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Abstract. Participatory budgeting allows citizens to decide how to
allocate public funds among projects. Motivated by recent real-world
applications in both municipal and blockchain environments, we pro-
pose and study a framework where voters can donate additional pri-
vate funds to enhance their own satisfaction, using cumulative bal-
lots to express preferences. We introduce the first mechanisms for
this setting and evaluate them primarily based on the satisfaction of
axioms, while also exploring their algorithmic and strategic aspects.

1 Introduction1

Participatory budgeting (PB) empowers citizens to decide how a bud-2

get is allocated among projects benefiting the public good. Partici-3

pants vote on project options, and their preferences are aggregated4

to fund projects while staying within budget. Our work centers on5

scenarios where the budget is financed by both public funds and con-6

tributions from voters wishing to support specific projects.7

PB procedures have gained widespread real-world applicability.8

According to Dias and Júlio [10], over 7000 implementations of PB9

had taken place worldwide by 2018. Whether at the level of a coun-10

try, municipality, neighborhood, or even smaller communities, PB is11

being employed widely to determine budget allocations. To motivate12

our study, we spotlight the elections of 20191 and 20212 in the Polish13

city of Gdynia, where an individual partially financed a cultural per-14

formance with personal funds, while district councils used external15

funds to finance projects like children’s games, workshops, pedes-16

trian infrastructure, and community center equipment. These projects17

were ultimately implemented through a combination of public bud-18

get allocations and contributions from individual donors (private or19

public), enabling funding for projects that would have been impossi-20

ble solely through the available public budget.21

Moving away from traditional PB elections, there has also been22

a notable surge of interest in PB within blockchain governance sys-23

tems. For instance, Project Catalyst pools ADA cryptocurrency trans-24

action fees and allocates funds based on the votes of stakeholders.25

This process repeats a few times per year, having funded over than26

1.6k projects (out of more than 7k proposals), with a total cost ex-27

ceeding $79 million and based on over 2.5 million votes3. Similarly,28

Gitcoin has directed over $60 million to public goods, with 270k29

supporters backing more than 3.5k projects funded by both public30

pools and contributions of individuals4. In these setups, stakeholders31

are able to vote on fund allocation, with their votes being weighted32

by their stake. Our study is directly motivated by these two appli-33

cations (which are affiliated with two prominent cryptocurrencies,34

1 bo.gdynia.pl/wp-content/uploads/2021/05/2019-09-05_Raport-podsumo
wujacy-BO-2019_wersja-zaktualizowana-1-1.pdf

2 bo.gdynia.pl/wp-content/uploads/2021/12/2021-10-06_Raport-podsumo
wujacy-BO-2021_aktualizacja.pdf
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Ethereum and Cardano), and stems from ongoing discussions within 35

