

SugarJ: Library-based Syntactic Language Extensibility

Grzegorz Rowiński

Object-oriented programming seminar

MIMUW, May 14th, 2012

Keywords: SugarJ, language extensibility,
syntactic sugar, sugar libraries, meta-
programming, domain-specific languages (DSL)
embedding, language composition, static
analysis, semantic analysis, editor libraries, Java,
SDF, Startego, Spoofax, Sugarclipse

SugarJ: Library-based Syntactic Language Extensibility

SugarJ
 Is a (Java based) programming language
 It allows meta-programming by syntactic

language extensibility with static (compile-
time) semantic code analysis

 by means of sugar libraries
 It supports extensions to augment IDE

 by means of editor libraries

SugarJ: Library-based Syntactic Language Extensibility

SugarJ is Java based in a couple of means:
 It contains Java (at a language level)

Java-1.5 ⊆ SugarJ
 It may be seen as a preprocessor outputting

pure Java
 The tools provided in the SugarJ

implementation are written mostly in Java

SugarJ: Library-based Syntactic Language Extensibility

SugarJ contains SDF language
 It's embedded in SugarJ

E
SDF/SugarJ

(SDF) ⊆ SugarJ

 It's used in sugar libraries to describe syntax
extensions provided by a library

SDF (syntax definition formalism) – a modular,
declarative language for describing context-free
grammars, oriented for SGLR parsing method
(SGLR = Scannerless Generalized LR)

SugarJ: Library-based Syntactic Language Extensibility

SugarJ contains Stratego language
 It's embedded in SugarJ

E
Stratego/SugarJ

(Stratego) ⊆ SugarJ

 It's used in sugar libraries to describe program
transformations provided by a library

Stratego – a functional (more precisely: strategic
term rewriting) programming language designed
for expressing program transformations, operates
on AST (abstract syntax tree) of transformed
program
Stratego enables usage of a concrete syntax of transformed program's language, as well!

SugarJ: Sugar Libraries

Sugar library stipulates an augmentation of the
base language, by:

 extending the syntax
Sugar library may add new productions to the
current grammar

 providing de-sugaring
Sugar library provides transformation rules
(or strategies), which enable the SugarJ compiler
to de-sugar a new syntax i.e. transform it to the
syntax allowed in embedding environment and
perform contextual static checking
Subsequent application of de-sugaring by SugarJ compiler results in pure
Java syntax being emitted.

SugarJ: Sugar Libraries

Ideally (this is not exactly the case in SugarJ):

Let v ∈ SugarJ be a sugar library stipulating an
extended language L(v).

Then

vw SugarJ∈ for every w L∈ (v),

i.e. SugarJ is closed under extensions it may express.

Self-applicability: vw above may be a sugar library.

Composability:

v
1
v

2
w SugarJ∈ for every w L∈ (v

1
)⊕L(v

2
)

SugarJ: Sugar Libraries

Why the previous slide is not quite correct?

GLR parsers try to manage in ambiguous grammars.
The unresolvable case, however, is when there are
two or more distinct parse trees possible for program
text.

The composition of languages (⊕) is a language
generated by grammar being the sum of grammars
(union of production sets).

This may lead to composed grammars with
unresolvable ambiguity.

SugarJ: Sugar Libraries

SugarJ rejects a program when parser finds such
ambiguity.

Most likely it may happen in composed languages, but
even with single sugar library in use, as the library is
composed with the base language.

So, despite v ∈ SugarJ and w L∈ (v),

vw SugarJ ∈ may not hold.

This is not considered really harmful by SugarJ
authors – such cases are easily fixable by
programmer.

SugarJ: Sugar Libraries | Very simple example: pairs

Very simple example: pairs

Let's extend SugarJ (well, Java) with pair syntax, so
make the following code

(String, Integer) p = ("Answer", 42);

to be equivalent to
pair.Pair<String, Integer> p = pair.Pair.create("Answer", 42);

SugarJ: Sugar Libraries | Very simple example: pairs

pair/concrete/Test.sugj

package pair.concrete;

import pair.concrete.Syntax;

import pair.concrete.Desugar;

public class Test {

 public static void main(String[] args) {

 (String, Integer) p = ("Answer", 42);

 System.out.println(p);

 }

}

SugarJ: Sugar Libraries | Very simple example: pairs

pair/concrete/Syntax.sugj

package pair.concrete;

import org.sugarj.languages.Java;

public sugar Syntax {

 context-free syntax

 "(" JavaExpr "," JavaExpr ")" ->

 JavaExpr {cons("PExpr")}

 "(" JavaType "," JavaType ")" ->

 JavaType {cons("PType")}

}

SugarJ: Sugar Libraries | Very simple example: pairs

pair/concrete/Desugar.sugj

package pair.concrete;

import concretesyntax.Java;

import pair.concrete.Syntax;

public sugar Desugar {

 desugarings

 pair2expr

 pair2type

 rules

 pair2expr : |[(~expr:e1, ~expr:e2)]| ->

 |[pair.Pair.create(~e1, ~e2)]|

 pair2type : |[(~type:t1, ~type:t2)]| ->

 |[pair.Pair<~t1, ~t2>]|

}

SugarJ: Sugar Libraries

Sugar libraries may be used to extend a language
with general-purpose language features – pairs or
tuples for example.

