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Abstract
Liquid democracy is a voting scheme in which indi-
viduals either vote directly or delegate their voting
power to others. A common critique in the aca-
demic literature is that delegation cycles can oc-
cur, seemingly resulting in unused voting power.
Yet, practitioners argue that delegation cycles are
not only unproblematic but are even intentionally
formed by participants. This divergent view stems
from differing interpretations of delegations: in
practice, delegations serve as backup options that
can be overridden at any time by direct voting,
whereas the literature often treats voting and del-
egating as mutually exclusive. Bringing theory
closer to reality, we introduce a probabilistic model
that captures long-term strategic delegation behav-
ior. Within this model, we study the existence and
structure of Nash equilibria, revealing that delega-
tion cycles naturally emerge. We further examine
the quality of equilibria via a Price-of-Anarchy ap-
proach. To complement our theoretical findings,
we perform computational experiments using best-
response dynamics.

1 Introduction
Liquid democracy is a flexible voting system that allows vot-
ers to either vote directly or delegate their vote to another par-
ticipant, who can vote on their behalf. Delegations are tran-
sitive, meaning delegated votes can be delegated further, cre-
ating delegation chains. The participant at the end of a chain
casts a ballot on behalf of everyone in the chain. This system
combines the advantages of direct democracy and represen-
tative democracy by giving voters the freedom to choose their
mode of participation individually [Blum and Zuber, 2016].

Over the past decade, academic interest in liquid democ-
racy has grown rapidly (see Section 1.1). However, practi-
tioners have noted that some parts of this literature overlook
or misinterpret key aspects of liquid democracy as it is im-
plemented in practice [Behrens, 2015; Behrens et al., 2014,
Sec. 2.4.1]. While liquid democracy is often applied over an
extended period of time to an ongoing stream of decisions,
much of the literature models it as an one-time event. Specif-
ically, this divergence has led to differing views on the is-

sue of delegation cycles. Namely, in the literature delegat-
ing and voting are frequently modeled as mutually exclusive
options. Consequently, a delegation cycle (i.e., a situation
where a voter i delegates to j, and this delegation eventually
returns to i through a chain of delegations) is seen as prob-
lematic because none of the voters in the cycle eventually
casts a vote, leaving their collective voting weight unused.
In contrast, Behrens et al. [2022] propose an alternative inter-
pretation: voters specify default delegations that remain fixed
across multiple decisions. These default delegations serve as
a fallback whenever voters do not cast a vote; if a voter casts a
vote, their default delegation is ignored. Under this interpre-
tation, delegation cycles are not only unproblematic but may
even be intentionally created by voters who trust each other.
For instance, a group of like-minded participants may create
a delegation cycle so that all their voting weight is used as
long as at least one of them is casting a vote.

To bring theory closer to practice, we develop the default
delegation model capturing long-term delegation decisions by
voters. We are interested in scenarios where an electorate
must make multiple decisions, referring to each such decision
as an election. In our setting, voters declare default delega-
tions, to be used when they do not cast a ballot. Participation
in each election is probabilistic: voters have different proba-
bilities for taking part in elections and there is no a priori dis-
tinction between delegating and casting voters. As a result, a
voter’s utility from an election depends not only on the dele-
gation decisions of others but also on the voters casting a vote
for the considered election. In this setting, we assume that
participants live in a (one-dimensional) metric space and pre-
fer to be represented by those who are close to them. More-
over, voters can have different tolerance levels towards being
represented by far-away voters. Our utility model enables us
to analyze the behavior of voters who strategically aim to op-
timize their expected utility over a long-term horizon.

We provide theoretical evidence supporting the practical
observation that delegation cycles naturally arise among ra-
tional users of liquid democracy platforms. More concretely,
we study the (i) existence, (ii) structure and (iii) quality of
(pure) Nash equilibria in the default delegation model and
demonstrate that, under mild assumptions, delegation cycles
are necessarily being formed. All our theoretical findings are
complemented by computational experiments, providing ad-
ditional insights into best-response dynamics in our model.



1.1 Related Work
Recent research in (computational) social choice and beyond
has shown a growing interest in liquid democracy, with vari-
ous models and methodologies emerging rather than converg-
ing on a standardized framework. Below, we discuss stud-
ies that are related to ours in terms of modeling choices and
methodological approach.
Central Role of Cyclic Delegations. A key branch of the
literature addresses delegation cycles, typically viewing them
as undesirable and proposing solutions to eliminate them
[Brill et al., 2022; Christoff and Grossi, 2017; Colley et al.,
2022; Dey et al., 2021; Jain et al., 2022; Köppe et al., 2022;
Kotsialou and Riley, 2020; Markakis and Papasotiropoulos,
2025; Tyrovolas et al., 2024; Utke and Schmidt-Kraepelin,
2023]. All these works distinguish between delegating and
casting voters and focus on axiomatic and algorithmic as-
pects, rather than strategic behavior. Notably, the work by
Markakis and Papasotiropoulos [2025], like ours, was di-
rectly motivated by the study of Behrens et al. [2022]. Their
work focuses on a temporal framework as well, but differs
in the modeling choice: it examines delegation updates over
discrete time-steps, whereas in our case, the temporal aspect
is captured through the probabilistic model for ballot casting.
One-Dimensional Spatial Models. In order to model vot-
ers’ preferences over their potential representatives, we con-
sider voters as positioned in an one-dimensional metric space.
This is a common modeling scenario (often representing po-
litical alignment) which has been explored in settings of del-
egative voting by Anshelevich et al. [2021], Cohensius et al.
[2017], Escoffier et al. [2020], Green-Armytage [2015] and
Yamakawa et al. [2007], though without the temporal aspect.
Strategic Delegation Behavior. A prominent line of re-
search on liquid democracy frameworks focuses on the game-
theoretic perspective. Indicatively, we refer to the works of
Armstrong and Larson [2021], Bersetche [2022], Bloember-
gen et al. [2019], Escoffier et al. [2019], Noel et al. [2021]
and Zhang and Grossi [2021] who share the main exam-
ined solution concept (i.e., Nash equilibrium) with our study.
These assume that voters can always opt to vote directly, en-
suring each non-casting voter is ultimately represented by an-
other, whereas we model representation through a probability
distribution over different ultimate delegates and ballot loss.

1.2 Our Contribution
A central contribution of our work is conceptual: we present
the novel default delegation model for liquid democracy that
captures and explains the long-term strategic delegation be-
havior of participants of real-life liquid democracy systems.
We analyze this model from a game-theoretic perspective and
address the following considerations.
Existence of Nash Equilibria. Our extensive computa-
tional experiments suggest that Nash equilibria are prevalent
across a broad range of synthetic instances. On the negative
side, we identify instances where a Nash equilibrium does not
exist, even in simple settings with only three voters or where
all voters have identical tolerance levels. On the positive side,
we establish the existence of Nash equilibria in several spe-
cial cases or slight variants of our original model.

Structure of Nash Equilibria. We prove that, under mild
assumptions, strategic voters form delegation cycles in equi-
librium. More precisely, every non-trivial component of an
equilibrium delegation graph contains exactly one cycle. Fur-
thermore, we show that relaxing any of the assumptions in-
validates the result and we provide additional insights into
the structure of delegations at equilibria. In more general set-
tings, computational experiments reveal that the vast major-
ity of components contain cycles. The width of these cycles
appear to be proportional to voters’ tolerance levels and in-
versely proportional to the number of voters.

Quality of Nash Equilibria. We evaluate the quality of
Nash equilibria primarily in terms of their social welfare, i.e.,
the total utility they achieve, and we measure the Price of
Anarchy (PoA), i.e., the ratio between the best possible so-
cial welfare and the social welfare of equilibria. While we
prove that the PoA is generally unbounded, we also provide
strong positive results: for non-degenerate instances, the dif-
ference between the two quantities is bounded, and as voting
probabilities increase or tolerance levels decrease, the welfare
in equilibrium approaches the optimal social welfare. More-
over, notably, our experiments show that Nash equilibria of-
ten achieve to obtain a close-to-optimal social welfare.

Omitted proofs and further details can be found in the
Technical Appendix.

2 The Default Delegation Model
We consider a finite set V of voters using a liquid democracy
platform. Each voter i ∈ V nominates a default delegate. We
assume that voters’ default delegations remain fixed across a
given series of elections. For each of those elections, each
voter i ∈ V may either cast a vote or abstain. If a voter
does not cast a vote, their voting power is passed to their de-
fault delegate, continuing transitively until a casting voter is
reached. This casting voter is referred to as voter i’s ultimate
delegate. If none of the voters in the chain of default dele-
gations casts a vote, then voter i has no ultimate delegate for
that election, and their voting power is lost. While default
delegates remain fixed across elections, the set of casting vot-
ers changes from election to election, resulting in different
ultimate delegates for non-casting voters.

Default Delegations. For each voter i ∈ V , we let d(i) ∈
V denote their default delegate. Self-nominations (d(i) = i)
are allowed and interpreted as abstentions from nominating
a default delegate. Each delegation profile d = (d(i))i∈V

naturally corresponds to a (directed) delegation graph Gd =
(V, {(i, d(i)) | i ∈ V }) whose edges correspond to default
delegations. Thus, each vertex of Gd has out-degree exactly 1
and self-nominations correspond to self-loops.

Ultimate Delegates. Consider an individual election and let
X ⊆ V denote the set of voters casting a vote in this election.
Then, the default delegations of voters in X are irrelevant.
Therefore, to resolve delegations for this election — that is, to
determine which voters in V \ X are ultimately represented
by which casting voters in X under d— it suffices to consider
the subgraph of Gd that only contains delegations from non-
casting voters. For each non-casting voter i ∈ V \ X , we



can identify their ultimate delegate by following the (unique)
directed walk in this graph starting from i. If this walk leads
to a casting voter j ∈ X , then j is the ultimate delegate of
i. If the walk leads to a cycle or a self-loop,1 then i has no
ultimate delegate. Each casting voter has a voting weight in
the examined election equal to the number of voters they are
the ultimate delegate for, themselves included.

Probabilistic Participation. A crucial ingredient of our
model is the assumption that voters do not know which other
voters are casting a vote in a given election. Rather, when
choosing a default delegate, they need to consider different
possibilities of where their vote “ends up.” To capture this
uncertainty, we use a simple probabilistic model. Namely,
we assume that each voter i ∈ V casts a vote in each election
with a fixed probability pi ∈ [0, 1], which remains constant
across all elections. Moreover, whether or not a voter casts
a vote is determined independently for each election. We let
p = (pi)i∈V denote the profile of vote-casting probabilities.
A voter i with pi ∈ {0, 1} is called deterministic.

This model reflects the idea that voters are not aware of
(or engaged in) every single election. The probability pi can
be interpreted as the fraction of elections in which voter i
typically casts a vote. This probabilistic approach provides
a simple way to model varying voting behavior without re-
quiring complex assumptions about individual awareness or
decision-making for each election.

For a given delegation profile d and a voter i ∈ V , we
can now derive the probability distribution over i’s ultimate
delegates. Let π(d, i) denote the longest simple path in
Gd starting at i. Formally, π(d, i) is the unique sequence
(y0, y1, · · · , yk) of distinct voters starting with y0 = i and
satisfying the following:

(i) d(yℓ−1) = yℓ and yℓ /∈ {y0, y1, y2, · · · , yℓ−1} for ℓ ⩽ k,

(ii) d(yk) ∈ {y0, y1, y2, · · · , yk}.

The ultimate delegate of voter i is the first casting voter along
the path π(d, i). Therefore, for ℓ ∈ {0, 1, · · · , k}, the proba-
bility that voter yℓ is the ultimate delegate of i is given by

pyℓ
·
ℓ−1∏
r=0

(1− pyr
). (1)

The ultimate delegate of i is undefined with probability∏k
r=0(1− pyr

), which we interpret as i’s ballot being lost.