blockchain communities on improving PB procedures already im- 36

plemented in practice. These discussions are also relevant to other 37

blockchain-related entities that use forms of PB, such as DAOs [18]. 38

Our paper fits within the line of work on models for PB with dona- 39

tions. The closest works to ours are by Chen et al. [7], who initiated 40

the study of participatory budgeting models where voters can pledge 41

donations to support projects, and by Wang et al. [19], who applied a 42

similar approach but focused on approval ballots. Both propose rules 43

for their models and evaluate them mainly through specific axioms— 44

a method we also adopt. Crucially, while these studies assume voters 45

are motivated by the community’s benefit, we focus on selective vot- 46

ers, whose donations are driven by personal satisfaction. 47

Motivated by the focus on selfish behavior, we also investigate 48

strategic aspects related to donations, which have not been addressed 49

before for such a setting. Aziz and Ganguly [1] examined similar 50

questions but in a setting where the entire budget comes solely from 51

the agents themselves (with no public funds available) and voter util- 52

ity depends on the total money spent on her approved projects. For 53

a similar framework, an efficient rule with strong incentive and fair- 54

ness properties was suggested by Brandl et al. [5]. However, our set- 55

ting fundamentally differs by incorporating a common public bud- 56

get to be distributed. A shift from the charitable funding perspective 57

to one where agents care about where their money goes—similar to 58

our approach but still without a shared budget—is explored by Aziz 59

et al. [2]. They proposed quasi-linear utilities to capture voter sat- 60

isfaction, which depends on both their pledged donations and the 61

selected projects, focusing primarily on algorithmic approaches and 62

presenting strong negative results. In a conceptually similar study to 63

ours, Boehmer et al. [4] examine how to assess the performance of 64

losing projects in PB, including measures like lowering their costs. 65

In our work, we examine a framework similar to the one studied 66

by Chen et al. [7] and Wang et al. [19]. The mechanisms proposed 67

in their study are based on the principle that voters make donations 68

in order to reduce public spending. As we will discuss extensively 69

in Section 3, this principle suggests that the voters’ donations may 70

ultimately be used towards projects they don’t necessarily support, 71

since their preferred projects might already be funded through the 72

public budget or others’ donations. Notably, this approach may not 73

sufficiently motivate participants to contribute, especially those who 74

aren’t driven by altruism or a desire to enhance their public image. 75

In summary, while the approach of Chen et al. [7] is compatible with 76

voters aiming to benefit society, it may not suit selective voters who 77

would like to donate so as to enhance their own satisfaction. 78

We propose and examine a PB scenario with donations where 79

voters use cumulative ballots [8]. Cumulative balloting extends ap- 80

proval and ordinal ballots, allowing participants to allocate a (virtual) 81

coin among the options. This approach aligns with our motivation 82



from Project Catalyst and Gitcoin, as voters there can use their ac-83

tual money to indicate preferences over different projects. Cumula-84

tive participatory budgeting, despite its appeal and practical use in85

cities like Strasbourg, Toulouse, and Gdansk,5 has received limited86

research attention [16]. For more on the use of cumulative ballots in87

PB, see the work of Skowron et al. [17]. Moving away from partic-88

ipatory budgeting, there is a broader literature on cumulative ballots89

in voting environments [3, 6, 9, 11, 13, 14, 15].90

Contributions. First, in Section 2, we introduce and analyze an91

election framework that serves a dual purpose:92

• It naturally captures, as a special case, the scenario of allowing do-93

nations under the classic PB setting. Therefore, our study applies94

to traditional PB processes where organizers permit pledging. In95

this regard, we complement prior work on PB with donations by96

focusing on scenarios where voters are interested in donating ex-97

clusively to their preferred projects.98

• It mirrors voting procedures in prominent real-world blockchain99

systems, where a voter’s stake influences her voting power. This100

aligns with digital governance concepts, making our study directly101

applicable to cryptocurrency and DAO environments, where our102

rules are well-suited. Moreover, our work contributes to under-103

standing strategic considerations of participants in these systems.104

Then, in Section 4, we propose two rules, each with its own strengths105

and weaknesses. To demonstrate their effectiveness, our study be-106

gins by incorporating axioms that (i) ensure the alignment of the107

examined rules with the interests of selective voters, (ii) build on108

previously proposed axioms to show that allowing donations does109

not harm the electorate (under various interpretations), and (iii) align110

with established natural axioms that were not known to be satisfiable111

in the classic PB setting but are made possible within our framework.112

We also establish that only one of the rules runs in polynomial time,113

assuming P ̸=NP. Furthermore, in Section 6, we investigate strategic114

aspects of the proposed rules, specifically focusing on when and how115

voters may act strategically. We show that while various forms of116

manipulation of the outcome under the suggested mechanisms are117

theoretically possible, there are instances in which malicious actions118

are computationally infeasible.119

2 Preliminaries120

In Section 2.1 we outline the specifics of the model we examine,121

which generalizes classic PB. As a result, the election rules we pro-122

pose apply not only to settings that involve monetary components123

(such as those tailored to blockchain governance that motivated our124

work; see Section 1) but, importantly, also to classic PB scenarios125

with donation allowance (such as those studied by Chen et al. [7]126

and Wang et al. [19]). In Section 2.2, we discuss and formally define127

the axioms by which our rules will primarily be evaluated.128

2.1 Formal Model129

The input of our problem consists of a set of m candidate projects130

P = {p1, p2, . . . , pm}, a set of n voters V = {v1, v2, . . . , vn} and131

a limit L on the available public budget. Each project pj ∈ P has132

an implementation cost cj ∈ R>0. Moreover, each voter vi ∈ V133

comes with a total power si ∈ R>0, which represents the stake with134

which the voter enters the system. In blockchain environments (such135

as those associated with Ethereum and Cardano which, as outlined136

earlier, motivate our work) an agent’s stake in the system is the total137

number of currency tokens she holds and determines precisely her138

5 en.wikipedia.org/wiki/List_of_participatory_budgeting_votes

voting power in decision-making processes. As such, the parameter 139

si is inherently linked to a monetary value. Having specified si, a 140

voter vi chooses before the election to split it in any way she prefers 141

into a voting weight wi ∈ R>0 and a contribution parameter di ∈ 142

R≥0 that models the (maximum) amount of money she is willing 143

to donate. Hence, it should hold that wi + di = si. Since di is an 144

upper bound that vi declares for her potential contribution, she may 145

ultimately be asked to contribute less or even 0. 146

Clearly, this setup closely aligns with digital democratic systems, 147

particularly in the context of digital finance. It is important to also 148

note that simply by setting wi = 1 and di = 0, for each voter vi, we 149

uncover the classic PB model as being studied in the computational 150

social choice literature. This shows the direct connection between 151

our model and traditional PB frameworks. Moreover, all our positive 152

results, along with the negative ones that hold for voters of unit (or 153

pairwise equal) weights, directly apply there. 154

The (cumulative) ballot of voter vi is defined as a function ui : 155

P → R≥0 such that
∑

pj∈P ui(pj) = 1. Intuitively, the value of 156

ui(pj) determines the fraction of the weight owned by voter vi that 157

she would like to assign to pj to indicate the level of support to- 158

wards it. At the same time, ui is viewed as specifying the utility of vi 159

for each project. Ultimately, the ballot of vi is scaled by the weight 160

wi that she possesses. Therefore, the support of voter vi towards 161

project pj is given by σi(pj) = ui(pj) · wi. This support will be 162

used to determine which projects will be granted funding. Evidently, 163∑
pj∈P σi(pj) = wi. In contrast to classic cumulative voting, the 164

total support voters can distribute among the projects might differ 165

between voters. In traditional cumulative voting, each voter splits a 166

fixed number of points among the candidates. In our model, the total 167

amount to be distributed (which is wi for voter vi) varies depending 168

on the weight each voter has chosen to participate with, which, in 169

turn, is determined by her stake in the system (and her donation). 170

A voter vi ∈ V supports a project pj ∈ P if ui(pj) > 0 (equiv- 171

alently if σi(pj) > 0). For a project pj we denote by A(pj) the set 172

of voters who support it. Moreover, U(pj) is the total support that 173

the voters in V allocate to project pj , i.e., U(pj) =
∑

i∈[n] σi(pj). 174

We allow the extension of these notations to bundles of projects, by 175

taking project-wise summation. The donations that the voters may 176

be asked to make (and which are guaranteed to not exceed di for 177

each voter vi) are affecting a voter’s acquired utility only implic- 178

itly via the set of accepted projects. If a set T of projects is selected 179

for implementation, the final utility of voter vi is precisely equal to 180∑
pj∈T ui(pj). This is independent of her weight and contribution 181

reflecting the idea that a donation represents a monetary amount the 182

voter is willingly and freely giving away, in analogy to [7, 19]. 183

We denote by P the set of projects P together with their costs 184

c = (cj)j∈[m] and by V the set of voters together with the tuple 185

(w, d, u) which corresponds to the tuple of vectors that are associated 186

with the voters’ preferences, namely w = (wi)i∈[n], d = (di)i∈[n], 187

and u = (ui)i∈[n]. A generalized budgeting scenario, or simply a 188

scenario, is a tuple S = (P,V, L). We refer to scenarios of pairwise 189

equal voting weights as PB scenarios. 190

An aggregation method or election rule is a procedure F that 191

given a generalized budgeting scenario S, selects a bundle of projects 192

B ⊆ P to be implemented, an m-dimensional vector β such that 193

βj ∈ R≥0 indicates how much from the public budget will be spent 194

towards the implementation of project pj and a mapping δ such that 195

δi(pj) ∈ R≥0 indicates the amount of money that vi is being asked 196

to contribute towards pj . A solution F (S) = (B, β, δ) is feasible for 197

a scenario S = (P,V, L) if it simultaneously satisfies the following: 198



• No voter should be asked to spend more than the amount199

of money she declared that she is willing to contribute, i.e.,200 ∑
pj∈B δi(pj) ≤ di,∀vi ∈ V.201