Other examples of general-purpose features, to
name a few: regular expressions, closures
(functional style in Java), JavaBeans accessors
and other automatic boiler-plate code generation.

SugarJ authors emphasize usage of sugar
libraries as a novel method for domain-specific
language (DSL) embedding. This makes them
address SugerJ as a language-oriented
programming language.

SugarJ: Domain-specific languages

Traditional methods of DSL embedding:
 string encoding
 class library embedding
 dedicated preprocessors

SugarJ: Domain-specific languages

String DSL encoding, e.g.:
 Java regular expressions

 Pattern p = Pattern.compile("a*b");
 SQL in JDBC
 JPQL in JPA
 XML as strings

 StringBuffer sb = new StringBuffer();
 sb.append(“<item>\n”);
 ...

SugarJ: Domain-specific languages

Class library DSL embedding, e.g.:
 XML with JDOM
 JPA QueryBuilder

Dedicated DSL preprocessors, e.g.:
 Oracle Pro*C – C embedded PL/SQL

SugarJ: Domain-specific languages

Comparison of DSL embedding methods
advantages disadvantages

String encoded DSL ● simplicity
● dynamically constructed
● original syntax

● no static checking at all
● escaping required
● no editor support (usually)

Class library
embedded DSL

● partial static checking
● partial editor support

● syntax deviated (in
general)
● static checking is partial

Dedicated embedded
DSL preprocessing

● original syntax (in the
majority of cases)
● full static checking (as
the domain allows)

● hardly composable
● non-uniform: tool-chain
dependencies exist
● may not support dynamic
constructions

SugarJ: Domain-specific languages

SugarJ works in a way similar to a preprocessor
method while it allows composability and makes
the processing uniform (possibly including the
editor support).

This is expected to result in higher programmer
convenience, simpler build system and less tool-
chain dependencies.

SugarJ: Domain-specific languages

XML sugar library usage example:

ContentHandler ch = new Test();

String title = "Sweetness and Power";

ch.<book title="{new String(title)}">

 <author name="Sidney W. Mintz" />

 </book>;

Regexp sugar library usage example:

boolean b = args[0].matches(/Sugar\S[A-Z]*/);

SugarJ: Editor Libraries

IDE / type-time support seems to be required
feature for any production (or claiming)
programming language / environment nowadays.
Language extensibility makes this requirement
harder to fulfill.

Editor libraries may accompany SugarJ's sugar
libraries and enable IDE support for language
extensions.

Sugarclipse is currently the only tool which
respects SugarJ's editor libraries. Sugarclipse is
Eclipse plug-in based on Spoofax (which is also
based on SDF and Stratego).

SugarJ: Editor Libraries

There are eight editor services, which may be
augmented by (declarative, domain-specific)
language of editor libraries:

 Syntax coloring

 Code folding

 Outlining

 Content completion

 Reference resolving

 Hover help

 Refactoring (or projection)

 Parentheses matching

SugarJ: Limitations

Limitations / future work in SugarJ:
 SugarJ does not deal deeply with ambiguity in

compositions of de-sugaring rules and editor
libraries

 Debugging is only possible on emitted Java
code

 Sugarclipse is not production-stable yet

SugarJ: Stability

Sugarclipse installed as described in (very
brief) guide was unable to compile the pair
example.

Quick hacking was necessary to make it work.

What I did was:
cd ${PROJECT_DIRECTORY}

rm -fr .sugarjcache

ln -s /tmp .sugarjcache

It helped, a bit...

SugarJ: Stability

Sugarclipse signalizes random
NullPointerException at compile-time – it's not
repeatable – finally it compiles the pair
example.

Sugarclipse seems slow. There's a risk that at
the current stage it's too slow for interactive/IDE
usage.

I have not tried command-line compiler
sugarjc – I just believe it's more stable.

SugarJ: Library-based Syntactic Language Extensibility

SugarJ home page:

http://sugarj.org/

Spoofax, Stratego and SDF home pages:

http://strategoxt.org/Spoofax/

http://strategoxt.org/Sdf

http://strategoxt.org/Stratego/StrategoLanguage

http://sugarj.org/
http://strategoxt.org/Spoofax/
http://strategoxt.org/Sdf
http://strategoxt.org/Stratego/StrategoLanguage

SugarJ: Library-based Syntactic Language Extensibility

[1] Sebastian Erdweg, Tillmann Rendel, Christian Kästner and Klaus
Ostermann. SugarJ: Library-based Syntactic Language Extensibility. In
Proceedings of Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 391–406. ACM, 2011.

[2] Sebastian Erdweg and Lennart C. L. Kats and Tillmann Rendel and Christian
Kästner and Klaus Ostermann and Eelco Visser. Growing a Language
Environment with Editor Libraries. In Proceedings of Conference on
Generative Programming and Component Engineering (GPCE), pages 167–
176. ACM, 2011

[3] Stefan Fehrenbach. Retrofitting Language-oriented Design with SugarJ.
Bacherlor thesis, University of Marburg, November 2011. Co-supervised with
Klaus Ostermann
http://www.informatik.uni-marburg.de/~seba/publications/thesis-fehrenbach.pdf

http://www.informatik.uni-marburg.de/~seba/publications/thesis-fehrenbach.pdf

SugarJ: Library-based Syntactic Language Extensibility

Q&A + Discussion + Feedback, pls

SugarJ: Library-based Syntactic Language Extensibility

Thank you!