Distance and Tolerance. To evaluate and compare differ-
ent delegation options, we assume that each voter’s utility
from a single election depends on the alignment between
their preferences and those of their ultimate delegate. Align-
ment is defined in terms of the Euclidean distance between
voters along an one-dimensional ideological space, repre-
sented as the interval [0, 1]. Each voter i ∈ V is associated
with a fixed position xi ∈ [0, 1], reflecting their ideologi-
cal stance, which remains constant across all elections. Let
x = (xi)i∈V denote the positions. The utility of a voter
decreases as the distance between their position and that of
their ultimate delegate increases, capturing the notion that

1We use the term “cycle” exclusively for closed paths involving
at least two vertices, excluding self-loops from this definition.

voters prefer representatives who are ideologically closer to
themselves. Furthermore, each voter i ∈ V is associated
with a tolerance parameter τi ⩾ 0. This parameter repre-
sents the maximum distance the voter is willing to accept
between their own position and that of their ultimate dele-
gate, while still deriving positive utility from delegating. Let
dist(i, j) = |xi − xj | denote the distance between voters i
and j, and let τ = (τi)i∈V . The acceptability set of voter i is
given by: Ai(x, τ ) = {j ∈ V | dist(i, j) ⩽ τi}.
Instances. Given the voters’ positions x, their voting prob-
abilities p, and their tolerance parameters τ , we define an
instance as the triple I = ⟨x,p, τ ⟩. To avoid ties, we will al-
ways assume that our instances are in general position, mean-
ing that no two voters share the same position and that no
voter j ̸= i is at distance exactly τi from voter i.2 Further, we
will sometimes assume that j belongs to Ai(x, τ ) if and only
if i belongs to Aj(x, τ ). If this holds for all pairs of voters,
then we say that the instance satisfies mutual acceptance. A
special case of mutual acceptance instances are those where
all voters have identical tolerance parameters (τi = τj for all
i, j ∈ V ); we will refer to such instances as symmetric. We
often assume that voters are ordered by increasing xi, and
then specify p and τ as vectors corresponding to that order.
Voter Utility. The utility of a voter from a single election is
defined as their tolerance minus the distance to their ultimate
delegate, or 0 if the ultimate delegate is undefined. In other
words, voters rank potential ultimate delegates by proximity
and prefer abstaining over delegating to a voter outside their
acceptability set. Formally, given positions x, tolerances τ ,
and the set X of casting voters, the utility of voter i under
a delegation profile d is τi − dist(i, j), where j ∈ X is the
ultimate delegate of i, or 0 if no ultimate delegate is defined.

Due to probabilistic participation, the ultimate delegate of
voter i is a random variable (distributed according to (1)). To
account for this randomness, we define the expected utility of
voter i as the weighted sum of their utilities over all possible
ultimate delegates. Specifically, the expected utility of voter i
(henceforth, simply utility) can be expressed as

ui(d, I) =
k∑

ℓ=0

(τi − dist(i, yℓ)) · pyℓ
·
ℓ−1∏
r=0

(1− pyr
), (2)

where (y0, y1, · · · , yk) are the voters along the path π(d, i).
When the instance I is clear from the context, we will refer
to ui(d, I) simply as ui(d). The social welfare of a delega-
tion profile d in an instance I is the sum over voter utilities,
SW (d, I) =

∑
i∈V ui(d, I). The profile maximizing the so-

cial welfare among all possible delegation profiles for I will
be called optimal and denoted by dSW (I), or simply dSW .

We conclude this section with an example.
Example 1. Consider an instance with six voters, V =
{A,B,C,D,E, F}. The positions x and voting probabili-
ties p are visualized in the following figure, where we also
illustrate the delegation graph Gd of the delegation profile
d with d(A) = B, d(B) = C, d(C) = A, d(D) = E,
d(E) = D, d(F ) = F .

2If an instance is not in general position, then slightly perturbing
some entries of x will bring the instance into general position.



0.2 0.3 0.4 0.5 0.6 0.8

A B C D E Fd :

x :

p : 0.8 0.3 0.2 0.3 0.1 0.3

Suppose that for a given election, the set of casting voters
is {A,F}. This situation happens with probability pA · pF ·
Πi∈{B,C,D,E}(1−pi) = 0.8 ·0.3 ·0.7 ·0.8 ·0.7 ·0.9 ≈ 0.085.
In this scenario, A has a voting weight of 3 and F has a
voting weight of 1. The voting weights of D and E cannot be
allocated to a casting voter and are lost.

In order to compute voters’ acceptability sets and utility,
let us assume that τi = 0.25 for all i ∈ V . Then, e.g.,
AD(x, τ ) = {B,C,D,E}. Furthermore, we can calculate
the expected utility of voters w.r.t. delegation profile d. For
instance, uA(d) = 0.8·0.25+0.2·0.3·(0.25−0.1)+0.2·0.7·
0.2 · (0.25− 0.2) ≈ 0.21 and uF (d) = 0.3 · 0.25 = 0.075.

3 Existence of Nash Equilibria
We start our game-theoretic analysis of the default delegation
model. Using the utility model described by Expression (2),
we define the concept of best responses and profitable devia-
tions in a standard way. We denote by d−i the profile d not
including the choice of i, and by (d−i, d

′(i)) the delegation
profile in which all voters except i delegate according to d,
whereas i delegates to d′(i).
Definition 1. For a voter i ∈ V, d′(i) is a best response to
delegation profile d if and only if it maximizes ui(d−i, ·).
We say that d′(i) is a profitable deviation from d for voter i
if ui(d−i, d

′(i)) > ui(d).
Building upon the concept of profitable deviations, we are

ready to define (pure) Nash equilbria.
Definition 2. A delegation profile d is a Nash equilibrium
(NE) if no voter i ∈ V has a profitable deviation from d.
We illustrate Nash equilibria in the default delegation model
with the help of our initial example, which highlights that
equilibria are not necessarily unique and that different equi-
libria may have different graph-theoretic structures.
Example 1 Continued. The delegation profile d from Exam-
ple 1 is a Nash equilibrium, since each voter chooses a best
response. This can be verified with the help of Table 1.

A B C D E F

A 0.200 0.210 0.202 0.195 0.194 0.179
B 0.159 0.075 0.163 0.083 0.081 0.023
C 0.089 0.086 0.050 0.089 0.086 0.014
D 0.052 0.086 0.075 0.075 0.085 0.064
E -0.084 -0.043 -0.055 0.066 0.025 0.039
F -0.134 -0.102 -0.111 0.067 0.069 0.075

Table 1: Expected utility for deviations from profile d in Example 1.
The entry in cell (i, j) corresponds to ui(d−i, j) and the entries
corresponding to best responses are indicated in bold.

Interestingly, d is not the only NE of this instance. It can be
verified that d′, the delegation graph Gd′ of which appears in
the following figure, is also a NE.

A B C D E Fd′:

We note that Gd′ has two (weakly) connected components,
in contrast to Gd. Moreover, d and d′ differ in terms of social
welfare, casting voters’ weights and expected number of votes
that are lost (a metric we are referring to in Appendix B.4).
Experimental Analysis. To get a first impression on
whether Nash equilibria exist in general, we carried out com-
putational experiments using a best-response dynamic. That
is, the process starts with some delegation profile (e.g., a ran-
dom one) and then iterates over the voters, updating their del-
egation whenever there is a profitable deviation. The process
stops when no voter can make a profitable deviation, which
results in a Nash equilibrium by definition. Interestingly, run-
ning our best-response dynamic on 20,000 different (mutual
acceptance) instances for various values of n, x, p, and τ ,
and starting profiles, has always led to the identification of
a Nash equilibrium. We provide details about best-response
dynamics and these experiments in Appendix C.1.
Non-Existence of Equilibria. In contrast to what we ob-
served in our computational experiments sketched above,
Nash equilibria do not always exist in the default delegation
model. To showcase this, we provide the following example
and later strengthen the result in Theorem 2.
Example 2. Consider an instance I defined as follows: V =
{A,B,C,D}, x = (0, 0.05, 0.1, 0.5), τ = (1, 0, 0.2, 0),
p = (0.4, 0.05, 0.2, 0.4), and suppose that it admits a NE d.
Let us start by observing that in d, the voters B and D must
choose to delegate to themselves as τB = τD = 0, i.e., del-
egating to any other voter lowers their utility compared to
self-delegation. Hence, since τC = 0.2, dist(C,D) = 0.4
and d(D) = D, we conclude that C does not delegate to D
in d. Moreover, we observe that in d, both A and C do not
delegate to themselves. This is because τA − dist(A,B) > 0,
τC − dist(C,B) > 0, and d(B) = B, implying that choosing
to delegate to B provides better utility than self-delegation.
In the following table we show the utilities of A and C in all
profiles that were not ruled out by the previous reasoning.

d(C) = A

d(C) = B

d(A) = B d(A) = C d(A) = D

.075

.428

.044

.428

.072

.508

.044

.53

.033

.52

.044

.52

Specifically, the table depicts the normal form representation
of the game induced by I, where rows correspond to the pos-
sible choices of voter C and columns to the choices of voter
A, for specifying d. It is routine to check that none of the
possible delegation profiles d is a Nash equilibrium.
Given this impossibility result, we focus on specific sub-
classes of the default delegation model or slight variations
towards obtaining positive results on the existence of NE.



3.1 Special Cases
We discuss three special cases of the default delegation model
and draw a complete picture on whether these restrictions
suffice to guarantee the existence of equilibria. More pre-
cisely, we study (i) deterministic instances, i.e., those in-
stances where pi ∈ {0, 1} for all i ∈ V , (ii) mutual ac-
ceptance instances, i.e., those instances where j ∈ Ai(x, τ )
if and only if i ∈ Aj(x, τ ) for all i, j ∈ V , and (iii) in-
stances with few voters, i.e., those instances where |V | is up-
per bounded by a constant. On the positive side, such restric-
tions can lead to guaranteeing the existence of NE.

Theorem 1. For each of the following restrictions, any in-
stance I is guaranteed to contain a Nash equilibrium:

(i) I is deterministic,

(ii) I has two voters, i.e., |V | = 2, or

(iii) I satisfies mutual acceptance and |V | ⩽ 3.

In the case of deterministic instances, the profile where ev-
ery non-casting voter (i.e., with pi = 0) delegates to their
closest casting voter (i.e., with pj = 1) in their acceptability
set is a Nash equilibrium. For two-voter instances, we show
that the expected utility of a voter is not influenced by the del-
egation choice of the other. For mutual acceptance instances
with three voters, we propose a greedy algorithm for find-
ing an equilibrium. While these restrictions are strong, we
complement Theorem 1 by showing that relaxing them even
slightly invalidates the result.

Theorem 2. For the following restrictions, there exists an
instance I for which no Nash equilibrium exists:

(i) I has three voters, i.e., |V | = 3, or

(ii) I satisfies mutual acceptance and |V | = 4.

We remark that statement (ii) of Theorem 2 holds even for
symmetric instances, i.e., with voters of equal tolerance.

3.2 Variants of the Model
In response to the negative results of Example 2 and Theo-
rem 2, we discuss two variants of our model that guarantee
the existence of Nash equilibria.

Leftists and Rightists. In the default delegation model, a
voter accepts representation by voters positioned both to their
left or right, only dependent on their distance. We introduce
a variant of the model, where each voter selects a direction
and accepts only representation by voters in that direction,
in which case, the utility is still determined by the distance,
in line with Expression (2). Depending on the direction se-
lected, we refer to a voter as leftist or rightist.

In Example 2, voter A can (trivially) be considered a right-
ist. Furthermore, voter C can be considered a leftist as AC(I)
only includes voters to their left. Thus, we observe that if a
profile has both leftists and rightists, a NE is not guaranteed
to exist. In contrast, we show in Theorem 3 that any instance
with only leftists or only rightists contains a NE.