• The public budget spent for all funded projects should not exceed202

the public budget limit, i.e.,
∑

pj∈B βj ≤ L.203

• The total amount of money contributed towards any project pj ∈204

P from both the public budget and the voters’ contributions is205

equal to cj if pj ∈ B, and 0 otherwise.206

For a project pj , we denote by Dj(F (S)) the donors of pj , i.e.,207

the voters of a scenario S selected by the aggregation method F to208

donate to pj . Hence, it includes every vi for which δi(pj) > 0 under209

the solution F (S). For notational convenience, we will sometimes210

use F (S) to denote the bundle B (instead of the tuple (B, β, δ)).211

2.2 Axioms212

We will now present intuitions and formal definitions of the met-213

rics of evaluation of our methods, namely, (i) Donation No-Harm,214

(ii) Preference-Donation Alignment, (iii) Support (Redistribution/In-215

crease) Monotonicity and (iv) Donation-Support Monotonicity.216

▶ The axiom of Donation No-Harm ensures that allowing dona-217

tions will not make any voter less satisfied, regardless of whether the218

voter donated herself or not. This ensures that wealthy voters cannot219

influence the election in a way that decreases the satisfaction of vot-220

ers who rely on public budget spending for projects they like, making221

it a principle of democratic character. It was the principal axiom in222

[7] and [19], where the authors primarily aimed to show that allowing223

donations should not result in greater participant dissatisfaction than224

in a framework without donations. For further motivation we refer to225

the aforementioned works; for us its role is primarily to position our226

work within the existing landscape of PB rules with donations.227

Axiom 1: Donation No-Harm. An aggregation method F is said to228

satisfy Donation No-Harm if in any two scenarios S and S′ where the229

contribution parameter di equals 0 for every voter vi under S, while230

being positive for at least one voter in S′ (with all other parameters231

being equal), it holds that ui(F (S)) ≤ ui(F (S′)), for every vi.232

▶ An axiom that distinguishes our work from previous literature is233

the axiom of Preference-Donation Alignment. At its core, this axiom234

asserts that a voter should not be compelled to contribute to projects235

she does not support. Voters who are conscious of where their funds236

are allocated would not willingly participate in PB elections where237

their contributions might go towards projects they oppose. Therefore,238

since a solution includes the information about which voter donates239

to which projects, our goal is to ensure that each voter’s contribution240

is allocated only to projects she supports.241

Axiom 2: Preference-Donation Alignment. An aggregation method242

F is said to satisfy Preference-Donation Alignment if for every sce-243

nario S and every project pj selected for implementation under244

F (S) it holds Dj(F (S)) ⊆ A(pj); meaning that only voters sup-245

porting a certain project might be asked to pay for it.246

This axiom is particularly relevant in certain scenarios, especially247

those motivated by the applications driving our work. Specifically,248

consider situations where the voting rule may not be easily under-249

stood by all participants, or where participants seek simple, clear as-250

surances of the rule’s quality without the need to verify its underlying251

reasoning themselves. Then, a rule satisfying Preference-Donation252

Alignment can be persuasive to voters, potentially leading to broader253

acceptance. Various closely related axioms—like allowing for dona-254

tions to a project you do not support of, but only if it results in the255

election of projects you favor—can be defined and analyzed. How- 256

ever, these may trade off the simplicity of validation, as voters might 257

still need to understand the mechanism’s specifics to feel confident 258

about how their donation was used. Therefore, while Preference- 259

Donation Alignment is not the only axiom that aligns with the goals 260

of a selective voter, it is a natural and well-suited starting point. 261

▶ The axiom of Support Monotonicity is related to the support that 262

a voter vi assigns to a project. Recall for a project pj , this equals to 263

the ballot ui(pj) multiplied by the voter’s weight wi. It ensures that 264

increasing a voters’ support for a winning project (without increasing 265

the support of any other project) does not diminish its chances of 266

being selected. More precisely, in our context, vi can increase the 267

support σi towards pj in two ways:6
268

• by reallocating ui among projects, such that only pj gains in- 269

creased support while the support to every other project either de- 270

creases or remains unchanged, 271

• by augmenting si, and consequently wi (without altering di) to 272

enhance the overall voting power of vi and then increase the sup- 273

port exclusively towards pj while keeping the rest unchanged, as 274

explained in the example that follows. 275

This distinction follows directly from our model but contrasts with 276

the type of cumulative voting systems for PB discussed by Skowron 277

et al. [17], where only the first option applies. This is because in clas- 278

sic PB systems it holds wi = 1 for every voter vi, and augmentation 279

of si is not feasible. While Support Monotonicity is a clearly desir- 280

able axiom, no rules in the classic PB setting are known to satisfy 281

it; our setting, however, allows for its satisfaction. For better under- 282

standing of how the support for a project can increase without raising 283

the support for others, we present an illustrative example. 284

Example 1. Consider a voter with a voting weight of 2 who submits 285

the following ballot on 4 projects: (1/10, 4/10, 2/10, 3/10). This results 286

in the following support vector: (0.2, 0.8, 0.4, 0.6). Now, let us con- 287

sider increasing the support for the first project to 0.4. Two indica- 288

tive support vectors that are in line with this increment are the fol- 289

lowing: (0.4, 0.7, 0.4, 0.5) and (0.4, 0.8, 0.4, 0.6). The first is made 290

possible by a redistribution of the ballot. Namely, if the voting weight 291

is kept to 2, the voter could submit the ballot (4/20, 7/20, 4/20, 5/20). 292

For the second vector, if the weight increases to 2.2, e.g., through 293

an exogenous increase of her stake, then the voter could submit 294

(4/22, 8/22, 4/22, 6/22). This yields an increase in the support for the 295

first project, leaving the support towards the remaining unchanged. 296

We distinguish between two variants of the axiom based on how 297

a voter vi can increase the support towards a specific project pj : 298

Support-Redistribution Monotonicity corresponds to the case when 299

the support increases due to redistributing her ballot (the first option 300

discussed above), and Support-Increase Monotonicity corresponds 301

to the case when the support rises because of an increase in voting 302

weight (via power) as the voter acquires larger stake. 303

Axiom 3a: Support-Redistribution Monotonicity. Consider two 304

arbitrary scenarios S and S′ such that for exactly one voter vi and a 305

project pℓ it holds ui(pℓ) < u′
i(pℓ), and ui(pk) ≥ u′

i(pk), ∀k ̸= ℓ, 306

and with all other parameters of the scenarios being equal. An 307

aggregation method F is said to satisfy Support-Redistribution 308

Monotonicity if whenever pℓ ∈ F (S) it also holds that pℓ ∈ F (S′). 309

Axiom 3b: Support-Increase Monotonicity. Consider two arbi- 310

trary scenarios S and S′ such that for exactly one voter vi and a 311

project pℓ it holds σi(pℓ) < σ′
i(pℓ), where σi, σ

′
i correspond to the 312

6 A third method—redistributing si to decrease di and increase wi—could
render a winning project unaffordable, thus is unsatisfiable under any rule.



support in S and S′ respectively. Suppose it also holds that wi < w′
i313

and that σi(pk) = σ′
i(pk), ∀k ̸= ℓ (and all other parameters of the314

scenarios remain equal). An aggregation method F is said to satisfy315

Support-Increase Monotonicity if for every such a pair of scenarios316

S and S′, whenever pℓ ∈ F (S) it also holds that pℓ ∈ F (S′), for317

the considered project pℓ.318

▶ We would like the external increase of the potential donation319

of a voter to be unable to result in the election of a worse bundle of320

projects. The axiom of Donation-Support Monotonicity ensures that321

increasing a voter’s contribution (keeping all other parameters, in-322

cluding voting weights, unchanged) can only benefit society: it can-323

not lead to the election of a bundle with lower total support.324

Axiom 4: Donation-Support Monotonicity. An aggregation325

method F is said to satisfy Donation-Support Monotonicity if in any326

two scenarios S and S′ where their only difference comes from the327

contribution parameter of a voter vi, that is di in S and d′i > di in328

S′, it holds that U(F (S′)) ≥ U(F (S)).329

3 Prelude to our Election Rules330

One approach to designing an aggregation method F is to define and331

solve an optimization problem, e.g., as done in [2]. The utilitarian332

objective, which is among the most explored desiderata in the PB lit-333

erature, forms the basis of our work, with egalitarian objectives and334

proportionality guarantees emerging as natural directions for future335

research. We focus on maximizing the voters’ support, which is the336

most natural starting point. This approach aligns with the objectives337

outlined by [7], the rule currently used in Project Catalyst, and one338

of the most commonly applied rules in real-world PB processes. The339

support of each voter is considered as additive and is based on which340

of the projects she supports are selected. Specifically, given a sce-341

nario S and an aggregation method F , we say that a voter vi assigns342

a support of σi(F (S)) =
∑

pj∈B σi(pj) = wi

∑
pj∈B ui(pj) to343

the bundle B that has been selected by applying F in S. We thus344

can set as an optimization objective to maximize
∑

i∈[n] σi(F (S))345

among all feasible solutions.346

Notably, we will show that methods that are based on solving this347

optimization problem cannot satisfy the basic axioms suggested in348

Section 2.2—an absolute drawback for our purposes. Before stat-349

ing this result, we highlight that solving the optimization problem350

could be done according to the following simple reduction to the351

knapsack problem, together with the application of any of the well352

known polynomial-time approximation schemes or parameterized al-353

gorithms for knapsack: create one item for each project, set the knap-354

sack capacity to L +
∑

i∈[n] di and set the utility that an item pj355

would bring to
∑

i∈[n] σi(pj). Then, any (exact or approximate) so-356

lution to the created knapsack instance corresponds to a feasible solu-357

tion for the initial PB instance. The coming result essentially shows358

that the main requirements we put forward in Section 2.2 contra-359

dict with the objective of maximizing the total electorate’s support—360

which should not come as a surprise, given that the axioms are tai-361

lored to selective agents. Its full proof, along with any other omitted362

proofs or parts thereof, is deferred to the Supplementary Material.363

Theorem 1. Any mechanism that returns the bundle that maxi-364

mizes the total voters’ support up to any finite, positive multiplica-365

tive approximation factor fails Donation No-Harm and Preference-366

Donation Alignment. This result holds even for PB scenarios.367

Returning to the earlier reduction to knapsack, we also exhibit a368

reverse direction where knapsack can be straightforwardly reduced369

to our problem, establishing NP-hardness.370

Theorem 2. It is NP-hard to maximize the objective of the vot- 371

ers’ support while satisfying Donation No-Harm and Preference- 372

Donation Alignment. This result holds even for PB scenarios. 373

Moving forward, we discuss two main rules as representatives 374

among families of rules proposed by Chen et al. [7], adapted to our 375

framework. It was established that these methods satisfy Donation 376

No-Harm. However, they are not suitable for settings with selective 377

agents, as will become apparent shortly. 378

The first rule, to be called the Sequential rule, employs a subrou- 379

tine where, iteratively, a project p is added to the winning bundle C′
380

towards maximizing the total voters’ support for C′ ∪ {p}, ensuring 381

feasibility at each step. The main component of the algorithm pro- 382

ceeds by initially setting C′ = ∅ and applying this subroutine to the 383

instance without considering contributions. If, by the end of the pro- 384

cess, the voters express willingness to contribute to any project in the 385

set of the selected ones, then the global budget is increased by the 386

analogous donations. The subroutine repeats with this new budget. 387

This continues until no further projects can be added. 388

The second rule, referred to as the Pareto rule, begins by select- 389

ing the optimal bundle in terms of electorate’s support that is feasible 390

without any donations, say B∗. It then creates a collection of bundles 391

T that includes B∗ as well as all bundles that are feasible when do- 392

nations are considered, provided they Pareto dominate B∗—a bundle 393

is said to Pareto dominate B∗ if it receives at least the same support 394

as B∗ by all voters and strictly more by at least one voter. The rule 395

outputs the bundle of maximum support among those in T . 396

The following result highlights a drawback of the two discussed 397

rules, when applied in scenarios with selective voters, and it essen- 398

tially motivates our study. However, we emphasize that such rules 399

were not specifically designed to accommodate selective voters, so 400

this observation should not be seen as particularly surprising. 401

Observation 3. Both the Sequential and the Pareto rule fail 402

Preference-Donation Alignment, even for PB scenarios. 403

Variations of these two rules have also been considered by Chen 404

et al. [7] and Wang et al. [19]. For all, results analogous to Obser- 405

vation 3 can be established, indicating that the existing rules do not 406

immediately align with the aspirations of selective voters. 407

4 Our Election Rules 408

In this section we present two rules designed to be applicable in sce- 409

narios where voters are selective. Their evaluation with respect to the 410

axioms from Section 2.2 appears in Section 5 and their strategic as- 411

pects are being explored in Section 6. Both rules could fit either for 412

traditional PB applications or within blockchain-based systems. We 413

highlight that cumulative ballots align with the platforms that moti- 414

vated our study, though importantly, our rules also apply directly to 415

formats like approval or cardinal ballots. We begin by presenting a 416

detailed description of the methods we propose. Their pseudocodes 417

are given as Algorithms 1 and 2 below. 418

In order to satisfy the fact that any voter who gets satisfaction only 419

because of the public budget will not get worse because of the ap- 420

pearance of donations from others (Donation No-Harm), both of our 421

rules start by considering a solution that is affordable only by the 422

public budget. After that, we only ask voters to contribute towards 423

projects that they would like to support and that have not been se- 424

lected for implementation by the public budget; essentially this idea 425

serves the purpose of taking donations from a voter only if this will 426

result in strictly improving her utility (in line with the Preference- 427

Donation Alignment axiom). 428



B∗ ← bundle maximizing total voters’ support under L.
T ← {B∗}.
for each possible bundle B ⊆ P do

Compute the utility improvement against B∗,∀ voter.
if the utility improves for at least one voter without

decreasing for the rest and B is affordable by the public
budget plus contributions from strictly benefiting voters
then Add B to the collection T .

