
Commutative Algebra Fall 2014/2015

Problem set VIII, for November 25th
Ideals in polynomial rings, symmetric polynomials.

The material regarding these topics can be found in chapter 2 of Cox, Little,
O’Shea book. In particular the definitions of orders lex, grlex and grevlex
on Z≥0 can be found there. You may want to do some computer supported
calculations. I suggest you register at the http://sage.mimuw.edu.pl and use
our local sage serves to do the calculations. You may browse the worksheets
posted by other people; you can start with the simplest one about Groebner
basis, division algorithm. I encourage you to post your own worksheets.

Recall that a finite set of polynomials f1, . . . fr in and ideal I of k[x1, . . . xn]
is called a Gröbner basis if their leading terms generate the ideal of leading
terms of I, that is (LT (f1), . . . , LT (fr)) = LT (I). By Sn we understand the
group of permutations of n elements.

1. We know that the natural order on Z≥0 has the following property: for
any two elements α > β there exists only a finite number of γ’s which
satisfy α > γ > β. Which of the orders lex, grlex and grevlex on Zn

≥0
has this property?

2. We consider a polynomial f = xy2z2+xy−yz and a list of polynomials
F = [x−y2, y−z3, z2−1] in k[x, y, z]. Use the division algorithm to find
the remainder of f with respect to F for orders lex and grlex. Next
change the order in F, that is consider F ′ = (z2 − 1, y − z3, x − y2).
Hint: use sage or any other algebra program.

3. Show that the division algorithm is k-linear. That is, if for i = 1, 2 the
remainder of fi by division by F is ri then for ci ∈ k the remainder of
c1f1 + c2f2 on division by F is c1r1 + c2r2.

4. Let G and G′ be two Gröbner basis of an ideal I in a polynomial ring
with a fixed order. Prove that the remainders of the division algorithm
by G and G′ are the same.

5. Let G be a Gröbner basis of an ideal I. Prove that a polynomial f is
in I if and only if the remainder of f on division by G is zero.

http://www.mimuw.edu.pl/~jarekw/SZKOLA/algebra-comm/CoxLittleOShea-ch2.pdf
http://sage.mimuw.edu.pl
http://sage.mimuw.edu.pl/home/pub/122
http://sage.mimuw.edu.pl/home/pub/122


6. Symmetric polynomials. Recall that, for k ≤ n an elementary symmet-
ric polynomial σk ∈ k[x1, . . . , xn] is defined as

σr =
∑

1≤i1<···<ik≤n

xi1 · · · xir

(a) Prove that

n∏
i=1

(y − xi) = yn − σ1yn−1 + · · ·+ (−1)n−1σn−1y + (−1)nσn

(b) Prove that, if σr
k denotes the r-th elementary symmetric polyno-

mial in n variables, then σr
k = σn−1

k + xnσ
n−1
k−1

(c) Find a formula (e.g. a generating function) for the dimension of
the k-linear space of symmetric polynomials in n variables of total
degree d.

7. Write the following symmetric functions as polynomials in elementary
symmetric functions:

(a)
∑

i 6=j x
2
ixj,

∑
i 6=j x

2
ix

2
j ,

(b)
∏

i 6=j(xi − xj) for n = 3 (discriminant)

Hint: Use Gauss algorithm or the fact that homogeneous symmetric
polynomials of degree d are linear combinations of monomials in ele-
mentary symmetric functions of the appropriate degree.

8. More symmetric polynomials. Let us define sr =
∑n

i=1 x
r
i . Prove the

following identities

(a) if snr denotes the respective function in n variables then snr =
sn−1r + xrn

(b) sr − σ1sr−1 + σ2sr−2 − · · · + (−1)r−1σr−1s1 + (−1)rrσr = 0, for
1 ≤ r ≤ n

(c) sr − σ1sr−1 + σ2sr−2 − · · · ± σnsr−n = 0, for r > n

Conclude that, if the characteristic of k is zero or bigger than n, then
functions sr generate the ring of invariants k[x1, . . . , xn]Sn .