For the sake of concreteness, we define an example for a
utility function that induces leftist voters. Namely, replace
(τi − dist(i, yℓ)) in Expression (2) (intuitively, the utility of
voter i for being represented by yℓ in a specific election) by:

{
τi − dist(i, yℓ), if yℓ is left of i, i.e., xyℓ

< xi,

−dist(i, yℓ), if yℓ is right of i, i.e., xyℓ
> xi.

We remark that Theorem 3 holds for any utility model that
assigns negative utility to representation on the one side and
utility equal to τi − dist(i, yℓ) to the other.
Theorem 3. Every instance in which the voters are all leftists
or all rightists admits a Nash equilibrium.

The proof of Theorem 3 constructs a Nash equilibrium
by starting from a profile where everyone delegates to them-
selves, and then finding best responses for all voters sequen-
tially in order of their position.
Proxy Voting. We now move to another variant of the
model where Nash equilibria are guaranteed to exist. In the
proxy voting setting, we restrict the number of voters on any
path π(d, i) that leads to a casting voter. Specifically, no such
path is allowed to contain more than two voters (including
voter i themselves). Hence, effectively we restrict the strategy
space of the voters based on the actions of the other voters.
This restriction is reminiscent3 of the well-established frame-
work of proxy voting [Cohensius et al., 2017; Anshelevich
et al., 2021], a variant of liquid democracy in which voters
are divided into two groups — delegating voters and casting
voters — with ballots being delegated only from the former to
the latter, forming delegation chains on at most 2 voters.

In Example 2, delegation chains of three voters arose. By
forbidding such chains, we effectively eliminate the issue that
leads to the non-existence of equilibria. That is, in the proxy
voting setting we guarantee the existence of Nash equilibria,
leading to a dichotomy in the maximum allowable delegation
chain length to ensure existence of NE.
Theorem 4. In the proxy voting setting, every instance ad-
mits a Nash equilibrium.

4 Structure of Nash Equilibria
We now focus on the structural properties of equilibria. In
particular, we are interested in the existence of cycles in del-
egation graphs corresponding to Nash equilibria. Our first
result establishes that delegation cycles are the rule, rather
than the exception. This aims to provide a game-theoretical
justification for the behavior of voters observed in practice.
Theorem 5. Consider a mutual acceptance instance I with-
out deterministic voters. Then, for every Nash Equilibrium d
of I, it holds that every weakly connected component of Gd

with more than a single vertex has exactly one cycle.

Proof Sketch. The proof begins by assuming, for contradic-
tion, that a weakly connected component W of Gd with at
least two vertices has no cycle. In this case, W would form
a tree with a “sink” voter i such that d(i) = i. By analyz-
ing the incentives of voter i, we derive that j /∈ Ai(x, τ ) for
any j such that d(j) = i. However, by the mutual accep-
tance assumption, it must also hold that i /∈ Aj(x, τ ), which
contradicts d being an equilibrium. The uniqueness follows
directly from the fact that each vertex in the component has
out-degree 1.

3The settings are not identical as we allow for cycles of length 2.



When the assumptions of Theorem 5 do not hold, cycles
do not necessarily exist in every equilibrium.

Observation 6. Cycles are not guaranteed to exist in Gd,
where d is a Nash equilibrium of an instance that is not of
mutual acceptance or where deterministic voters exist.

Nevertheless, in mutual acceptance instances, at least one
equilibrium with a cyclic structure is guaranteed to exist, even
if some voters are deterministic. The proof is similar to that
of Theorem 5 together with the observation that deterministic
voters may be indifferent towards some delegation options.

Theorem 7. Consider a mutual acceptance instance I ad-
mitting a NE. Then, there exists a NE d of I in which every
weakly connected component of Gd with more than a single
vertex has exactly one cycle.

If mutual acceptance does not hold, existence of equilib-
ria exhibiting cycles is not guaranteed. For instance, consider
an instance with two non-deterministic voters such that A ac-
cepts B, but B does not accept A. Then, there is a unique
equilibrium in which A delegates to B and B self-loops.

Returning to the case where the assumptions of Theorem 5
hold, we now aim to further analyze the structure of equilib-
ria by turning our attention to delegations “entering” a cycle.
Specifically, for a weakly connected component W , let C(W )
denote the set of voters forming the cycle within that compo-
nent, and let L(W ) and R(W ) denote the sets of voters of
W positioned to the left and right of the cycle, respectively.
Formally, L(W ) = {i ∈ W : xi < xj for all j ∈ C(W )} and
R(W ) = {i ∈ W : xi > xj for all j ∈ C(W )}.

Theorem 8. Consider a mutual acceptance instance I with-
out deterministic voters and a Nash equilibrium d of I. Con-
sider a weakly connected component W of Gd that consists
of more than a single vertex, and let C(W ) denote the cy-
cle in W . There is at most one vertex vL ∈ L(W ) with
d(vL) ∈ C(W ) and at most one vertex vR ∈ R(W ) with
d(vR) ∈ C(W ). Moreover, in Gd, L(W ) and R(W ) form
in-trees rooted at vL and vR, respectively.

Thus, the cycle C(W ) has a unique “entry point” vL for
voters in L(W ), and all voters in L(W ) have delegation paths
to vL (analogously for vR and R(W )). It might be tempting
to conjecture that these entry points vL and vR delegate to the
leftmost and rightmost voters in C(W ), respectively, or that
all voters in L(W ) (respectively, R(W )) form a simple dele-
gation path. However, in Appendix B.1 we show that this is
not generally the case. Therefore, a significant strengthening
of the structural description offered by Theorem 8 is unlikely.

Experimental Analysis. Our theoretical results do not
specify how large delegation cycles are, or how often they oc-
cur in instances not satisfying the assumptions of Theorem 5.
To shed light on these questions, we conducted computa-
tional simulations (see Appendix C.3 for details). In particu-
lar, we examined the size (i.e., number of vertices) and width
(i.e., maximum distance between two vertices) of cycles and
weakly connected components and we observe that, as toler-
ance levels decrease, cycle size and width, as well as compo-
nent width, decline gradually. Moreover, as n increases, the
average cycle and component width decreases, with voters

in the same component — especially cycles — having closely
aligned positions. The proportion of voters with self-loops
remains stable at around 5%. The average cycle size stays
around 4.5 across instances and grows only slightly even with
200 voters. Notably, nearly all weakly connected compo-
nents with more than one vertex contain a cycle, indicating
that the pattern identified theoretically for mutual acceptance
instances (see Theorem 5) also appears in general, randomly
generated instances.

5 Quality of Nash Equilibria
We now turn our focus to evaluating the quality of equilib-
ria. We follow a Price-of-Anarchy approach, comparing the
social welfare of Nash equilibria to the best possible social
welfare [Koutsoupias and Papadimitriou, 2009]. Before that,
we compare the structure of social-welfare-maximizing del-
egation graphs to that of Nash equilibria, observing an inter-
esting contrast.

Observation 9. There exist mutual acceptance instances
without deterministic voters in which the delegation graph
maximizing social welfare does not contain a cycle. For ex-
ample, consider the symmetric instance with V = {A,B,C},
x = (0.12, 0.5, 0.88), p = (0.1, 0.9, 0.1), and where τi = 0.4
for all i ∈ V . Social welfare is maximized if both A and C
delegate to B, who self-loops.

We define the notion of Price of Anarchy (PoA) of an in-
stance I in the standard way:

PoA(I) = SW (dSW(I))
SW (dNE(I))

,

where dSW(I) is the profile maximizing social welfare and
dNE(I) is the profile achieving the lowest social welfare
among the Nash equilibria of I. The following result demon-
strates that this ratio can be arbitrarily large.

Theorem 10. Price of Anarchy of default delegation in-
stances is unbounded.

Proof sketch. We prove the statement by describing a fam-
ily of instances, parameterized by ε and n. In the limit
for ε → 0 and n → ∞, the worst Nash equilibrium d
satisfies SW (d) → 0 and there is a profile d′ such that
the social-welfare-maximizing delegation profile dSW satisfies
SW (dSW) ⩾ SW (d′) → e−1

e λ, where λ > 0 corresponds to
some fixed value and e is Euler’s number.

Fix a value λ > 0 as well as values ε ∈ (0, 1) and n ∈ N
such that λ > ε/n. Define Iε,n as the instance with voters
{1, 2, . . . , n+ 1} and x,p, τ as specified in Figure 1. Note
that voters are equidistant: dist(i, i+ 1) = ε/n,∀i ∈ [n].

The profile d with d(1) = 2 and d(i) = i for all i ⩾ 2 is a
Nash equilibrium. Since ui(d) = 0 for all i ⩾ 2, we get

SW (d) = u1(d) = λε+ (1− ε)(λ− ε

n
)
1

n

n→∞−−−−→
ε→0

0.

Next, consider the profile d′ with d′(i) = i+ 1 for i ⩽ n

and d′(n+ 1) = n+ 1. It can be shown that ui(d
′)

n→∞−−−−→ 0
for all i ⩾ 2. We now compute u1(d

′) which is equal to the
following expression.
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x1 = 0

p1 = ε
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2

x2 = ε/n

p2 = 1/n

τ2 = 0
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Figure 1: Illustration of the instance Iε,n with n+1 voters from the
proof of Theorem 10, alongside the examined delegation profiles.
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Computing the limit of this expression for n → ∞, we get

SW (d′) =

n+1∑
i=1

ui(d
′)

n→∞−−−−→
ε→0

e− 1

e
λ.

At first glance, Theorem 10 is a strongly negative result
concerning the quality of NE. Note, however, that the con-
structed instances have certain characteristics, such as a voter
with a very low voting probability (p1 → 0), and all but
one voter having acceptability sets limited to themselves,
while voter 1 has Ai(x, τ ) = V . Moreover, the social wel-
fare of the two delegation profiles considered in the proof
of Theorem 10 exhibit a relatively small absolute difference
( e
e−1λ ≈ 0.632λ = 0.632

∑
i∈V τi). This suggests that mea-

suring the quality of equilibria by focusing on the difference
rather than the ratio may lead to less negative conclusions.
We define the additive Price of Anarchy of an instance I as

PoA+(I) = SW (dSW(I))− SW (dNE(I)),
and proceed with the following positive results on both the
multiplicative and the additive Price of Anarchy.

Theorem 11. For every instance I, PoA(I) ⩽ 1/pmin and
PoA+(I) ⩽ (1−pmin)

∑
i∈V τi, where pmin=mini∈V {pi}.

Theorem 11 asserts that higher voting probabilities corre-
late with better Nash equilibria in terms of social welfare.
Furthermore, and perhaps surprisingly, the smaller the toler-
ance levels, the better the additive PoA bound.

In Appendix C.5, we also assess the expected number of
votes cast in equilibria, demonstrating that, unlike in other
liquid democracy frameworks where cycles are criticized for
resulting in ballot loss, in our setting, they effectively help
mitigate lost voting power. Moreover, results on the structure
of optimal delegation profiles, which complement Observa-
tion 9, can be found in Appendix B.2, highlighting further
differences in their structure compared to Nash equilibria and
the profiles minimizing vote loss.

Experimental Analysis. To complement our worst-case
bounds, we examined how the social welfare achieved by
Nash equilibria compares to the optimal social welfare in ran-
domly generated instances. Since identifying dSW is com-
putationally infeasible for large instances, we approximate its
welfare by the sum of each voter’s expected utility under their

Number of Voters τi ∈ [0, τmax] with τmax =

20 50 100 200 1 0.75 0.5

dBR 97.5% 98.8% 99.3% 99.7% 98.8% 98.8% 98.5%
ddir 50.9% 50.8% 51.0% 49.9% 50.4% 50.7% 51.5%

Table 2: The average social welfare achieved by dBR and ddir in
our experiments, as a percentage of ODP(I).

optimal delegation profile, denoted by ODP(I). Formally,
ODP(I) =

∑
i∈V ui(d

i∗), where di∗ is a delegation profile
maximizing the utility of voter i. In Appendix B.3, we show
that Gdi∗ contains a path that starts in i and passes through all
vertices in Ai(x, τ ) in increasing order of distance to i. This
value serves as an upper bound, SW (dSW ) ⩽ ODP(I).