Return argmax{U(B) : B ∈ T}.
Algorithm 1: DA-Pareto Mechanism

Sort P in non-increasing order of support-to-cost ratio.
Initialize the remaining public budget R← L.
Initialize the set of selected projects T ← ∅.
for each project pj in sorted order do

if cj ≤ R then
Allocate public funds to pj .
T ← T ∪ {pj}.
Update remaining public budget R← R− cj .

for each project pj /∈ T in sorted order do
if cj ≤ R+remaining contributions of supporters of pj
then

Allocate public funds and supporting voters’
contributions to cover cj and add pj to T .

Update R and voters’ available contributions.
Return set of selected projects T .

Algorithm 2: DA-Greedy Mechanism

Under the Pareto rule proposed by Chen et al. (2022), voters might429

end up paying more than in the initial solution where only the pub-430

lic budget was being considered (i.e., more than donating 0 for B∗),431

even if their utility remains unchanged, to improve another voter’s432

utility. As observed in Section 3, this method does not align with433

Preference-Donation Alignment. We propose a variant, Donation-434

Alignment Pareto (DA-Pareto), addressing this concern. DA-Pareto435

starts by selecting the optimal, in terms of voters’ support, bundle436

B∗, which can be purchased within the available public budget. It437

then identifies a collection T of potentially winning bundles that in-438

cludes B∗ as well as all bundles that are feasible when incorporating439

the voters’ donations, and dominate B∗—a bundle is said to domi-440

nate B∗ if it receives strictly more support by at least one voter with-441

out receiving less by any, while only those voters who benefit pay442

more than they would for B∗ (i.e., a non-zero amount). These condi-443

tions can be easily checked via a linear system. Among the bundles444

in T , the rule returns the one maximizing the electorate’s support.445

Our second suggestion, Donation-Alignment Greedy (DA-446

Greedy), operates in two phases. In the first, it allocates only the447

public funds to projects based on their support-to-cost ratio, sorted448

in non-increasing order (recall that the support of pj equals U(pj) =449 ∑
i∈[n] σi(pj)). Projects are included in the solution iteratively until450

no further project can be funded by the remaining public budget. In451

the second phase, the mechanism evaluates each remaining project in452

descending order of their support-to-cost ratio. For each project pj ,453

it determines whether its cost can be covered by the remaining pub-454

lic budget augmented by the contributions from voters who support455

pj . If affordable, the mechanism spends as much of the remaining456

public budget as possible on the considered project and covers the457

remaining cost through donations from supporting voters, aiming at458

equal contribution among them (or utilizing all available funds from459

certain voters). This process is repeated, taking into account the re-460

maining contributions, for each subsequent project, until all projects461

have been considered. Ties are broken arbitrarily.462

Table 1: Axiomatic properties of the proposed election rules.
Election Rules

Axioms DA-Pareto DA-Greedy
Donation No-Harm Ë Ë

Preference-Donation Alignment Ë Ë
Support-Increase Monotonicity Ë Ë
Donation-Support Monotonicity Ë é

Support-Redistribution Monotonicity é é
Polynomially Computable (assuming P̸=NP) é Ë

5 Axiomatic Results 463

We now discuss the properties of our rules. Our results are summa- 464

rized in Table 1. DA-Pareto satisfies all but one of the axioms but 465

does not have polynomial runtime. DA-Greedy guarantees polyno- 466

mial computability but sacrifices the satisfaction of an extra axiom. 467

Theorem 4. DA-Pareto satisfies Donation No-Harm, Preference- 468

Donation Alignment, Support-Increase Monotonicity, Donation-Sup- 469

port Monotonicity, but fails Support-Redistribution Monotonicity. 470

Proof. We split the proof in parts, each one referring to the satisfia- 471

bility of a different axiom. The parts corresponding to Donation No- 472

Harm, Support-Increase Monotonicity and Donation-Support Mono- 473

tonicity, are deferred to the Supplementary Material. 474

Preference-Donation Alignment: This is satisfied by the definition 475

of the rule. All the possible bundles in T considered by the Pareto 476

rule as potential solutions do not require voters to fund projects they 477

do not support. This follows since the bundles in T are either B∗, 478

which would be funded by public funds, or any bundle B that dom- 479

inates B∗, where each pj ∈ B would be funded by (perhaps some 480

public funds and) voters who support it. 481

Support-Redistribution Monotonicity: Consider the instance de- 482

picted in the following table, where the entry corresponding to 483

voter vi and project j depicts σi(pj). Specifically, L = 2 and 484

w1 = 3.1, u1 = (1/3.1, 0.6/3.1, 1.5/3.1) and w2 = 0.2 + ϵ, u2 = 485

(0, 0.2/0.2+ϵ, ϵ/0.2+ϵ). Moreover s1 = 3.1 and s2 = 0.2 + 2ϵ.

L = 2 Project 1 Project 2 Project 3
parameters c1 = 2 c2 = 2 c3 = 2 + ε

v1 d1 = 0 1 0.6 1.5
v2 d2 = ε 0 0.2 ε

486It holds that B∗ consists of the set that only includes Project 1, as it 487

is the one maximizing total voters’ support, between the two projects 488

that are affordable from the global budget. However, the bundle that 489

consists of Project 3 is affordable by the public budget increased by 490

the donation of v2 and it results to strictly greater satisfaction to v2 491

and no worse for v1 compared to the previously considered bundle, 492

so it will be winning under DA-Pareto. Say then that v1 redistributes 493

her ballot, now declaring the ballot (0.5/3.1, 0.6/3.1, 2/3.1), which re- 494

sults to the following support vector: (0.5, 0.6, 2). Notice that this 495

change increased the support towards the winning project, so, ac- 496

cording to Support-Redistribution Monotonicity, the third project 497

should remain in the winning bundle. However, after this change, 498

B∗ contains the second project, and the solution that only contains 499

the third one doesn’t dominate B∗ anymore since v2 prefers Project 500

2 to Project 3. 501

On the negative side, there are scenarios where DA-Pareto would 502

need to solve an NP-hard problem in order to return a solution. 503

Namely, the first step of the rule, i.e., the computation of B∗, es- 504

sentially involves solving a knapsack instance.7 505

7 Our reduction does not rule out pseudopolynomial time algorithms for the
first step. But even if such an algorithm exists for computing B∗, it would
not be immediately useful since the DA-Pareto mechanism (in its naive
implementation) involves an exponential for-loop as a second step.



Theorem 5. DA-Pareto fails to be polynomially computable, assum-506

ing P̸=NP, even for PB scenarios. DA-Greedy is polynomial.507

Our result on the axiomatic properties of the greedy rule follows.508

Theorem 6. DA-Greedy satisfies Donation No-Harm, Preference-509

Donation Alignment, Support-Increase Monotonicity, but fails Sup-510

port-Redistribution Monotonicity, Donation-Support Monotonicity.511

Proof. We split the proof in parts, each one referring to the satis-512

fiability of a different axiom, and missing parts are deferred to the513

Supplementary Material.514

Preference-Donation Alignment: Say that pj is a project that be-515

longs to the winning bundle under DA-Greedy, to be denoted by F .516

This is either funded exclusively by the global budget or voters will517

contribute as well. In the first case, the axiom holds trivially. Regard-518

ing the second, it simply suffices to observe that in the first round,519

no voter is being asked to donate, whereas in the second, only voters520

supporting a project may contribute, so Dj(F (S)) ⊆ Aj(S).521

Donation-Support Monotonicity: Consider the instance depicted522

in the following table, where the entry corresponding to voter vi and523

project j depicts σi(pj). The voting weights of the two voters are,524

respectively w1 = 3− ϵ and w2 = 1, therefore voters’ ballots could525

be expressed as u1(pj) = σ1(pj)/3−ϵ and u2(pj) = σ2(pj).

