
[BL16]: framework for expressing dependencies in the context of  AV

[SG22]: proportionality criterion for binary and independent issues
& powerful guarantees for.PAV and MES

…but others may not; mainly due to dependencies between issues!

…some voters may be able to express their opinion using approval ballots…

In an election on some (not necessarily binary) interdependent issues…

I’d like a burger but only if paired with a beer.
I don’t have a strong opinion when it comes to desserts.
I can’t have both crab and chocolate!

Any group of voters that makes up an x-fraction of the electorate, 
should be able to decide on an x-fraction of the issues. 

Wow! Combining [BL16] with [SG22] might 
lead to provable proportionality guarantees
for elections with interdependent issues!

Pizza? Burger? Yummy!
I do like donuts and choco-bars!
Don’t you see that I am too young for alcohol?

For every sufficiently large 
group of voters, 
independent of
cohesiveness requirements.

Any “reasonably fair” rule,

cannot be α-proportional for α > ଵ
ௗ⁄ Δ+1.

observation 1.

For Δ>0, cMES cannot be α-proportional, 

for any α, even under Assumption 1.
observation 3.    

cMES strictly worse than cPAV, in certain 
instances (in contrast to the Δ=0 case)

Assumption 1: Voters that can be satisfied w.r.t. to an issue, cannot be 
satisfied w.r.t. to other ‘nearby’ issues in G.

Δ=0: α=1/d, strict generalization

of the ½ factor (binary issues) [SG22]
(tight according to Observation 1)

Under Assumption 1, cPAV is α-proportional, 

for α = ଵ
(ଵାଶ) ௗൗ Δ+1.

theorem 2.    

Assumption 2: For every voter vi , for every issue Ij and for every 
combination of alternatives for issues in the in-neighborhood of Ij in G, 
there is an alternative of Ij that satisfies vi.

Under Assumption 2, cMES is α-proportional,      

for α = ଵ
(ଵା) ௗൗ Δ+1.

Δ=0: α=1/d, strict generalization

of the ½ factor (binary issues) [SG22]
(tight according to Observation 1)

theorem 4.    

Contrasts the polynomial solvability
of (unconditional) MES.

cMES even for binary domains,

either for Δ ∈ ω(1), or different G𝑖’s.

cMES for Δ ∈ O(1) and common G𝑖’s.∈ P

NP-hard
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 assign a budget of m to every voter

 for every yet unfixed issue Ij and for every possible (sub)outcome w 
for some k issues in the closed neighborhood of Ij in G:

 S(w) = voters with >0 budget, satisfied w.r.t. Ij under w.

 p(w) = price s.t. if every voter in S(w) paid p(w) or all the 
money she has left, then voters from S(w) would altogether pay nk.

 if no purchase can be made, fix remaining issues arbitrarily,                
otherwise, select w that minimizes p(w) and reduce voters’ budget 
accordingly. Then, repeat from Step 2

Conditional Proportional Approval Voting (cPAV)

G := undirected variant of Gi ∪
voter i

Consider an election with n voters and m issues, each of domain d,
s.t. voter vi casts dependency graph G𝑖 and conditional approval ballots.

For a set of voters V, rv:= # issues: every vi ∈ V approves ≥ 1 alternative.

ui(w) := satisfaction of voter vi, under outcome w ∈  𝑑𝑚

A rule R is α-proportional, α ∈ [0,1], if  for every set of  voters V, 
there exists a voter vi ∈ V s.t. if  w: winning outcome under R, 

then ui(w) > α rv



− 1, for any instance.

𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥௪ ∈ ௗ    1/𝑘
ui(w)
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Conditional Method of Equal Shares (cMES)

Δ := maximum degree in G


