decomposes into linear factors.
 - (b) Prove that the extension $K \subseteq K_f$ is normal.
 - (c) Prove that if $K \subset L$ is a normal and finite extension then $L = K_f$ for some $f \in K[x]$.
 - (d) Suppose that $\operatorname{char} K \neq 2$ and $K \subset L$ is an extension of degree 2. Prove that there exits $a \in K$ such that L is the field of decomposition of $x^2 a$.
 - (e) Let deg f = d; prove that $[K_f : K] \leq d$!