L = 0 Project 1 Project 2 Project 3
parameters c1 = 6 c2 = 4 c3 = 4

v1 d1 = 5 2− ϵ 0.5 0.5
v2 d2 = 3 0 0.5 0.5

526 Note that L = 0. The first project has a better ratio of total support-527

to-cost, so it will be considered first. However, it isn’t affordable as528

its supporter can contribute at most 5 dollars, i.e. 1 less than the cost529

of the project. The rest of the projects are all affordable since all two530

voters support them and together they have a total budget of 8 which531

equals the cost of those two projects. Hence, the solution under DA-532

Greedy in the given instance receives a total support from the elec-533

torate that is equal to 2 by selecting projects 2 and 3. Suppose now534

that v1 increases her potential donation d1 from 5 to 6. Project 1 will535

now be affordable, since the first voter, a supporter of this project, has536

a total budget equal to the cost of the project. After selecting the first537

project, the budget of v1 is exhausted, and given that the budget of v2538

isn’t sufficient for buying any project, the solution after the increase539

of the budget of v1 now receives a total support of 2− ϵ.540

In summary, among the rules we suggest, there is one (DA-Pareto)541

that satisfies most of the axioms set forth in Section 2.2. However,542

it cannot ensure polynomial running time. Conversely, the rule543

that guarantees polynomial computability (DA-Greedy) is slightly544

weaker in terms of axiom satisfaction, but still performs undoubtedly545

better compared to what has been known in the literature for scenar-546

ios involving selective agents, as it also exhibits sufficiently strong547

axiomatic properties. These findings align perfectly with Theorem 2,548

which shows that no polynomial-time computable rule can satisfy549

the desired axioms while also providing sufficient guarantees with550

respect to electorate’s support. One of our proposed rules sacrifices551

computational efficiency to ensure certain support guarantees, while552

the other prioritizes efficiency at the expense of support.553

554

6 Strategic Aspects555

In this section we focus on strategic aspects of the proposed setting.556

To begin with, we will hereinafter assume that voters are able to mis-557

report their preferences. Recall that the input given to an aggregation558

Table 2: Strategic aspects of the proposed election rules. The negative
statements regarding polynomial computability hold under P̸=NP.

DA-Pareto DA-Greedy
manipulable by donation misreport Ë Ë

manipulable by ballot misreport Ë Ë
manipulation by donation in poly-time é Ë

manipulation by ballot in poly-time é é
election control in poly-time é é

mechanism by voter vi corresponds to the triplet (wi, di, ui). For no- 559

tational simplicity, since si is known to the mechanism and wi can 560

be inferred from di, we treat the voter’s input as the tuple (ui, di), in 561

words, her ballot vector (which is then scaled by wi to form her sup- 562

port) as well as her contribution parameter. Suppose now that voter 563

vi, although having some true preferences (ui, di), can choose to 564

submit (bi, qi) instead, where it should obviously hold that the de- 565

clared weight of vi equals si − qi. The tuple (bi, qi) might or might 566

not be equal to (ui, di). In the former case, we say that we are in a 567

truthful scenario. In the remainder we mainly focus on the following: 568

When is it rational and computationally feasible for a voter 569

to misreport her true preferences towards maximizing her 570

utility from the resulting outcome? 571

We begin by illustrating that the answer is not trivial in our setting. 572

Observation 7. There exist instances where voters are better off do- 573

nating than having large voting power, while in others, they are better 574

off maximizing their voting power, under any reasonable mechanism. 575

Underreporting the contribution, i.e., expressing qi < di, directly 576

increases the voting weight of voter vi since si is fixed. As a result, 577

our findings on donation misreporting do not apply to settings where 578

all voters have equal weight—such as the classic PB model, where 579

monetary contributions do not influence voting power. In contrast, 580

our results on ballot misreporting hold for that model as well. 581

Observation 7 motivates the study of strategic aspects. A first neg- 582

ative result for a large family of rules, including those we proposed 583

in Section 4, follows. It shows that not only does acting truthfully fail 584

to result in a Nash Equilibrium for the voters, but also that the Price 585

of Anarchy, defined as the ratio between the total voters’ utility in 586

the optimal (centralized, non-strategic) solution and in the worst (in 587

terms of total voters’ utility) equilibrium is unbounded. 588

Theorem 8. The truthful scenario is not always a Nash Equilibrium, 589

for any deterministic aggregation mechanism that decides for fund- 590

ing based on the voters’ support on the projects. Moreover, the Price 591

of Anarchy for such mechanisms tends to infinity as n grows, even 592

for PB scenarios. 593

In response, we now focus on questions around manipulation and 594

control of elections. First and foremost, we investigate whether a 595

voter can misreport her preferences (either through the declared bal- 596

lot or donation) to increase her utility under the aggregation methods 597

we proposed. We also examine whether such manipulation can al- 598

ways be done in polynomial time, since, even if a manipulation is the- 599

oretically possible, what matters is whether such actions can be effi- 600

ciently determined. Moreover, we explore whether a controller, aim- 601

ing to enforce a specific outcome by influencing the set of voters, can 602

achieve this in polynomial time. Table 2 summarizes our findings. 603

The main concepts of this section are formally defined as follows: 604

Definition 1. We say that a rule F is manipulable by misreporting 605

donations if there is a scenario in which a voter vi can gain more 606

utility from the outcome of F by claiming willingness to contribute 607



qi < di (while keeping ui unchanged).8 We say that a rule F is608

manipulable by misreporting ballots if there is a scenario in which609

a voter vi can gain more utility from the outcome of F by casting a610

cumulative ballot bi ̸= ui (while keeping di unchanged).611

The following result shows that both rules are manipulable, and612

this manipulation can occur through both actions.613

Theorem 9. DA-Pareto and DA-Greedy are manipulable by misre-614

porting donations. DA-Pareto and DA-Greedy are also manipulable615

by misreporting ballots, even for PB scenarios.616

Proof. We will prove the statements for DA-Pareto and the proof for617

DA-Greedy is deferred to the Supplementary Material.618

Towards proving that the rule is manipulable by misreporting do-619

nations, consider the instance that appears below, where an entry of620

the table corresponding to voter vi and project j depicts ui(pj).621

L = 0 Project 1 Project 2
parameters c1 = 3 c2 = 5

v1 s1 = 6 0.75 0.25
v2 s2 = 1 0.1 0.9

First, say that d1 = 5 and d2 = 0, so both voters vote with622

a weight of one in the truthful scenario. Then, the only feasible623

bundle affordable by the public budget is the empty one and both624

bundles {p1} and {p2} dominate it while being affordable by the625

budget of v1. Additionally, {p1, p2} isn’t feasible. Then {p2} will626

be selected as the winning bundle because U(p2) > U(p1). Con-627

sider now the case where v1 submits a non truthful contribution pa-628

rameter q1 = 3 < d1. In turn, v1 votes with a weight of 3 and629

σ1 = (2.25, 0.75). Then, only {p1} is a feasible solution, which,630

again, dominates the empty one. This solution gives to v1 more util-631

ity than when reporting d1 simply because u1 = (0.75, 0.25). So,632

the decrease of her donation resulted in a better for her outcome.633

We now move to proving that DA-Pareto is also manipulable by634

misreporting ballots, even for PB scenarios. Consider the following635

instance, where s1 = 4.1, s2 = 3.5, w1 = w2 = 3.1 and u1 =636

(1/3.1, 0, 1/3.1, 1.1/3.1) and u2 = (0, 1.1/3.1, 2/3.1, 0). Say that the en-637

try of the table corresponding to voter vi and project j depicts σi(pj).638

L = 1 Project 1 Project 2 Project 3 Project 4
parameters c1 = 1 c2 = 1 c3 = 1.4 c4 = 10

v1 d1 = 1 1 0 1 1.1
v2 d2 = 0.4 0 1.1 2 0

In this scenario, the best bundle affordable by the public budget639

is {p2}. With donations, feasible solutions that dominate {p2} are640

{p3}, {p1, p2}, {p1, p3}, {p2, p3}, with {p2, p3} having the highest641

support and winning under DA-Pareto. The utility that v1 gets is642

then equal to 1/3.1. If v1 instead submits b1 = (2/3.1, 0, 0, 1.1/3.1),643

the best bundle under the public budget is {p1}. Feasible solutions644

that dominate it are {p1, p2}, {p1, p3}, with {p1, p3} having the645

maximum total support, increasing the satisfaction of v1 to 2/3.1.646

On the upside, we will show that there are instances where it is647

computationally infeasible for a voter to determine whether misre-648

porting her utilities could lead DA-Pareto or DA-Greedy to return649

a bundle that is more favorable to her than the outcome based on650

her truthful preferences, unless P=NP. We call U-MANIP the relevant651

8 Another direction could involve overstating donations. Though, this does
not align well with our interpretation of di, which we treat as a firm upper
bound on what a voter is willing to give away.

