Problem set VII, for November 18th

Integral extensions, integral closures.

A normal ring is a domain integrally closed in its field of fractions. The normalization of a domain is its integral closure in its field of fractions.

- 1. Find the integral closure of the following domains in the prescribed fields.
 - (a) $\mathbb{C}[x,y]/(y^2-x^3)$ in its field of fractions; hint: take t=y/x,
 - (b) $\mathbb{C}[x,y]/(y^2-x^3-x^2)$ in its field of fractions; hint: take t=y/x,
 - (c) \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$, where n is not divided by a square of a prime number; hint: the answer depends on whether 4|n.
- 2. True or false, prove or disprove the following statements; all rings are domains.
 - (a) If $A \subseteq B$ is an integral extension and $\mathfrak{p} \triangleleft B$ is a prime ideal then \mathfrak{p} is maximal in B if and only if $\mathfrak{p} \cap A$ is maximal in A.
 - (b) A subring of a normal ring is normal.
 - (c) If a quotient of a normal ring is a domain then it is normal.
 - (d) A localisation of a normal ring is normal.
 - (e) If \overline{A} is the normalization of A then the extension $A \subseteq \overline{A}$ is finite.
 - (f) If $A \subset B$ is a finite extension and A is Noetherian then B is Noetherian.
 - (g) If $A \subset B$ is a finite extension and B is Noetherian then A is Noetherian.
- 3. Let us assume that $A \subseteq B$ is an integral extension. Prove the following statements:
 - (a) If \mathfrak{q} is a prime ideal in B then B/\mathfrak{q} is integral over $A/(A \cap \mathfrak{q})$.
 - (b) If \mathfrak{p} is a prime ideal in A then there exists a prime ideal \mathfrak{q} in B such that $\mathfrak{p} = \mathfrak{q} \cap A$.

- 4. Let us denote $\mathbb{N} = \mathbb{Z}_{\geq 0}$. We consider a semigroup $\Gamma \subset \mathbb{N}^n$ and we define the cone $C(\Gamma) = \mathbb{R}_{\geq 0} \cdot \Gamma \subset \mathbb{R}^n$ generated in \mathbb{R}^n by Γ . We define a ring $k[\Gamma] \subset k[x_1, \ldots, x_n]$ which, as as a k-vector space, is spanned on monomials $x^{\gamma} = x_1^{\gamma_1} \cdots x_n^{\gamma_n}$, for $\gamma \in \Gamma$.
 - (a) We define $\overline{\Gamma} = C(\Gamma) \cap \mathbb{Z}^n$. Prove $\overline{\Gamma} = \{ \gamma \in \mathbb{Z}^n | \exists m > 0 : m\gamma \in \Gamma \}$.
 - (b) Prove that the extension $k[\Gamma] \subset k[\overline{\Gamma}]$ is integral. Is it finite?
 - (c) Prove that $k[\overline{\Gamma}]$ is integrally closed in $k[\mathbb{N}^n] = k[x_1, \dots, x_n]$.
 - (d) Prove that the ring $k[\overline{\Gamma}]$ is normal hence it is the normalization of $k[\Gamma]$.
- 5. Let k denote an algebraically closed field with char $k \neq 2$, we set A = k[t]. For any polynomial $f \in A$, such that $f = \prod (t a_i)^{n_i}$, with $a_i \neq a_j$ for $i \neq j$ and $n_i \geq 1$, we consider the quotient ring $B = k[t, x]/(x^2 f)$; the class of x in B we denote by \sqrt{f} .
 - (a) Find the the necessary and sufficient fondition for B to be a domain. (In what follows we assume that B is a domain.)
 - (b) Prove that the integral closure of A in the field of fractions (B) is equal to the normalization of B.
 - (c) Find the necessary and sufficient condition for B to be normal.