We generated 30 instances for each number of voters n ∈
{20, 50, 100, 200}, with values for x,p, τ chosen uniformly
at random. For n = 50, we furthermore tested 20 tolerance
vectors τ , scaling each by 0.75 and 0.5 to assess the effect
of different tolerance levels (full details on the instances can
be found in Appendix C.2). For each instance, we computed
ODP(I) as an upper bound on the social welfare and a Nash
equilibrium dBR via best-response dynamics. Table 2 shows
the average ratios SW (dBR)/ODP (I). As a baseline, we
also include the social welfare achieved by the delegation pro-
file ddir (“direct voting”) in which every voter self-loops.

As expected, the Nash equilibrium profiles outperform the
direct voting profiles, which consistently reach only around
50% of ODP(I). The average social welfare achieved by dBR

is remarkably high (⩾97,5% of ODP(I)) and gets closer to
ODP(I) as n increases. Given that ODP(I) is an upper bound
on the optimal social welfare, we conclude that the Nash equi-
libria in our model have an almost optimal social welfare.

6 Conclusion
In this paper, we introduced the default delegation model and
used it to provide a novel game-theoretic perspective on long-
term delegation decisions in liquid democracy. We revealed
how delegation cycles naturally emerge among rational par-
ticipants, offering a justification for their existence.

Our model leads to several avenues for future research.
One immediate direction is to explore the computational com-
plexity of finding Nash equilibria or delegation profiles max-
imizing social welfare. In our experiments, we use best-
response dynamics to find equilibria; however, these algo-
rithms are not guaranteed to converge. It would also be in-
teresting to define voters’ alignment based on more general
metric spaces. A natural starting point could consist in plac-
ing voters into a two-dimensional Euclidean space. Prelimi-
nary experiments reveal that the structure of Nash equilibria
becomes more complicated in that setting. Additionally, con-
sidering alternative (e.g., normalized) utility functions could
yield further insights. Finally, while our work primarily fo-
cused on cycles, the role of long delegation paths remains
an important and underexplored aspect of liquid democracy.
These paths are often seen as undesirable due to their poten-
tial to erode trust in ultimate delegates. Potentially, this issue
could be explored with the help of a model similar to ours.
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Cycles in Liquid Democracy: A Game-Theoretic Justification
Technical Appendix

A Omitted Proofs

Proof of Theorem 1

(i) Suppose that the voters in V are split into two disjoint groups: The casting voters, i.e., those in the set X = {i ∈ V | pi =
1}, and the delegators, i.e., those in the set V \X = {i ∈ V | pi = 0}. We set d(i) = i = argminj∈Ai(x,τ )∩X(|xi − xj |)
for all voters in X . For each i ∈ V \X , we also set

d(i) = argmin
j∈Ai(x,τ )∩X

(|xi − xj |),

i.e., they delegate to their closest casting voter in their acceptability set. If Ai(x, τ )∩X = ∅, then we simply set d(i) = i.
We proceed to show that d is a Nash equilibrium. No voter i ∈ X has a profitable deviation, as their expected utility will
always be equal to τi regardless of the delegation they choose, due to pi = 1. For voters i ∈ V \X , we consider two cases,
i.e., when d(i) = i and when d(i) ̸= i.
In the first case, namely when d(i) = i, if i deviates, they will finally be represented by a voter in X, receiving a utility
of 0, or by a voter in V \ X . In the latter case they will necessarily be represented by a voter not in Ai(x, τ ), because
X ∩ Ai(x, τ ) = ∅. Thus, their expected payoff would be non-positive in both cases, and consequently it will be no more
than the utility they receive with d(i) = i, which gives a utility of 0.
In the second case, when d(i) ̸= i, delegating to any other voter in Ai(x, τ ) ∩X will not increase their expected utility,
because d(i) is the closest casting voter to i. Similarly, delegating to a voter j ∈ V \ X or to a voter j ∈ X \ Ai(x, τ )
might result in i being represented by a voter k satisfying k = argminj∈Ai(x,τ )∩X(|xi−xk|), or not, depending on where
j delegates. In both cases, this is again not a profitable deviation from d for i.

(ii) We let V = {A,B} and we denote by d = |xB − xA|. First, we examine the expected utility for voter A, assuming that
d(B) = B. If d(A) = B, then uA(d(A), d(B)) = τApA+(1−pA)pB(τA−d), and if d(A) = A, then uA(d(A), d(B)) =
τApA. Crucially, the utility of A remains exactly the same even when d(B) = A. Therefore, in an equilibrium, voter A
decides to delegate to B if (1 − pA)pB(τA − d) ⩾ 0, or equivalently if τA ⩾ d, and self-loops otherwise, regardless of
what strategy voter B selects. The analogous arguments can determine the delegation of voter B in an equilibrium.

(iii) We call the set of the three voters V = {1, 2, 3} and we assume that the voters are named in increasing order of their
positions in the line. We can assume that pi > 0 for all i ∈ {1, 2, 3}. Otherwise, if there is a deterministic voter i for
which this condition does not hold, we do the following: first, we exclude voter i from consideration and then we find a
NE in the remaining instance that has at most two voters, which can be done as previously shown. The exclusion of i is
safe because it is never profitable for a voter to delegate to i regardless of the choice of voter i. Finally, having fixed the
delegation for each voter j such that pj > 0, we fix a delegation for i by determining the optimal delegation for them,
given the choices of others.
At a high level, the proof for finding a Nash equilibrium d, goes as follows: First, we fix a delegation for voter 2 according
to some criterion and, depending on this choice, we then fix the delegation for a (specific) second voter. Finally, we fix
the delegation for the remaining voter as well. We will prove that by following this process and the specified criteria we
achieve to specify a delegation profile that is a Nash equilibrium. Specifically, we will show that no voter will have an
incentive to deviate after fixing their choice, no matter the choices of the rest.
Let us compute the utility that voter 2 will get from each possible delegation, assuming that d(i) = i for i ∈ {1, 3}. Then,
for each such i, it holds u2(1, i, 3) = p2τ2+(1−p2)pi(τ2−dist(2, i)). We set d(2) = argmaxi∈{1,3}{pi(τ2−dist(2, i))},
assuming that maxi∈{1,3}{pi(τ2−dist(2, i))} > 0. The case where maxi∈{1,3}{pi(τ2−dist(2, i))} ⩽ 0 will be addressed
separately later.
Assume without loss of generality that argmaxi∈{1,3}{pi(τ2 − dist(2, i))} = 3 and so that d(2) = 3. In that case, we
continue with fixing the delegation for voter 1, and finally for voter 3 (we reverse the order of examination if d(2) = 1),
and we claim, and we will soon prove, that regardless of those, voter 2 will not have an incentive to deviate from d(2) = 3.
We begin with examining voter 1, i.e., the voter that voter 2 did not delegate to. We compute the utility that voter 1 would
get if d(2) = 3 = d(3), and based on this, we will fix d(1). It holds that:

u1(1, 3, 3) = p1τ1

u1(2, 3, 3) = p1τ1 + (1− p1)p2(τ1 − dist(2, 1)) + (1− p1)(1− p2)p3(τ1 − dist(3, 1))
u1(3, 3, 3) = p1τ1 + (1− p1)p3(τ1 − dist(3, 1)).

1



Since dist(2, 1) < dist(3, 1) we also have that

u1(2, 3, 3) > p1τ1 + (1− p1)p2(τ1 − dist(3, 1)) + (1− p1)(1− p2)p3(τ1 − dist(3, 1))
= p1τ1 + (1− p1)(τ1 − dist(3, 1))p3 = u1(3, 3, 3).

Hence, we can assume that d(1) ̸= 3. Then, we can determine the argmaxi∈{1,2}{u1(i, 3, 3)}, and set d(i) to be equal to
that value. Note that no matter which the determined delegation choice for voter 1 is, it does not affect the utility of voter
2, so, for the time-being, voter 2 does not have an incentive to deviate.
We continue with fixing a delegation for voter 3 and we now have two cases to consider, i.e., d(1) = 1 and d(1) = 2.

• We first examine the case where d(1) = 1. Then, by mutual acceptance, u3(d(1), d(2), 1) < u3(d(1), d(2), 3), or
otherwise voter 1 would prefer a delegation to voter 3 than d(1) = 1. Similarly, u3(d(1), d(2), 2) > u3(d(1), d(2), 3),
or otherwise voter 2 would also not prefer a delegation to voter 3. Consequently, we always fix d(3) = 2 in this case.
It is easy to check that no voter has an incentive to deviate, or otherwise voters would not have fixed the corresponding
choices in the previous steps of the procedure.

• Suppose now that d(1) = 2. There are two possible options for voter 3 to consider: delegating to voter 1 and hence
forming a 3-cycle, or delegating to voter 2 and hence forming a 2-cycle. We select for voter 3 the option among the
two that maximizes their own utility, given that d(2) = 3 and d(1) = 2. We will show that in both cases neither
voter 1 nor voter 2 have an incentive to deviate. More precisely, say first that d induces a 3-cycle, and voter 1 wants
to deviate. This can only be when τ1 < dist(1, j) for some j ∈ {2, 3}. This cannot hold for j = 2 or otherwise
voter 1 wouldn’t have delegated to 2 beforehand and it cannot also hold for j = 3 or otherwise voter 3 wouldn’t
have delegated to 1. The argument for rejecting a potential deviation of voter 2 is similar. Now say that d induces a
2-cycle between voters 2 and 3 and d(1) = 2. The fact that at a previous step voter 2 selected to delegate to 3 means
that a deviation of voter 2 will not be profitable for them. It remains to show that voter 1 doesn’t have a profitable
deviation either. To that end, we will prove that u1(d−1, 2) > u1(d−1, 3). This is true due to the following equivalent
expressions:

(τ1 − dist(1, 2))p2 + (τ1 − dist(1, 3))p3(1− p2) > (τ1 − dist(1, 3))p3 + (τ1 − dist(1, 2))p2(1− p3) ⇔
(τ1 − dist(1, 2))p2p3 > (τ1 − dist(1, 3))p3p2 ⇔

dist(1, 2) < dist(1, 3).

Thus, the sequence in which voters are examined, along with the criteria that led to the specification of their delegations,
resulted in a Nash equilibrium.
It remains to consider the case where maxi∈{1,3}{pi(τ2 − dist(2, i))} ⩽ 0. Equivalently, (τ2 − dist(2, i)) ⩽ 0, for
i ∈ {1, 3}. If this is the case, we set d(i) = i for every i ∈ {1, 2, 3}. Then, each voter i experiences a utility of piτi.
Consider a possible deviation for voter 2, say by delegating to some voter i ∈ {1, 3}. Then their new utility becomes
p2τ2 + (1 − p2)pi(τ2 − dist(2, i)) ⩽ p2τ2. Therefore, such a deviation is not profitable for voter 2. The same argument
holds for all the remaining possible deviations, since, by mutual acceptance, if voter 1 /∈ A2(x, τ ) and 3 /∈ A2(x, τ ),
then also 2 /∈ A1(x, τ ) and 2 /∈ A3(x, τ ), so both voters 1 and 3 would prefer to loop rather than delegating to voter 2,
let alone to voter 3 and 1 respectively.

Proof of Theorem 2

(i) Let us first show that there are instances without a NE even with only three voters present. Take an instance with three
voters, A,B, and C, and say that x = (0.1, 0.9, 0.95), p = (0.02, 0.02, 0.1), and τ = (0.9, 0.1, 0.9). Assume that there
exists a NE profile d in that instance. First, notice that B does not choose to delegate to A in d, as dist(A,B) > τB .
Second, we observe that A and C do not self-delegate, as dist(A,B) < τA and dist(C,B) < τC . Figure 2 depicts the
utilities of the voters in all the remaining strategy profiles. It is routine to check that there is no NE in this instance.