computational problem as follows: Given a specific voter (manipu- 652

lator), can she misreport her ballot to achieve a utility of at least t, 653

for a given value t, from the outcome of the examined rule? For DA- 654

Pareto, where computing the outcome is already NP-hard, studying 655

this manipulation problem is only relevant in instances where win- 656

ning bundles can be computed efficiently. 657

Theorem 10. Under DA-Greedy, it is NP-hard to solve U-MANIP. 658

The same holds for DA-Pareto, and this is even in cases where the 659

winning bundle under the rule can be computed in polynomial time, 660

specifically when all projects have identical costs. Both results hold 661

even for PB scenarios. 662

Unlike misreporting ballots, manipulation through donations is 663

computationally easier. Given that there are instances (of non-zero 664

contributions) where the outcome of DA-Pareto is already computa- 665

tionally intractable (Theorem 5) we focus exclusively on DA-Greedy. 666

Theorem 11. A voter can determine the optimal contribution to 667

maximize her utility under the DA-Greedy mechanism in polynomial 668

time, provided that the rest of the parameters remain fixed. 669

Strategic Election Control. We conclude with a brief note on 670

control problems—a prevalent research area within computational 671

social choice [12] that is relevant to the questions of the section. 672

These problems involve a controller attempting to enforce a certain 673

outcome by affecting the election components, most commonly by 674

adding or deleting voters or candidates. Here, we focus on altering 675

the set of voters. The definition of a variant involving addition or 676

deletion of candidates is not straightforward in this context as the 677

precise set of candidates must be pre-specified for voters to submit 678

their cumulative ballots. Even in the single-winner setting and with 679

no donations, both problems of controlling the outcome by adding or 680

deleting voters are NP-hard for the Plurality voting rule [15]. Given 681

that DA-Greedy and DA-Pareto would produce outcomes identical to 682

Plurality in such scenarios, the relevant computational problems are 683

also NP-hard under the examined rules. 684

7 Outlook 685

Our work complements the literature on PB with donations by fo- 686

cusing on selective voters—those interested in donating solely to en- 687

hance their own satisfaction. We introduced rules tailored to this set- 688

ting and demonstrated their effectiveness by proving that they sat- 689

isfy solid axiomatic guarantees. Motivated by the premise that vot- 690

ers are driven by self-interest rather than charitable motives, we also 691

explored the strategic aspects of the PB framework, focusing on ax- 692

iomatic and algorithmic questions related to manipulability, and also 693

presented findings on game-theoretic issues and strategic control. 694

Our model is intentionally centered around frameworks already 695

used in practice. Devising, formulating, and analyzing models un- 696

der different voting formats or utilities is a valuable direction for fu- 697

ture work. Our mechanisms can be adapted to settings with approval 698

limits or ballots allowing approval, disapproval, and abstention. Our 699

negative results also extend to these cases. Searching for a mech- 700

anism satisfying all of the proposed axioms, or for a polynomial- 701

time mechanism that provides similar guarantees to DA-Pareto, are 702

the obvious open questions. Questions around bribery [12] also form 703

an area for future investigation. Proportionality considerations to PB 704

with donations are undoubtedly important. Finally, another critical 705

direction is the experimental evaluation of our rules using data either 706

from traditional PB settings or from the blockchain domain. 707
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Participatory Budgeting with Donations:
The Case of Selective Voters

Technical Appendix

A Omitted Proofs from Section 3
Proof of Theorem 1.

Consider the instance of 2 voters and 2 projects presented in the fol-
lowing table, where the entry corresponding to voter vi and project
j depicts σi(pj). In this instance it holds that u1 = (1, 0) and
u2 = (0, 1). We pick a value of α that is any finite number greater
or equal to 1.

L = 1 Project 1 Project 2
parameters c1 = 1 c2 = 2

v1 w1 = 1− ε 1− ε 0
v2 w2 = α 0 α

We focus first on the scenario where both voters contribute 0, i.e.,
si = wi, for i = 1, 2. Then, the only feasible solution is {p1}. Now,
consider the scenario where d2 = 1, i.e. s2 = α+1; leaving all other
parameters unchanged. Then {p2} is feasible as well, while {p1, p2}
is again not feasible. The support towards {p1} by the electorate is
1−ε, while {p2} has a total support of α. The latter solution not only
maximizes total support for any chosen α ≥ 1 but is also returned by
any approximation algorithm with a guarantee of α against the max-
imal total support. Choosing {p1}, the only feasible option in the
initial scenario, gives voter v1 a utility of 1, whereas {p2}, the solu-
tion in the second scenario where v2 donates, provides a utility of 0
to v1. This reduction in satisfaction of a voter due to donations proves
that any α-approximate with respect to the total support mechanism
fails to satisfy Donation No-Harm.

Similarly, if we consider the same instance as the original one but
this time with s1 = 2−ϵ and d1 = 1, once again, the optimal and any
α-approximate solution would be {p2}. With a similar reasoning as
before, we can prove that v1 essentially funds a project not supported
by her. Thus, Preference-Donation Alignment is not satisfied either.

Proof of Theorem 2.

The statement holds due to a simple reduction from (the decision
version of) knapsack. Consider a knapsack instance, with a given ca-
pacity, and where each item comes with a cost and a utility parameter.
Let t be the target value, so that the decision question is to determine
if there exists a feasible solution under a cost constraint with a total
value of at least t. The construction uses a single voter, say v1 with
no donation, i.e. d1 = 0. We set the public budget L to match the
knapsack’s capacity. We also create one project pi for each item in
the knapsack instance and set u1(pi) and ci to match the utility and
cost respectively of the corresponding item in the knapsack instance.
Say that the voter has w1 = 1, therefore the support towards projects
equals voter’s utility. Finally, we also use the same target value t for
the objective of our problem. Notice that the existence of only a sin-
gle voter implies that the optimal solution of the examined problem
maximizes the voter’s utility, within the public budget.

To prove the forward direction of the reduction, it suffices to ob-
serve that if there is a way to select fitting items that meet the utility
target t of the decision version of knapsack, choosing the correspond-
ing projects will be feasible, given the public budget of our prob-
lem. Since the voter proposes a zero donation, she, trivially, does not

contribute to projects she does not support, so Preference-Donation
Alignment holds. Donation No-Harm is also always true with one
voter, as increasing the donation cannot harm others, hence, the two
considered axioms are satisfied. This establishes the forward direc-
tion; the reverse is identical.

Proof of Observation 3.

First, consider an instance with a single voter, namely v1, with public
budget L = 1, and two projects p1 and p2, as depicted in the follow-
ing table, where the entry corresponding to v1 and project j depicts
u1(pj) = σ1(pj).

L = 1 Project 1 Project 2
parameters c1 = 1 c2 = 1

v1 w1 = 1, d1 = 1 1 0

In this instance, the Sequential method begins by selecting and
funding the optimal set of projects that can be afforded within the
public budget, initially choosing p1 since its cost does not exceed
L and σ1(p1) > σ1(p2). Next, the rule incorporates the donation
from voter v1, since σ1(p1) > 0. Increasing the available budget by
1 allows p2 to be funded within the updated budget constraint. As a
result, the final selected set is {p1, p2}. In this scenario, p1 is funded
directly from the public budget, while p2 got funded because of the
donation by v1, even though v1 did not support p2.

To examine how the Pareto rule operates in a scenario involving
selective agents, let’s consider an instance with two voters, namely
v1 and v2, and the projects p1, p2 and p3, as depicted in the follow-
ing table, where the entry corresponding to vi and project j depicts
ui(pj) = σi(pj).

L = 1 Project 1 Project 2 Project 3
parameters c1 = 1 c2 = 2 c3 = 3

v1 w1 = 1, d1 = 1 0 0 1
v2 w2 = 1, d2 = 0 0 1 0

Initially, the Pareto rule identifies {p1} as the only affordable bun-
dle that can be funded within the public budget. It then constructs a
set of feasible solutions that includes {p1} and all feasible bundles
that dominate it. It holds that {p1, p2} exceeds the budget limit when
incorporating donations from voters, and the same applies to any
bundle including p3. Therefore the only feasible bundle that we could
consider is {p2}. Indeed, {p2} becomes feasible if v1 contributes
and, moreover, {p2} dominates {p1} because it gets more support
from v2 and no less from v1 compared to {p1}. Consequently, Pareto
has to select among {p1} and {p2}, and chooses {p2}, since it re-
ceives the maximum support. Therefore, v1 has contributed towards
the election of a project she does not support.

