## Problem set II, for October 14th

Short introduction to categories.

It is assumed that you know basic definitions of this theory. There are many sources for getting them; here are two of them:

- Adamek, Herrlich, Stecker, Abstract and concrete categories
- Freyd, Abelian Categories

The categories of sets and algebraic structures (groups, abelian groups, commutative rings, vector spaces over a fixed field k), and topological space will be denoted by, respectively, Set, Gr, Ab, Ring,  $Vect_k$ , Top.

- 1. Define the notion of an isomorphism and of the inverse of a morphism in categorical terms.
- 2. An object A in a category  $\mathcal{C}$  is called initial if it has exactly one morphism into every object of  $\mathcal{C}$ . Similarly we define the terminal object of  $\mathcal{C}$ . Prove: if an initial (terminal) object exists then it is unique up to isomorphism. Check whether the categories listed above have the initial (terminal) object.
- 3. Prove that abelianization is a covariant functor  $Ab : \mathcal{G}r \to \mathcal{A}b$ . Is this a full functor? Is this a faithful functor?
- 4. Let  $(S, \leq)$  be a set with partial order. Show that  $(S, \leq)$  determines a category with objects being elements from S and morphisms determines by the order.
- 5. Let  $\mathcal{C}$  be a category with a distinguished object A. Show that mappings  $B \to \operatorname{Mor}_{\mathcal{C}}(A, B)$  and

$$\operatorname{Mor}_{\mathcal{C}}(B,C)\ni f\longrightarrow (\operatorname{Mor}_{\mathcal{C}}(A,B)\ni g\to f\circ g\in \operatorname{Mor}_{\mathcal{C}}(A,C))$$

define covariant functor from  $\mathcal{C}$  into  $\mathcal{S}et$ . We will denote it by  $\mathfrak{h}_A$ :  $B \to \operatorname{Mor}_{\mathcal{C}}(A,B)$ . Similarly we define a covariant functor  $\mathfrak{h}^A: B \to \operatorname{Mor}_{\mathcal{C}}(B,A)$ . Prove that any morphism  $A' \to A$  determines natural transformations of functors  $\mathfrak{h}_A \to \mathfrak{h}_{A'}$  and  $\mathfrak{h}^{A'} \to \mathfrak{h}^A$ .

- 6. Yoneda lemma. For a given category  $\mathcal{C}$  we define its functor category  $\widehat{\mathcal{C}}$  whose objects are contravariant functors  $\mathcal{C} \to \mathcal{S}et$  and morphisms are natural tranformations of such functors. Let us consider a functor  $\widehat{\Phi}: \mathcal{C} \to \widehat{\mathcal{C}}$  such that  $\widehat{\Phi}_{\mathrm{Obj}}(A) = \mathfrak{h}^A$  while on morphisms  $\widehat{\Phi}$  is as defined in the previous exercise. Show that  $\widehat{\Phi}$  is faithful and full.
- 7. A contravariant functor  $\mathcal{C} \to \mathcal{S}\!et$  is called representable by an object A in  $\mathcal{C}$  if it is naturally isomorphic to the functor  $\mathfrak{h}^A$ . Show that the forgetful functor  $\mathcal{A}b \to \mathcal{S}\!et$  is naturally isomorphic to  $\mathfrak{h}_{\mathbb{Z}}$ .
- 8. Let  $vect_k^{<\infty}$  denote category in which objects are linear spaces  $k^n$  (one object for every  $n \geq 0$ ) while  $\mathrm{Mor}_{vect}(k^n,k^m)$  are matrices  $n \times m$  with multiplication as composition. Show that the embedding of  $vect_k^{<\infty}$  into  $\operatorname{Vect}_k^{<\infty}$  is equivalence of categories.
- 9. Categorical product of two objects  $A, B \in \text{Obj}_{\mathcal{C}}$  is an object D with two morphisms  $A \leftarrow D \rightarrow B$  such that for any object D' with morphisms  $A \leftarrow D' \rightarrow B$  there exists exactly one morphism from D' to D which makes the following diagram commutative



Usually D is denoted by  $A \times B$ . Co-product is defined similarly by reversing the arrows. Prove that the product (co-product) is unique up to isomorphism. Prove that  $A \times B$  is naturally isomorphic to  $B \times A$ . Describe products and co-products in Set, Top, Ab, Gr, Ring; note that they do not have to exist.

10. In category  $\mathcal{C}$  we consider three objects with two morphisms  $A \to C \leftarrow B$ . The fiber product of A and B over C is an object D with morphisms  $A \leftarrow D \to B$  which make this diagram commutative



Moreover if D' satisfies the above condittion formulated for D then there exists a unique morphism  $D' \to D$  which makes the following diagram commutative



We denote such product (if it exists) by  $A \times_C B$ . The fiber co-product is defined similarly be reversing the arrows. Show the uniqueness (up to isomorphism) of the fiber product and co-product. Contemplate the fiber products and co-products in Set, Top, Ab. Prove that if C has the terminal object Z and admits the product  $A \times B$  then the fiber product  $A \times_Z B$  is isomorphic to  $A \times_Z B$ .

11. Composition of fiber products is a fiber product. Suppose that the following arrows are defined

$$E \times_A (A \times_C B) \longrightarrow A \times_C B \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$E \longrightarrow A \longrightarrow C$$

Prove that  $E \times_A (A \times_C B)$  is isomorphic to  $E \times_C B$  where  $E \to C$  is the composition  $E \to A \to C$ .

12. Fiber product base change. Suppose that there exists a fiber product for  $A \to C \leftarrow B$ . Prove that for every  $C \to E$  we have a natural morphism  $A \times_C B \to A \times_E B$  and the diagram

$$\begin{array}{ccc} A \times_C B \longrightarrow A \times_E B \\ \downarrow & & \downarrow \\ C \longrightarrow C \times_E C \end{array}$$

where  $C \to C \times_E C$  is the diagonal which means the morphism coming from two identities  $C \to C \leftarrow C$ . Prove that the above diagram makes the fiber product.