(ii) Consider the following instance I:

p = (0.05, 0.49, 0.1, 1.0),

x = (0.0, 0.05, 0.15, 0.3),

τ = 0.2.

We name the voters of the instance as V = {0, 1, 2, 3}. We first observe that it is sufficient to focus on delegation profiles
where voter 3 loops. This is because if there is a Nash equilibrium where voter 3 doesn’t loop, there is another delegation
profile where they loop and that it is a Nash equilibrium as well. All possible delegation profiles d in which d(3) = 3 are
depicted in (the first column of) Table 3. For each such d we identify a voter i ∈ V for which there exists a profitable
deviation, proving that no Nash equilibrium exists in I.
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d(A) = B

d(A) → C

d(B) = C d(B) = B

0.0247, -0.0104, 0.1082

0.0229, -0.0094, 0.0909

0.0199, 0.002, 0.1058

0.0229, 0.002, 0.0909

d(A) = B

d(A) = C

d(B) = C d(B) = B

0.0247, 0.0069, 0.1053

0.0246, 0.0069, 0.1053

0.0199, 0.002, 0.1053

0.0246, 0.002, 0.1053

Figure 2: Normal form representation of the game induced by the instance described in the proof of Theorem 2. The table on the left
corresponds to C delegating to A, and the one on the right to C delegating to B. Rows correspond to the choices of voter A and columns to
the choices of voter B. The numbers in each cell show the utility of A, B, and C respectively, for the delegation profile under examination.

Proof of Theorem 3

We focus on rightists; the case for leftists is analogous. The proof proceeds by a greedy method. We consider the voters in
order of decreasing position, to be denoted as v1, v2, · · · , vn. Voter vn, which corresponds to the voter at position xmax =
argmaxi∈V {xi}, will self-loop in an equilibrium, simply due to the fact that, as long as pn ̸= 1, any delegation will result in
being represented (with some probability) by someone in their left, which gives a negative utility to a rightist voter. If pn = 1,
self-looping, trivially, doesn’t admit a profitable deviation.

Consider now voter vn−1. Being a rightist, vn−1 can only delegate to themselves or to vn towards getting a non-negative
utility. The decision of this voter isn’t affected by delegations to them or edges to voters on their left. Therefore, the delegation
choices of voters v1, · · · , vn−2, which will be fixed in a later step of the procedure, cannot influence the decision of vn−1.
Thus, for vn−1, we only need to check whether delegating to vn or to themselves produces more expected utility (knowing that
vn loops) and fix the corresponding choice.

We proceed similarly for the remaining voters in order. Notice that the decision of vn−1 impacts only the decisions of voters
positioned before vn−1, who will be examined next. In the specified order, when it is time to consider a voter with a lower
position, they will choose the best delegation option available to them, taking into account the already-fixed delegations of
voters positioned on their right and the fact that they cannot delegate to anyone positioned on their left. Once such a delegation
is chosen, it becomes fixed, as changes in the delegations of voters positioned on their left will not affect their expected utility
and make them interested in deviating.

Proof of Theorem 4

We will present a procedure that identifies a Nash equilibrium d, in a given instance of the proxy voting setting. Initially we call
all voters as unclassified. Additionally, we will refer to the following sets of voters: represented and representatives, initially
both empty.

For each unclassified voter i in an arbitrary order, we determine the voter j minimizing the quantity pj(τi−dist(i, j)) among
all j such that j doesn’t yet belong to the set of represented voters (i included). Note that if j is represented, a delegation from
i to j would create a chain of 3 voters, hence such a delegation is infeasible. Then, we fix d(i) = j and we remove both i and
j from the set of unclassified voters, labeling i as a represented and j as a representative. Subsequently, we repeat for another
unclassified voter. When all unclassified voters have been examined, we move to the second phase of the algorithm.

At the end of the described first phase, all voters are either represented or representatives but representatives do not have an
outgoing edge yet in Gd (or they have a self-loop). For those without a loop, it remains to determine their delegation. Then,
we consider each such a voter in arbitrary order. Say we examine voter i, the only choices for i are to delegate to one of
the voters in {k ∈ V | d(k) = i}, i.e. those who already delegated to i or to self-loop, due to the constraint of the proxy
voting setting. Among those options, i picks the delegation that maximizes their utility, which again corresponds to the voter
j ∈ {k ∈ V | d(k) = i} ∪ {i}, maximizing the quantity pj(τi − dist(i, j)).

To prove that the constructed delegation forms indeed a Nash equilibrium, we consider a voter i and we assume that they
prefer to deviate, towards a contradiction. First, we examine a voter i that self-delegates. By construction, there are no feasible
choices for i that would improve their utility. Assume now that i is a voter that is in the set of represented voters and didn’t
self-loop. Then, i is delegating to the one giving them the maximal utility, at the moment we considered i in the first round. It
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Delegation Profile Deviating voter Current Delegation Profitable Deviation Utilities for Deviating voter
[0, 0, 0, 3] 0 0 1 [0.0100, 0.0798, 0.0148, -0.0850]
[0, 0, 1, 3] 0 0 1 [0.0100, 0.0798, 0.0776, -0.0850]
[0, 0, 2, 3] 0 0 1 [0.0100, 0.0798, 0.0148, -0.0850]
[0, 0, 3, 3] 0 0 1 [0.0100, 0.0798, -0.0707, -0.0850]
[0, 1, 0, 3] 0 0 1 [0.0100, 0.0798, 0.0148, -0.0850]
[0, 1, 1, 3] 0 0 1 [0.0100, 0.0798, 0.0776, -0.0850]
[0, 1, 2, 3] 0 0 1 [0.0100, 0.0798, 0.0148, -0.0850]
[0, 1, 3, 3] 0 0 1 [0.0100, 0.0798, -0.0707, -0.0850]
[0, 2, 0, 3] 0 0 1 [0.0100, 0.0822, 0.0148, -0.0850]
[0, 2, 1, 3] 0 0 1 [0.0100, 0.0822, 0.0776, -0.0850]
[0, 2, 2, 3] 0 0 1 [0.0100, 0.0822, 0.0148, -0.0850]
[0, 2, 3, 3] 0 0 1 [0.0100, 0.0386, -0.0707, -0.0850]
[0, 3, 0, 3] 0 0 1 [0.0100, 0.0314, 0.0148, -0.0850]
[0, 3, 1, 3] 0 0 2 [0.0100, 0.0314, 0.0340, -0.0850]
[0, 3, 2, 3] 0 0 1 [0.0100, 0.0314, 0.0148, -0.0850]
[0, 3, 3, 3] 0 0 1 [0.0100, 0.0314, -0.0707, -0.0850]
[1, 0, 0, 3] 1 0 2 [0.1018, 0.0980, 0.1065, 0.0725]
[1, 0, 1, 3] 1 0 2 [0.1018, 0.0980, 0.1031, 0.0725]
[1, 0, 2, 3] 1 0 2 [0.1018, 0.0980, 0.1031, 0.0725]
[1, 0, 3, 3] 2 3 1 [0.0641, 0.0652, 0.0200, 0.0650]
[1, 1, 0, 3] 1 1 2 [0.1018, 0.0980, 0.1065, 0.0725]
[1, 1, 1, 3] 1 1 2 [0.1018, 0.0980, 0.1031, 0.0725]
[1, 1, 2, 3] 1 1 2 [0.1018, 0.0980, 0.1031, 0.0725]
[1, 1, 3, 3] 1 1 0 [0.1018, 0.0980, 0.0802, 0.0725]
[1, 2, 0, 3] 2 0 3 [0.0641, 0.0641, 0.0200, 0.0650]
[1, 2, 1, 3] 2 1 3 [0.0641, 0.0641, 0.0200, 0.0650]
[1, 2, 2, 3] 2 2 3 [0.0641, 0.0641, 0.0200, 0.0650]
[1, 2, 3, 3] 1 2 0 [0.1018, 0.0980, 0.0802, 0.0725]
[1, 3, 0, 3] 1 3 2 [0.1018, 0.0980, 0.1065, 0.0725]
[1, 3, 1, 3] 0 1 2 [0.0100, 0.0314, 0.0340, -0.0850]
[1, 3, 2, 3] 1 3 2 [0.1018, 0.0980, 0.1031, 0.0725]
[1, 3, 3, 3] 1 3 0 [0.1018, 0.0980, 0.0802, 0.0725]
[2, 0, 0, 3] 0 2 1 [0.0100, 0.0798, 0.0148, -0.0850]
[2, 0, 1, 3] 0 2 1 [0.0100, 0.0798, 0.0776, -0.0850]
[2, 0, 2, 3] 0 2 1 [0.0100, 0.0798, 0.0148, -0.0850]
[2, 0, 3, 3] 0 2 1 [0.0100, 0.0798, -0.0707, -0.0850]

Table 3: For each delegation profile d satisfying d(3) = 3 (column 1), we identify a voter i ∈ N (column 2) who can improve their expected
utility by unilaterally changing their delegation from d(i) (column 3) to d(i)′ (column 4). Column 5 shows the expected utility voter i would
obtain by delegating to each voter in V , while keeping the rest voters’ delegations unchanged.

holds that i can’t delegate to anyone that delegates further, so every other voter in the set of represented voters isn’t a feasible
choice. Among the representatives, i chose the best for themselves option. Suppose now that i is in the set of representatives
and didn’t self-loop. Then, simply, no deviation to a voter that doesn’t delegate to i is feasible for i, and among those, i has
been assigned to their preferred one.

Proof of Theorem 5

Consider a weakly connected component of a Nash equilibrium d of I that has at least 2 vertices, or, in other words, at least
one (directed) edge. Towards a contradiction, suppose that it does not have a directed cycle. Then, its undirected variant must
be a tree, meaning it has a sink vertex that self-delegates. Let this vertex correspond to a voter i, and let j be a voter such that
d(j) = i. The utility of i under d equals τipi.

If voter i were to delegate back to voter j, then i would obtain a utility of τipi + (1 − pi)(τi − dist(i, j))pj . Since the
delegation from i to j was not selected in the equilibrium d (otherwise i would not have been a sink), it must hold that

τipi + (1− pi)(τi − dist(i, j))pj ⩽ τipi ⇔ (1− pi)(τi − dist(i, j))pj ⩽ 0.

Therefore, it must hold that pi = 1, or τi ⩽ dist(i, j), or pj = 0. The first and third cases do not hold by assumption.
Consequently, it is necessarily true that
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τi − dist(i, j) ⩽ 0. (3)
Since j delegates to i at d, the utility of j equals τjpj + (1− pj)(τj − dist(i, j))pi, and this value must be no less than τjpj ,

or j would prefer to self-loop. Therefore,
(1− pj)(τj − dist(i, j))pi ⩾ 0 ⇒ τj − dist(i, j) ⩾ 0.

By assumption, τj − dist(i, j) ̸= 0, and hence, τj − dist(i, j) > 0. Consequently, i ∈ Aj(x, τ ), and by the assumption of
mutual acceptance between voters, j ∈ Ai(x, τ ). Therefore, τi − dist(i, j) > 0, which contradicts Expression (3). Thus, the
considered weakly connected component must have at least one directed cycle.

We will now prove that no more than a single cycle may appear in a weakly connected component. Consider such a compo-
nent with at least one cycle and let it contain k vertices. Since each vertex has out-degree 1, the component also has k edges.
Removing now one edge from the cycle leaves the component connected, with k vertices and k − 1 edges. This structure is
necessarily a tree, hence, the original component can be viewed as a tree plus one additional edge, and adding a single edge to
a tree creates no more than a single cycle, proving the claim.

Proof of Observation 6

We will show that there exists an instance I with a Nash equilibrium d∗ such that there is a weakly connected component of
at least two vertices in Gd∗ that does not have a cycle. The instance I will have at least one of the following properties: (1)
for some voter i ∈ V , we have that pi = 1, (2) for some voter j ∈ V , we have that pj = 0, (3) there is a pair of voters
(i, j) ∈ V × V such that i ∈ Aj(x, τ ) but j /∈ Ai(x, τ ).