B Omitted Proofs from Section 5
Remaining Part of the Proof of Theorem 4.

In the main part of this work we showed that DA-Pareto satis-
fies Preference-Donation Alignment but fails Support-Redistribution
Monotonicity. To complete the proof of the theorem, it remains
to prove that DA-Pareto satisfies additionally Donation No-Harm,
Support-Increase Monotonicity and Donation-Support Monotonicity.

Donation No-Harm: Say that B∗ is the optimal bundle with re-
spect to the voters’ support, when no donations are permitted. The
rule outputs a bundle other than B∗ only if it receives more support
by some voters, under the condition that it receives no less by all



the rest. So, if B is the winning bundle under DA-Pareto it holds
that σi(B) ≥ σi(B

∗), for every voter vi or in words that B can-
not be worse than B∗ for any voter in terms of support. But then,
σi(B)
wi
≥ σi(B

∗)
wi

, or equivalently ui(B) ≥ ui(B
∗).

Support-Increase Monotonicity: Say that the winning bundle B
under DA-Pareto includes a project p and a voter increases her sup-
port towards p while leaving unaltered the support towards the rest of
the projects. The reason why B won in the original instance was that
it maximizes support among the affordable bundles. Since nothing
changed with respect to contributions or public budget, the bundle B
remains feasible and no more bundles than before are feasible. As a
result, B will again be selected as the winning bundle, as U(B) only
increased after the change in the support of p, so it is still the best in
terms of total voters’ support, among the feasible bundles.

Donation-Support Monotonicity: Say that the winning bundle is
B and a voter increases her donation. The reason why B won was
because it maximizes support among the affordable bundles. The in-
crease of the donation perhaps has as a result the existence of multi-
ple more feasible solutions. In any case, B will still remain a feasible
option. The winning bundle would be either B (so the axiom is be-
ing trivially satisfied), or a bundle that is superior to B in terms of
voters’ support since DA-Pareto selects the affordable bundle that
maximizes support.

Proof of Theorem 5.

The construction used in the proof of Theorem 2 also applies here
directly. The construction uses a single voter of 0 donation, implying
that the second part of DA-Pareto (the for-loop) doesn’t apply, and
the relation to knapsack pertains to the first step of the rule: the com-
putation of optimal in terms of total voters’ support bundle which is
affordable under L. The correctness of the reduction holds for the
exact same reasons as the one for Theorem 2.

Remaining Part of the Proof of Theorem 6.

In the main part of this work we showed that DA-Greedy sat-
isfies Preference-Donation Alignment but fails Donation-Support
Monotonicity. To complete the proof of the theorem, it remains
to prove that DA-Greedy satisfies additionally Donation No-Harm
and Support-Increase Monotonicity but fails Support-Redistribution
Monotonicity.

Donation No-Harm: Suppose that no donations exist in a PB sce-
nario S. Then the outcome will coincide with the selection that is
done during the first round of the method, because the second round
only applies if voters donate. Now, consider a PB scenario S′ that its
only difference to S is that some voters are willing to donate. Then,
the outcome of the first round of DA-Greedy on S′ coincides with the
outcome on S. The second round only adds more projects and will
not delete any project selected in the first round. So, the outcome on
S′ is a superset of the outcome on S, which proves the satisfiability
of Donation No-Harm.

Support-Increase Monotonicity: Say that a voter increases the sup-
port towards a project p that belongs to the winning bundle under
DA-Greedy, and nothing else changes. Regarding the implications
of this change, we observe that the project p has the same cost but
receives more support from the voters. So, now, it has an increased
support-to-cost ratio, and as a result it is being considered at most as
late as in the execution of the algorithm in the original instance. Until
considering p the run of the algorithm remains exactly the same, so,

when considering p, selecting it is a feasible choice as well. There-
fore, p will remain in the winning bundle after the increase of the
support of a voter towards it.

Support-Redistribution Monotonicity: Consider a scenario of 3
projects, namely p1, p2, p3, where c1 = c2 = 1, c3 = 2 and L = 2.
There is also a single voter v1 of zero contribution who has w1 = 3
and expresses a support of (1, ε, 2− ε), equivalently, her ballot vec-
tor is (1/3, ε/3, 2−ε/3). The project that maximizes the support-to-cost
ratio is p1, and after that, the only feasible option will be to also in-
clude p2. Therefore, the winning bundle is {p1, p2}. Suppose that
the voter decides to redistribute her ballot in a way that increases the
support towards the winning project p2, this time expressing the fol-
lowing support vector: (0.5, 0.5 + ϵ, 2 − ϵ), equivalently, her ballot
vector now is (0.5/3, 0.5+ϵ/3, 2−ϵ/3). The project that maximizes the
support-to-cost ratio is p3 so it will be selected first. After that, there
is no remaining budget to fund others and the winning bundle will be
{p3}. The increase of the support towards p2 prohibited its election.

C Omitted Proofs from Section 6
Proof of Observation 7.

Consider the following scenario S of two projects and two voters,
where an entry of the table corresponding to voter vi and project j
depicts ui(pj) = bi(pj).

Project 1 Project 2
parameters c1 c2

v1 s1 = 1− ε 1 0
v2 s2 = 1− ε 0 1

We fix L = c1 = c2 = 1 and q2 = 0, towards, first, showing
that the optimal strategy for v1 is to keep her entire budget as voting
power and donate nothing, casting (b1, q1) = ((1, 0), 0) and having
w1 = 1 − ϵ. Then, U(pj) = 1 − ϵ, for every project j. Hence,
any reasonable method F that would break ties lexicographically,
would only fund p1, resulting to u1(F (S)) = 1. On the other hand,
if v1 decides to contribute any strictly positive value then F (S) =
{p2}. This is because the bundle {p1, p2} remains infeasible, while
the support towards {p2} will still be 1−ε, in contrast to the support
towards {p1} which will be reduced due to the fact that w1 can now
only be strictly less than 1 − ε. Therefore, if v1 contributes then
u1(F (S)) = 0.

Now consider the same instance but this time fixing L = c1 =
c2 = 1 − 2ε and q1 = 0. It is now true that under any F that
breaks ties lexicographically, the optimal strategy for v2 corresponds
to spending (almost) her entire budget s2 as a donation. For that, one
needs to observe that only if v2 submits q2 = 1 − 2ε can result in
u2(F (S)) > 0, because F will fund p1 first from the global budget,
so p2 can only be funded if v2 donates c2.

Proof of Theorem 8.

By reexamining the proof of Observation 7, specifically the first in-
stance used there, we can easily see that the truthful scenario is not
always a Nash Equilibrium as the true preferences of voter 1 could
contain d1 > 0 however she would prefer to declare q1 = 0 in order
to elect p1.

Regarding the Price of Anarchy, consider an instance S of n voters
and two projects p1, p2 of cost c(p1) = c(p2) = n and say that L =
0. Moreover say that for each voter vi it holds that ui = (1, 0) and
si = 1 + ε. Observe that no voter can afford to buy a project alone,



so (bi, qi) = ((1, 0), 0), for each voter vi, is a Nash Equilibrium.
However, then, any method F would result to B = ∅, and, then
ui(F (S)) = 0 for each voter vi. On the other hand. the strategy
(bi, qi) = ((1, 0), 1) will result to the purchase of p1 by voters’
funds under any reasonable mechanism. Then the bundle B = {p1}
will be the winning one and ui(B) = 1, ∀i ∈ [n].

Remaining Part of the Proof of Theorem 9.

We begin by proving that, as DA-Pareto, DA-Greedy can also be
manipulated by misreporting donations. Consider the instance that
appears in the following table, where the entry corresponding to vi
and project j depicts σi(pj), when v1 expresses her true preferences
which involve d1 = 0.8, w1 = 2 and u1 = (1/2, 0, 1/2), and for v2 it
holds (u2, d2) = (b2, q2).

