
[BL16]: framework for expressing dependencies in the context of  AV

[SG22]: proportionality criterion for binary and independent issues
& powerful guarantees for.PAV and MES

…but others may not; mainly due to dependencies between issues!

…some voters may be able to express their opinion using approval ballots…

In an election on some (not necessarily binary) interdependent issues…

I’d like a burger but only if paired with a beer.
I don’t have a strong opinion when it comes to desserts.
I can’t have both crab and chocolate!

Any group of voters that makes up an x-fraction of the electorate, 
should be able to decide on an x-fraction of the issues. 

Wow! Combining [BL16] with [SG22] might 
lead to provable proportionality guarantees
for elections with interdependent issues!

Pizza? Burger? Yummy!
I do like donuts and choco-bars!
Don’t you see that I am too young for alcohol?

For every sufficiently large 
group of voters, 
independent of
cohesiveness requirements.

Any “reasonably fair” rule,

cannot be α-proportional for α > ଵ
ௗ⁄ Δ+1.

observation 1.

For Δ>0, cMES cannot be α-proportional, 

for any α, even under Assumption 1.
observation 3.    

cMES strictly worse than cPAV, in certain 
instances (in contrast to the Δ=0 case)

Assumption 1: Voters that can be satisfied w.r.t. to an issue, cannot be 
satisfied w.r.t. to other ‘nearby’ issues in G.

Δ=0: α=1/d, strict generalization

of the ½ factor (binary issues) [SG22]
(tight according to Observation 1)

Under Assumption 1, cPAV is α-proportional, 

for α = ଵ
(ଵା୼ଶ) ௗൗ Δ+1.

theorem 2.    

Assumption 2: For every voter vi , for every issue Ij and for every 
combination of alternatives for issues in the in-neighborhood of Ij in G, 
there is an alternative of Ij that satisfies vi.

Under Assumption 2, cMES is α-proportional,      

for α = ଵ
(ଵା୼) ௗൗ Δ+1.

Δ=0: α=1/d, strict generalization

of the ½ factor (binary issues) [SG22]
(tight according to Observation 1)

theorem 4.    

Contrasts the polynomial solvability
of (unconditional) MES.

cMES even for binary domains,

either for Δ ∈ ω(1), or different G𝑖’s.

cMES for Δ ∈ O(1) and common G𝑖’s.∈ P

NP-hard
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 assign a budget of m to every voter

 for every yet unfixed issue Ij and for every possible (sub)outcome w 
for some k issues in the closed neighborhood of Ij in G:

 S(w) = voters with >0 budget, satisfied w.r.t. Ij under w.

 p(w) = price s.t. if every voter in S(w) paid p(w) or all the 
money she has left, then voters from S(w) would altogether pay nk.

 if no purchase can be made, fix remaining issues arbitrarily,                
otherwise, select w that minimizes p(w) and reduce voters’ budget 
accordingly. Then, repeat from Step 2

Conditional Proportional Approval Voting (cPAV)

G := undirected variant of Gi ∪
voter i

Consider an election with n voters and m issues, each of domain d,
s.t. voter vi casts dependency graph G𝑖 and conditional approval ballots.

For a set of voters V, rv:= # issues: every vi ∈ V approves ≥ 1 alternative.

ui(w) := satisfaction of voter vi, under outcome w ∈  𝑑𝑚

A rule R is α-proportional, α ∈ [0,1], if  for every set of  voters V, 
there exists a voter vi ∈ V s.t. if  w: winning outcome under R, 

then ui(w) > α rv
௏

௡
− 1, for any instance.
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Conditional Method of Equal Shares (cMES)

Δ := maximum degree in G