Consider an instance I with only two voters, namely i and j, where i ∈ Aj(x, τ ). We call d∗ the profile in which i
self-delegates and j delegates to i. Observe that no cycle appears in the connected component of size 2 of Gd∗ . Note that j
receives a utility under d∗ that is at least as large as under (d∗

−j , j), if any of the conditions (1)-(3) hold. It remains to prove
that for i it is not better to delegate to j instead. It is first immediate that if pi = 1, then i receives the same expected utility
by self-delegating as by delegating to j. Also, if pj = 0, then delegating to j provides the same utility to i as self-delegation.
Then, if j /∈ Ai(x, τ ), i receives strictly lower utility in (d∗

−i, j) than in d∗. Therefore, in all of the examined cases d∗ is a
Nash equilibrium.

Proof of Theorem 7

Suppose that d is a Nash equilibrium and that Gd contains a weakly connected component W of more than one vertex that
does not have a directed cycle. Then there exists a voter i in W that is self-delegating under d and a voter j such that d(j) = i.
If pj ̸= 0 and pi ̸= 1, the proof of Theorem 5 works. So, we first assume that pi = 1. We claim that there is another NE
profile d′, where d(j)′ = i and d(i)′ = j. The fact that pi = 1 means that voter i as well as every voter delegating directly or
indirectly to voter i under d is not affected by whether i self-delegates or not. The same holds trivially for the rest of the voters,
so d′ = (d−i, j) is a Nash equilibrium as well. The proof is similar for the case where for the voter j it holds that pj = 0.
Specifically, we claim again that there is another NE d′ such that d′j = i and d′i = j. The fact that pj = 0 means that the change
of delegation for voter i from self-looping to j will not affect the utility of any voter as j will never cast a ballot. Therefore, the
expected utility of every voter is the same under both delegation profiles.

Proof of Theorem 8

Take a weakly connected component W of a graph Gd where d is a Nash equilibrium of an instance I satisfying the conditions
of the statement. For a voter v ∈ L(W ) ∪ R(W ) and a voter w ∈ C(W ) we denote as Qv

w(w
′) the probability that a vertex

w′ ∈ C(W ) corresponds to the ultimate delegate of v, (to be called Pv
w(w

′)) times (1 − pv) in the case that v delegates to w.
We note that Pv

w is actually the same for every voter v ∈ L(W ) ∪R(W ) and hence we will drop the superscript.
The following lemma is a direct consequence of the definition of expected utility together with the fact that no voter in C(W )

delegated to a voter outside of C(W ) according to d.
Lemma 12. For a voter v ∈ L(W ) ∪ R(W ) that delegates to a voter w ∈ C(W ), the expected utility of v is
pvτ +

∑
i∈C(W ) Qv

w(i) · (τ − dist(v, i)) = pvτ + (1− pv)
∑

i∈C(W ) Pw(i) · (τ − dist(v, i)).

Suppose, without loss of generality, that there are two distinct voters v, v′ ∈ L(W ) that are delegating to a vertex in C(W ),
under d. Assume further that xv < xv′ . First, notice that since both v and v′ are on the left side of all of the voters in C(W ),
from Lemma 12, we have that the set of voters in C(W ) maximizing the expected utility if delegated to is the same for v and v′

and, since d is a NE, both of them delegate to such a voter, say w.
We will show now that d is not a NE by showing that v would benefit from switching their delegation to v′ instead of w. In

that case, the utility of v would be:

τpv + (1− pv)

pv′(τ − dist(v, v′)) +
∑

i∈C(W )

Pw(i)(1− pv′)(τ − dist(v, i))
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Delegation Profile Social Welfare
[A,A,B] 0.4532
[A,A,C] 0.4402
[A,B,B] 0.4562
[A,B,C] 0.4400
[A,C,B] 0.4564
[A,C,C] 0.4402
[B,A,B] 0.4694
[B,A,C] 0.4564
[B,B,B] 0.4724
[B,B,C] 0.4562
[B,C,B] 0.4693
[B,C,C] 0.4532

Table 4: Social Welfare achieved by profiles in which A doesn’t delegate to C and vice versa, in the instance examined in the proof of
Observation 9. The maximizing value of social welfare appears in bold.

Now, recall that the expected utility of v under d amounts to
τpv + (1− pv)

∑
i∈C(W )

Pw(i)(τ − dist(v, i)).

It suffices to show that

pv′(τ − dist(v, v′)) +
∑

i∈C(W )

Pw(i)(1− pv′)(τ − dist(v, i)) >
∑

i∈C(W )

Pw(i)(τ − dist(v, i)) ⇔

(τ − dist(v, v′)) >
∑

i∈C(W )

Pw(i)(τ − dist(v, i)),

which is true because∑
i∈C(W )

Pw(i)(τ − dist(v, i)) <
∑

i∈C(W )

Pw(i)(τ − dist(v, v′)) = (τ − dist(v, v′))
∑

i∈C(W )

Pw(i) ⩽ τ − dist(v, v′),

where the last inequality holds as
∑

i∈C(W ) Pw(i) ⩽ 1.
Finally, because W is a connected component containing exactly one cycle (by Theorem 5), it directly follows that L(W )

and R(W ) induce directed (in-)trees, which are directed towards C(W ).

Proof of Observation 9

Proof. Consider the following symmetric instance of three voters, namely A, B, and C, with τ = 0.4:

x = (0.12, 0.5, 0.88),

p = (0.1, 0.9, 0.1).

Notice first that in a profile that maximizes total utility A and C do not delegate to each other, as dist(A,C) > 0.4, and
hence changing a delegation of one of them to B would strictly improve the total utility. The social welfare of the rest possible
delegation profiles is shown in Table 4. It follows that d = [B,B,B] maximizes total utility; its delegation graph appears
below.

0 0.12 0.5 0.88 1

A B C

Obviously, Gd does not have a cycle.

Proof of Theorem 10

We will prove the statement by describing an instance in which the worst Nash equilibrium profile in terms of social welfare
d satisfies SW (d) → 0 and the social welfare maximizing delegation d′ satisfies SW (d′) → e−1

e λ, where λ corresponds to
some fixed value and e is Euler’s number.
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Fix a value λ > 0 as well as a value ε ∈ [0, 1] which is infinitesimal and satisfies λ > ε/n. Consider an instance of n + 1
voters, where for i ∈ [n], voter i is positioned at a distance of ε/n before vi+1. For voter v1 it holds that τ1 = λ and p1 = ε,
for vn+1 it holds that τn+1 = 0 and pn+1 = 1, whereas for the rest voters it holds that they vote with probability 1/n and their
tolerance value is equal to zero. For an illustration see the image below:

1

x1 = 0

p1 = ε

τ1 = λ

2

x2 = ε/n

p2 = 1/n

τ2 = 0

3

x3 = 2ε/n

p3 = 1/n

τ3 = 0

. . .

. . .

. . .

. . .

1 2 3 n n+ 1
. . .

n

xn = (n−1)ε/n

pn = 1/n

τn = 0

n+ 1

xn+1 = ε

pn+1 = 1

τn+1 = 0

d :

d′ :

The profile d where v1 delegates to v2 and all others delegate to themselves is a Nash equilibrium. This holds as voters of
λi = 0 do not want to delegate anywhere other than to themselves and v1 prefers delegating to v2 rather than anyone else, if all
after v1 vote. We will now compute the total utility gained in this profile. It holds that ui(d) = 0, for each i ∈ {2, 3, · · · , n+1},
and hence

SW (d) = u1(d) = λε+ (1− ε)(λ− ε

n
)
1

n

n→∞−−−−→
ε→0

0.

Next, consider d′ such that d′
vi = vi+1 for i ∈ {1, · · · , n}, and d′

vn+1
= vn+1. Clearly, this is not an equilibrium, since all

but v1 have an incentive to deviate and self-loop in order to increase their utility (to λipi = 0, as their current utility is negative).
In order to show that PoA is unbounded, it suffices to show that the total utility obtained from this profile is a constant, we will
argue that it approaches (approximately) 0.632λ.

We start by computing the utility for v1. This will be

λε+ (1− ε)(λ− ε

n
)
1

n
+ (1− ε)(λ− 2ε

n
)(1− 1

n
)
1

n
+ (1− ε)(λ− 3ε

n
)(1− 1

n
)2

1

n
+ · · ·+ (1− ε)(λ− (n)ε

n
)(1− 1

n
)n−1 1

n
Assume that ε → 0. Then this utility becomes

λ
1

n

n−1∑
i=0

(1− 1

n
)i.

It now suffices to compute the limit when n goes to infinity, for the expression above. Using the geometric series
∑t

i=0 r
i =

1−rt+1

1−r and the fact that limn→∞(1− 1
n )

n = 1
e we have the following:

lim
n→∞

λ
1

n

n−1∑
i=0

(1− 1

n
)i = lim

n→∞
λ
1

n

1− (1− 1/n)n

1− (1− 1/n)
=

lim
n→∞

λ
1

n

1− (1− 1/n)n

1/n
= lim

n→∞
λ(1− (1− 1/n)n) =

λ− λ lim
n→∞

(1− 1/n)n = λ− λ

e
= λ(

e− 1

e
)

Similarly, the utility of v2 can be expressed as (being independent of λ):

0 · 1
n
+ (1− 1

n
)(0− ε

n
)
1

n
+ (1− 1

n
)2(0− 2ε

n
)
1

n
+ · · ·+ (1− 1

n
)n−1(0− (n− 1)ε

n
)
1

n

n→∞−−−−→
ε→0

0.

The utility for the rest voters can be computed along the same lines to v2. As a result, the total utility in the best delegation
profile is at least (only a bit below) λ e−1

e and this concludes the proof.

Proof of Theorem 11

We begin by noting that the maximum utility a voter i can get is τi. This is because, by Theorem 14 (see Appendix B.3), we
know how each voter’s best delegation path looks like and since distances from a voter are decreasing further along the path,
the best case for i is that their vote is being cast with probability 1 at a distance of 0.

Now we will argue that the minimum utility a voter i can get in an equilibrium profile is τipi. Consider a profile d that is a
Nash equilibrium and towards a contradiction, say that for a voter i it holds ui(d) < τipi. But then d(i) ̸= i. We now compute
the utility that voter i will experience under the profile (d−i, i). This is simply equal to τipi, contradicting the fact that the
considered profile d is a NE.
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0.8008 0.8107 0.8191 0.8279 0.8287 0.8239 0.8218 0.8194
0.7377 0.1320 0.2448 0.4958 0.5023 0.4579 0.4377 0.4163
0.7046 0.7246 0.1408 0.5382 0.5446 0.5007 0.4807 0.4601
0.5936 0.6114 0.6330 0.2904 0.3398 0.6062 0.6530 0.6417
0.4353 0.4597 0.4891 0.6786 0.0792 0.5250 0.6063 0.5933
0.6946 0.7001 0.7075 0.7567 0.7630 0.6072 0.7310 0.7396
0.5363 0.5473 0.5616 0.5220 0.5447 0.7651 0.4136 0.4556
0.1525 0.1653 0.1839 0.5445 0.5378 0.5838 0.6047 0.1056

Table 5: Representation of utilities for potential deviations for the instance proving the first two statements from Appendix B.1. Specifically,
cell (i, j) corresponds to the utility of voter i after delegating to voter j, assuming that the rest of the delegations are given by d−i. The
expected utility for each voter under d (maximal per row) appears in bold.