L = 1 Project 1 Project 2 Project 3
parameters c1 = 1 c2 = 1 c3 = 1.4

v1 s1 = 2.8 1 0 1
v2 w2 = 3.1, d2 = 1 0 1.1 2

We will show that by misrepresenting her donation, v1 can cause
both of her supported projects to be elected, which contrasts with
the outcome under her true preferences, where DA-Greedy would
elect only one. For the first round of DA-Greedy, considering only the
public budget, the only affordable projects are project 1 and project
2, and among them, the method will select the second as it receives
more support at the same cost as project 1. In the second round, the
rule sorts the remaining projects in increasing order of support-to-
cost ratio. Then, project 3 will be firstly considered as its ratio equals
3/1.4; the ratio of project 1 equals 1. Therefore projects 2 and 3 will
be bought. Since d1 + d2 + L < c1 + c2 + c3, no further purchases
can be made. As a result, it holds that experiences a satisfaction of
1/2 from the outcome.

Consider now the case where v1 acts truthfully with respect to the
utility (i.e. b1 = u1) but casts q1 = 0.4, i.e., declares a willingness
to donate half of d1. This results to a voting power of w1 = 2.4.
Hence, the support vector of v1 now becomes (1.2, 0, 1.2). Then, the
first round of DA-Greedy will select project 1 since it receives more
total support than project 2, and project 3 is not affordable by the
public budget. Comparing the support-to-cost ratios for the remain-
ing projects, namely p2 and p3, once again it holds that project 3 will
be selected so the winning bundle will now be {p1, p3}. As a result,
the change in what voter 1 decided to donate resulted in a satisfaction
of 1 from the outcome.

Now, we turn our attention to proving that DA-Greedy is also ma-
nipulable by misreporting ballots. We focus once again in the in-
stance created for proving that DA-Pareto is manipulable by misre-
porting ballots. We repeat the specifics of the instance below for ease
of reference. Let s1 = 4.1, s2 = 3.5, w1 = w2 = 3.1 and u1 =
(1/3.1, 0, 1/3.1, 1.1/3.1) and u2 = (0, 1.1/3.1, 2/3.1, 0). Say that the en-
try of the table corresponding to voter vi and project j depicts σi(pj).

L = 1 Project 1 Project 2 Project 3 Project 4
parameters c1 = 1 c2 = 1 c3 = 1.4 c4 = 10

v1 d1 = 1 1 0 1 1.1
v2 d2 = 0.4 0 1.1 2 0

We begin by supposing that v1 declares her true preferences, and
then, DA-Greedy selects {p2} to be funded by the public budget. As
a result, under this method, v1 can receive a utility of at most 1/3.1
since either p1 or p3 can be then bought, but not both as their total
cost exceeds the remaining budget.

Say now that v1 changes her declared ballot to b1 =
(2/3.1, 0, 0, 1.1/3.1). In this case, project 1 will be selected in the first
round of the method as it has the same cost as project 2 (and these
are the only affordable options) but receives more support by the
electorate. Then, computing the support-to-cost ratio of project 2 we
have that it is less than that of project 3, making project 3 a winning
project as well. Hence, the utility of v1 now equals 2/3.1. Therefore,
once again, we observe that the change at what v1 declared resulted
to an increase of her satisfaction.

Proof of Theorem 10.

The following problem, which we will call Π′, has been proven to
be NP-hard by Meir et al. [15]: We are given a set P ′ of candidates,
a set V ′ of voters who have already cast cumulative votes by dis-
tributing b′ points each, among candidates of P ′, a special voter v′

(the manipulator), a specified number of winners k′, a utility vector
u′ that indicates the true utility of v′ regarding candidates of P ′, and
a parameter t′; we are asked whether v′ can cast a cumulative vote
summing up to b′ such that in the resulting election her utility (as
specified by the vector u′) obtained from the k′ candidates maximiz-
ing the support of voters in V ′ ∪ {v′} is at least t′.

Given an instance I ′ of Π′ we create an instance I of U-MANIP as
follows: Say that P = P ′, all candidate projects in P are of unit cost,
V = V ′ ∪ {v}, where v is the manipulator in I and will correspond
to the manipulator v′ of I ′. For a voter vi ∈ V \ {v}, her ballot ui is

given by x′
i(pj)

b′ , where x′
i is the cumulative vote of the correspond-

ing voter from P ′. We note that for every voter vi ∈ V \ {v} it holds

that
∑

pj∈P ui(pj) =
∑

pj∈P ′
x′
i(pj)

b′ = 1. Let si = b′,∀i ∈ V.

Moreover say that L = k′ and di = 0, for every voter i ∈ V .
The utility of the manipulator in I towards any project pj ∈ P

(i.e., her ballot vector) is given by u′(pj)∑
pz∈P u′(pz)

. Again, notice that∑
pj∈P

u′(pj)∑
pz∈P u′(pz)

= 1. All voters in V have a voting weight of

b′, so the support of any voter in V \ {v} is given by their ballot
scaled by b′. Finally say that the optimization parameter of U-MANIP

is set to t = t′∑
pj∈P u′(pj)

.

Since all projects in I are of unit cost, and also since L = k′

and di = 0 for every i ∈ V , it holds that exactly the k′ projects
of maximum total support will be selected in the winning bundle
both under DA-Pareto and under DA-Greedy. Towards proving the
forward direction of the reduction, say that there is a way for v′ in
I ′ to cast a cumulative vote summing up to b′ among the projects of
P ′ in a way that the k′ projects of maximum total score will give a
utility of at least t′ to her. Say that this results in a vector χ such that∑

pj∈P ′ χ(pj) = b′. Let the manipulator in I cast a ballot for each

project pj according to χ(pj)

b′ . Taking into account that her voting
power equals b′, the support vector of the manipulator is identical
to χ. Moreover, the support vector of each other voter vi equals x′

i.
Therefore, the outcomes of DA-Pareto and DA-Greedy in I will be
exactly the set B of the k′ projects that produce the maximum utility
to the voters from I ′. Then, the utility that the manipulator receives
is equal to

∑
pj∈B

u′(pj)∑
pz∈P u′(pz)

≥ t′∑
pz∈P u′(pz)

= t.

Therefore, the constructed instance has also an affirmative answer to
the U-MANIP problem. The reverse direction is identical.



Proof of Theorem 11.

Suppose that in a given scenario n − 1 voters have already submit-
ted their cumulative ballots and contribution parameters and let v be
the remaining voter. We can assume that there is a fixed ordering of
the projects with respect to the preferences of v (based on her utility
vector), regardless of how much the donation of v is, and that her
cumulative ballot will be in line with this ordering. The cost of each
project as well as the support of each voter other than v towards each
project also remain fixed regardless of the donation of v. This leads
to a consistent ranking of projects with respect to support-to-cost ra-
tio, that is independent of v’s donation. More precisely, if a project pi
is ranked before a project pj when v submits a claimed contribution
of q′ and the support of v towards pi is greater than the one towards
pj (the other case is identical), then pi will still be ranked before pj
after v changes her donation to q′′. This is because the support of
voters other than v towards these projects remains the same, as well
as their costs, and the new support of v towards pi (after changing
her donation to q′′) is again greater than the support of v towards pj .
As a result, DA-Greedy examines all projects in a predetermined or-
der that remains unaltered regardless of the donation of v, and funds
some projects based on the remaining global budget first, and then,
on supporters’ remaining money. Suppose first that v donates q = 0.
Then, we can run DA-Greedy and compute her utility with respect to
the outcome. Let’s call R1 this execution of DA-Greedy. Note that
for any possible donation of v, the outcome of the first round of DA-
Greedy, which corresponds to the selection of the projects that will be
funded by the global budget, remains the same. We call B∗ the set of
these projects. We now focus on projects not in B∗ that are supported
by v, and not bought by others in R1, denoted as B̂. Increasing the
donation of v can only lead to funding projects in B̂.

For each project in B̂, we can compute, in polynomial time, the
shortfall between its cost and intended allocation in R1. This short-
fall equals the difference between the project’s cost and the amount
of money that its supporters have left (possibly increased by some re-
maining global budget) at the time the project is being considered in
R1. Choose the project requiring the least additional donation from
v in order to get funded and ask v to contribute that amount, say q′.
It holds that for any contribution value between q and q′ no change
will happen in the utility that v will experience from the outcome
of DA-Greedy. Run the procedure again under the assumption that v
contributes q′, call this run R2, and compute the total utility that v
gains from the outcome of DA-Greedy in R2.

In a similar manner to before, we can compute the minimal do-
nation q′′ that v can do in order to see one more of the projects she
supports being selected and repeat the procedure for q′′. Actually,
we can repeat the process until all projects in B̂ are bought or v’s
newly computed donation exceeds her stake by calling Ri the i−th
execution of the mechanism. Voter v should select to submit a con-
tribution value equal to the donation q(j) that was used in the run of
the DA-Greedy mechanism Rj , for the value of j ≤ m that achieves
to maximize her utility among the executions of the mechanism that
have been checked.