0.0420 0.7240 0.7226 0.4468 0.3501 0.3438 0.3366
0.6481 0.6384 0.6434 0.7478 0.7234 0.7218 0.7200
0.6797 0.6799 0.0252 0.6030 0.5032 0.4968 0.4894
0.7242 0.7231 0.7250 0.6300 0.8052 0.8036 0.8017
0.6366 0.6383 0.6397 0.6990 0.4452 0.8036 0.8199
0.8113 0.8117 0.8118 0.8305 0.8316 0.7812 0.8236
0.7221 0.7235 0.7240 0.7819 0.7291 0.8297 0.6132

Table 6: Representation of utilities for potential deviations for the instance proving the third statement from Appendix B.1. Specifically, cell
(i, j) corresponds to the utility of voter i after delegating to voter j, assuming that the rest of the delegations are given by d−i. The expected
utility for each voter under d (maximal per row) appears in bold.

As a result, the ratio between the maximum achievable utility and the minimum utility in an equilibrium is at most∑
i∈V τi∑

i∈V τipi
⩽

∑
i∈V τi∑

i∈V τi ·mini∈V {pi}
=

1

mini∈V {pi}
.

We now focus on measuring the upper bound of PoA+. Following the same arguments than before, we have that the
difference between the welfare in the socially optimal solution and the one in the worst in terms of utility Nash equilibrium is
at most ∑

i∈V

τi −
∑
i∈V

τipi ⩽
∑
i∈V

τi −
∑
i∈V

τi min
i∈V

{pi} = (1−min
i∈V

{pi})
∑
i∈V

τi,

which proves the statement.

B Additional Concepts and Results

B.1 Further Insights On the Structure of Nash Equilibria

Consider a mutual acceptance instance I with no deterministic voters, a profile d that is a Nash equilibrium of I and a weakly
connected component W of Gd that consists of more than a single vertex. Then, the following hold:
• If there is a vertex in C(W ) having in-deg = 2 this is not necessarily the left-most or right-most of C(W ).
• Paths appearing in Gd are not necessarily following an order of increasing or decreasing position.
• Vertices in L(W ) or R(W ) do not necessarily form a path in Gd.

The following instance I, where V = {1, 2, · · · , 8} proves the first two statements, specifically that the entry points of
a cycle are not necessarily the left-most and right-most vertices and that a path ending to a cycle need not to be between
consecutive vertices:

x = (0.1, 0.15, 0.2, 0.4, 0.46, 0.63, 0.66, 0.88),

p = (0.91, 0.15, 0.16, 0.33, 0.09, 0.69, 0.47, 0.12),

τ = 0.88.

The delegation profile d = (5, 1, 2, 7, 4, 5, 6, 7) is a Nash equilibrium for I as Table 5 shows. More precisely, in Table 5 we
can see that no voter has a profitable deviation from d. The graph Gd is depicted in Figure 3 and its structure proves the
corresponding statements.

The third statement, namely that the vertices in L(W ) or R(W ) do not necessarily form a path in Gd, where d is a NE, holds
due to the following instance, where V = {1, 2, · · · , 7}:
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1 2 3 4 5 6 7 8

Figure 3: Delegation graph of the instance proving the first two statements from Appendix B.1.

1 2 3 4 5 6 7

Figure 4: Delegation graph of the instance proving the first two statements from Appendix B.1.

x = (0.37, 0.4, 0.54, 0.75, 0.87, 0.89, 0.9),

p = (0.05, 0.76, 0.03, 0.75, 0.53, 0.93, 0.73),

τ = 0.84.

Consider the profile d = (2, 4, 2, 5, 7, 5, 6), the delegation graph Gd of which is depicted in Figure 4.
Table 6 proves that no voter has a profitable deviation from d. Notice that vertices in the left of the cycle form a tree.

B.2 Further Insights on the Structure of Optimal Delegation Profiles

Building on the negative result of Observation 9, we now identify the condition under which a weakly connected component of
GdSW

contains a cycle. The next natural question is whether a single cycle passing through all vertices is the optimal solution
in such cases, as it is for the delegation profile minimizing vote loss (see Appendices B.4 and C.5 for details on this metric).
We address this to the negative.

Theorem 13. In a mutual acceptance instance I without deterministic voters, if i ∈ Aj(x, τ ) for every pair i, j of voters of a
weakly connected component of a socially optimal delegation profile, then, the component has a cycle. However, it is not the
case that a cycle including every vertex corresponds to the delegation profile maximizing social welfare.

Proof. Towards a contradiction, assume that for an instance I, there is a weakly connected component of at least 2 vertices
that doesn’t have a directed cycle, therefore, there is a voter i such that d(i) = i in the utility maximizing solution d. Since
i belongs to the component, there is another voter, say j, such that d(j) = i. Consider also the profile d′ = (d−i, j). The
delegation graph Gd′ contains a cycle in the component of i and j. We will prove that, under d′, the total utility of the voters
of the component will be strictly greater than under d, while the utility of the rest of the voters remains the same.

By the fact that i and j both belong to the component, and hence, j ∈ Ai(x, τ ) it holds that ui(d
′) = piτi +(1− pi)pj(τi −

dist(i, j)) > piτi = ui(d). Consider now any other arbitrary voter of the examined weakly connected component of Gd, say
k ̸= i. It holds that there is a path from k to i in Gd, and say that M corresponds to the set of vertices in that path (k and i
included). The change of d(i) from i to j will increase the utility of k by

∏
t∈M(1 − pt)pj(τk − dist(k, j)), because with a

probability equal to the probability that none in M will vote and j will vote, voter k will be represented by j. By assumptions,
this quantity is strictly positive. Therefore, every voter in the component will have a strictly greater utility under d′ compared
to their utility under d.

Finally, it is not hard to observe that in the following symmetric instance, the graph Gd, where d is the social welfare
maximizing delegation profile, consists of two weakly connected components: One including the first two and another including
the last two vertices.

x = [0.05, 0.06, 0.94, 0.95],

p = [0.5, 0.5, 0.5, 0.5],

τ = 0.1.

This is because, due to each voter’s tolerance value, a delegation from one of the first two voters to one of the last two, or vice
versa, will not appear in the social welfare maximizing profile.

B.3 Individually Optimal Delegation Profiles

For an individual voter i ∈ V , we define i’s optimal delegation profile as the profile that maximizes i’s expected utility. This
profile will be denoted by di∗. It represents the choice i would make, among all possible profiles, if they could fix all voters’
delegations to solely maximize their own expected utility. This concept serves as a key metric for evaluating the quality of a
delegation profile in terms of social welfare (e.g., whether or not it constitutes a Nash equilibrium). Interestingly, the cyclic
structure plays a crucial role here as well. Specifically, we prove that for any voter i ∈ V , there is no profile that results
in strictly higher utility for i than one where the corresponding delegation graph includes a cycle consisting of all voters in
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Ai(x, τ), ordered by increasing distance to i, and closing back to i. The utility i obtains from such a profile is equal to the
utility they achieve when the edge returning to i is removed.

The main result in this regard is stated below. The individually optimal delegation profile for a voter is referred to as i’s
optimal delegation path. In principle, specifying this path is sufficient, as delegations involving voters outside this path do not
influence i’s utility. Specifically, we show that the most beneficial strategy for a voter is to sequentially delegate their vote to
the closest voter, continuing step-by-step to the farthest voter within the τ distance.

Theorem 14. For any i ∈ V and instance I, we have E(i,d) ⩽ E(i,di∗), where

• d is some delegation profile of I;

• di∗ is the profile for which Gdi∗ includes a path starting in i that traverses all voters within Ai(x, τ ) distance of i in the
order of their distance to i.

That is, di∗ is an optimal delegation profile for voter i ∈ V .

Before proving the result, to illustrate its statement, we revisit our running example.

Example 1 Continued. By Theorem 14, it holds that no better delegation profile exists for voter D, than those including either
the delegation cycle {C,E,B,D} or {E,C,B,D}. In both cases, voter D has an optimal expected utility of 0.11196.

Now we move to proving Theorem 14. We highlight that by providing a constructive proof for an optimal solution with
respect to a single voter, our result contrasts with strategic choice selection in other areas of social choice theory, where the
analogous problem is intractable.

Proof of Theorem 14. The proof is a direct consequence of a series of the three lemmas that follow. The first lemma shows that
any delegation path of a voter v along which voters are sorted by ascending distance to v achieves higher expected utility than
the same delegation path where the order of voters is permuted. For a voter v we denote by E(v, π) the (expected) utility that v
gains from a delegation profile the graph of which has π as the maximal path from v.

Lemma 15. Let π = (v1, · · · , vk) be a delegation path for a voter v1. Assume there exists an index i such that vi+1 is closer
to v1 than i, i.e., dist(v1, vi+1) < dist(v1, vi). Then the expected utility v1 gains from π is lower than the expected utility from
path π′ = (v1, · · · , vi−1, vi+1, i, vi+2, · · · , vk) where the delegation path first visits vi+1 and then i.

Proof. We compare the expected utility of v1 w.r.t. π

E(v1, π) =
k∑

ℓ=1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏
m=1

(1− pvm)

to the expected utility of v1 w.r.t. π′

E(v1, π′) = [

i−1∑
ℓ=1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏
m=1

(1− pvm)] + (τ1 − dist(v1, vi+1))pvi+1

i−1∏
m=1

(1− pvm)

+ (τ1 − dist(v1, vi))pvi
(1− pvi+1

)

i−1∏
m=1

(1− pvm) +

k∑
ℓ=i+2

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏
m=1

(1− pvm).

These expected utilities only differ in terms that include the utilities of i and vi+1. Further, these terms have common factors.
Thus, we have:

E(v1, π) < E(v1, π′) ⇔
(τ1 − dist(v1, vi))pvi + (τ1 − dist(v1, vi+1))pvi+1

(1− pvi) < (τ1 − dist(v1, vi+1))pvi+1
+ (τ1 − dist(v1, vi))pvi(1− pvi+1

) ⇔
τ1pvi − dist(v1, vi)pvi + τ1pvi+1 − τ1pvi+1pvi − dist(v1, vi+1)pvi+1 + dist(v1, vi+1)pvi+1pvi <

τ1pvi+1 − dist(v1, vi+1)pvi+1 + τ1pvi − τ1pvipvi+1 − dist(v1, vi)pvi + dist(v1, vi)pvipvi+1 ⇔
dist(v1, vi+1)pvi+1

pvi < dist(v1, vi)pvipvi+1
⇔

dist(v1, vi+1) < dist(v1, vi)

Note that Lemma 15 holds even for paths that may include voters outside their τ -threshold, i.e., contribute negative utility.
However, as we see next, eliminating such voters from (the end of) a delegation path increases the expected utility.

Lemma 16. Let π = (v1, · · · , vk) be a delegation path for a voter v1 and let π′ = (v1, · · · , vk−1) be the shortened path
by deleting the last voter vk. Then the expected utility of v1 w.r.t. delegation path π is lower than that for path π′, i.e.,
E(v1, π) < E(v1, π′), if and only if τ1 − dist(v1, vk) < 0.
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Proof. We compare the expected utility of v1 w.r.t. π and π′:

E(v1, π) < E(v1, π′) ⇔
k∑

ℓ=1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏
m=1

(1− pvm) <

k−1∑
ℓ=1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏
m=1

(1− pvm) ⇔

(τ1 − dist(v1, vk))pvk
k−1∏
m=1

(1− pvm) < 0 ⇔ τ1 − dist(v1, vk) < 0,

hence the result follows.

Thus, to increase the expected utility, we can first sort voters along a delegation path in order of their distance and then
repeatedly shorten the path to only contain voters with a distance smaller or equal τ . We now show that inserting a voter into a
path increases the expected utility if the subsequent voters have a larger distance.

Lemma 17. Let π = (v1, · · · , vk) be a delegation path for a voter v1. Assume there exists an index i such that dist(v1, vi) <
dist(v1, vℓ) for all ℓ ∈ [i+ 1, k]. Let π′ = (v1, · · · , vi−1, vi+1, · · · , vk) where i is deleted. Then the expected utility of v1 w.r.t.
delegation path π is higher than that for path π′, i.e., E(v1, π) > E(v1, π′).

Proof. We compare the expected utility of v1 w.r.t. π

E(v1, π) =
k∑

ℓ=1

(τ1 − dist(v1, vℓ))pvℓ

ℓ−1∏
m=1

(1− pvm)

to the expected utility of v1 w.r.t. π′

E(v1, π′) =

i−1∑
ℓ=1

(τ1 − dist(v1, vℓ))pvℓ

ℓ−1∏
m=1

(1− pvm) +

k∑
ℓ=i+1

(τ1 − dist(v1, vℓ))pvℓ
i−1∏
m=1

(1− pvm)

ℓ−1∏
m=i+1

(1− pvm)

These expected utilities are only differing in the term that includes utilities of i and some terms that have an additional factor
(1− pi). Thus, we have:

E(v1, π) > E(v1, π′) ⇔
k∑

ℓ=i

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏
m=1

(1− pvm) >

k∑
ℓ=i+1

(τ1 − dist(v1, vℓ))pvℓ
i−1∏
m=1

(1− pvm)

ℓ−1∏
m=i+1

(1− pvm) ⇔

k∑
ℓ=i

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏
m=i

(1− pvm) >

k∑
ℓ=i+1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏

m=i+1

(1− pvm) ⇔

(τ1 − dist(v1, i))pi + (1− pi) >

k∑
ℓ=i+1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏

m=i+1

(1− pvm) ⇔

(τ1 − dist(v1, i))pi > (1− (1− pi))

k∑
ℓ=i+1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏

m=i+1

(1− pvm) ⇔

τ1 − dist(v1, i) >
k∑

ℓ=i+1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏

m=i+1

(1− pvm)

To see that the last inequality holds we first show the following:
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k∑
ℓ=i+1

pvℓ

ℓ−1∏
m=i+1

(1− pvm) = pvi+1
+ (1− pvi+1

)

k∑
ℓ=i+2

pvℓ

ℓ−1∏
m=i+2

(1− pvm) =

pvi+1
+ (1− pvi+1

)(pvi+2
+ (1− pvi+2

)

k∑
ℓ=i+3

pvℓ

ℓ−1∏
m=i+3

(1− pvm)) =

· · ·
pvi+1 + (1− pvi+1)(pvi+2 + (1− pvi+2)(· · · (pvk−1

+ (1− pvk−1
)pvk))) ⩽

pvi+1 + (1− pvi+1)(pvi+2 + (1− pvi+2)(· · · (pvk−1
+ (1− pvk−1

) · 1)))

The previous bound was obtained by bounded the last factor: pvk
⩽ 1. This leaves this multiplicative term to be: pvk−1

+ (1−
pvk−1

) = 1. Observe that this step will now repeat throughout the terms for decreased subscripts. We see the final steps of this
recursive process in the following lines.

· · · = pvi+1
+ (1− pvi+1

)(pvi+2
+ (1− pvi+2

) · 1) = pvi+1
+ (1− pvi+1

) · 1 = 1

Together with our assumption that dist(v1, vi) < dist(v1, vℓ) for all i < ℓ, this yields the desired inequality:
k∑

ℓ=i+1

(τ1 − dist(v1, vℓ))pvℓ
ℓ−1∏

m=i+1

(1− pvm) <

k∑
ℓ=i+1

(τ1 − dist(v1, i))pvℓ
ℓ−1∏

m=i+1

(1− pvm) =

(τ1 − dist(v1, i))
k∑

ℓ=i+1

pvℓ

ℓ−1∏
m=i+1

(1− pvm) ⩽τ1 − dist(v1, i).

Combining the three lemmas above one can show that for an individual voter v, the maximal expected utility can be achieved
by a delegation path that traverses all voters within τv-distance and in order by their distance to v.

B.3.1 Providing an Upper Bound for the Optimal Social Welfare
From Theorem 14 we can directly get the following result.

Corollary 18. For any instance I = ⟨x,p, τ ⟩, if dSW = argmaxd∈V×···×V SW (d) is an optimal profile and di∗ is the
delegation profile with voter i’s highest expected utility, then SW (dSW ) ⩽

∑
i∈V ui(d

i∗).

The result of Corollary 18 provides an upper bound on the highest possible social welfare for any delegation profile in an
instance. Let ODP(I) denote the sum of expected utilities across the optimal delegation profiles of all voters in instance I,
i.e., ODP(I) =

∑
i∈V ui(d

i∗). This approximation is employed in experiments involving socially optimal profiles, where
finding the exact solution is computationally expensive (see Section 5). One natural question is how far away is ODP(I) from
SW (dSW ). We conducted some simulations on small random instances where the delegation profile with the highest social
welfare can be effectively found by brute force. Our preliminary experiments showed that ODP(I) is just a few percentiles
larger than its corresponding SW (dSW ). Details can be found in Appendix C.4.

B.4 Expected Number of Votes Cast

The concept of lost votes is crucial in liquid democracy research, as it has been a key motivation behind the scheme since its
inception. In our work, among others, we are evaluating delegation profiles, both theoretically and experimentally, based on
their potential to mitigate the loss of voting power over all elections held in the system. By votes lost, we refer to the expected
number of votes not cast due to voters abstaining from voting in a given election, which in turn results in the loss of the voting
power of those who delegated to them as well. For simplicity, consider a profile d where each weakly connected component
of Gd contains a cycle. Fix such a delegation cycle C = (v1, · · · , vk). Since the out-degree of every vertex in Gd is 1, C has
no outgoing edges. Consequently, no votes from voters corresponding to vertices in the component of C are lost as long as at
least one voter in C casts a ballot. Equivalently, votes within the connected component can only be lost if all voters in C abstain.
The expected number of votes lost thus depends on the probability that the delegation cycle remains unbroken and the expected
number of incoming votes. A similar analysis applies to components that terminate in self-loops. It holds that

E[# votes lost] =
∑
vi∈C

Πi=1,··· ,k(1− pi) ·

k +
∑

i=1,··· ,k

E[# votes (from outside C) delegated to vi]

 .

Note that here, the term E[# votes delegated to i] is a computation over a tree in Gd. That is, we can compute the expected
number of votes delegated to some voter recursively via the expected number of votes delegated to their direct predecessors.
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Algorithm 1 BR Protocol

1: Input: p, x, τ and n
2: Initialize a random delegation vector d
3: it = 0
4: while it ⩽ n do
5: d1 = d
6: for each i ∈ V do
7: it = it+ 1
8: for each j ∈ V do
9: d′ = (d1

−i, j)

10: exp(j) = ui(d
′)

11: if maxj∈V (exp(j)) > ui(d
1) then

12: d(i) = argmaxj∈V (exp(j))
13: it = 0
14: else if it ⩾ n then
15: return d

E[# votes delegated to v] =
∑

w∈V :d(w)=v

(1− pw) · (1 + E[# votes delegated to w])

This is computationally feasible via a recursion starting from voters with no in-delegations. Observe that, finally, the expected
number of votes cast is n − E[# votes lost]. Given the previous definitions, the following structural result regarding the
minimization of lost voting power is straightforward.
Proposition 19. The delegation graph of the profile that minimizes the number of lost votes consists of a single cycle passing
through every vertex in arbitrary order.

C Experimental Analyses of Our Model

In this section of the Appendix, we detail the various experimental analyses that were conducted to support the theoretical
results of our model. Note that there are files in the supplementary material corresponding to each of the following sections

C.1 Best-Response Dynamics

With a definition of Nash equilibria in our model, we now need a procedure to find them when they exist. We naturally consider
a best-response dynamic, which works by repeatedly checking if any voter has a better delegation choice based on the current
profile of delegations. A detailed pseudocode of the best-response dynamic (BR) is being presented as Algorithm 1. The
process starts with an arbitrary profile of delegations, and then updates the delegations of voters one by one. Each voter updates
their delegation to their best response when one exists, with ties broken arbitrarily. We will refer to each instance where the
protocol checks if a voter has a best response as a round. The algorithm will stop only after n rounds without any voter finding
a best response. This ensures that the resulting delegations form a Nash equilibrium, as no voter can improve their expected
utility by unilaterally changing their delegation.
Experimental Analysis of Symmetric Instances. We ran the BR protocol on 20,000 instances with symmetric τ such that
the parameters were chosen uniformly at random as follows:

• n chosen randomly from {1, · · · , 100}
• τ ∈ [0, 2

3 ] rounded to two decimals.
• x ∈ [0, 1]n rounded to two decimals.
• p ∈ [0, 1]n rounded to two decimals.

We then ran the BR protocol starting from a random initial profile of delegations. For each of these instances, the BR protocol
found a NE.
Example 3. Consider six voters V = {A,B,C,D,E, F} whose opinions can be placed on a line such
that x = (0.2, 0.25, 0.4, 0.4, 0.6, 0.8), probabilities p = (0.5, 0.5, 0.9, 0.3, 0.5, 0.3), and tolerance τ =
(0.25, 0.25, 0.25, 0.25, 0.25, 0.25).

We will perform the best response protocol on our running example, first given in Example 1. We assume the randomly
initiated delegations are d = (A,D,E,B, F,E). Following the BR protocol, we start with voter A and check if there is a BR.
A’s BR is delegating to voter B. We then check for voter B, who has a BR to delegate to A. We then inspect C and see that
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No. voters 20 50 100 200
No. SCC 3.7 7.00 12.93 20.23
No. cycles 2.66 4.40 6.97 10.70
No. self loops 1.03 2.6 5.57 9.53
No. WCC of size 1 0.63 2.5 5.57 9.33
No. paths into SCC 3.4 6.6 10.87 19
Av. width of cycle 0.06 0.05 0.03 0.02
Av. width of WCC 0.23 0.18 0.11 0.08
Av. size of cycle 3.78 4.60 5.17 5.69

Table 7: Reporting various average measurements of the structure of its Nash equilibria taken over the 30 instances of each size (i.e.,
V ∈ {20, 50, 100, 200}). All values are rounded to 2 decimal places. SCC denotes strongly connected components (i.e., cycles and self-
loops), and WCC denotes weakly connected components (i.e., an SCC and the paths entering the SCC).

their BR is to delegate to D. This continues until we arrive at a NE d′′ = (B,A,D,C,C, F ) after 6 iterations. In these first
6 steps, the counter it is set to 0 each time a voter updates their delegations with a BR. The protocol will continue for another
6 iterations with no more updates (as we have reached a NE). The protocol terminates when it = 6. Moreover, we note that for
our example, there are only two NE, d′ and d′′.

C.2 Creating General Instances of our Model

Varying the number of voters. Our first set of instances varies the number of voters n ∈ {20, 50, 100, 200}. For each value
of n, we created 30 instances, randomly selecting x ∈ [0, 1]n to three decimal places, p ∈ [0, 1]n rounded to two decimal
places, and τ ∈ [0, 1]n rounded to one decimal place. Then for each instance I = (x,p, τ ), we find a delegation profile dBR

that are Nash equilibria with the best response protocol (given as Algorithm 1, in Appendix C.1).

Varying the size of τ . The second set of instances assesses the impact of the size of tolerance vectors in the various measures
we look at in the remainder of the experiments. We take the 30 previous instances when n = 50 and then create 20 tolerance
vectors τ ∈ [0, 1]n and we will denote these vectors as τ⩽1 (no restriction on the number of decimal places). We then modify
each of the 20 vectors τ⩽1 by scaling each τ⩽1(i) by 0.75 and 0.5, i.e., τ⩽0.75(i) = 0.75×τ⩽1(i) and τ⩽0.5(i) = 0.5×τ⩽1(i).
Resulting in 20 vectors τ⩽0.75 and 20 vectors τ⩽0.5. Therefore, 600 instances of I = (x,p, τ⩽1), I = (x,p, τ⩽0.75), and
I = (x,p, τ⩽0.5). For each of these instances, we again use the best response protocol to find a delegation profile that is a NE.
These instances are given in the file Instances varying tau.xlxs.

Delegation profiles for different voting models. When analyzing the expected number of votes lost (Appendix C.5) and
the proportion of SW achieved (Section 5), we wanted to compare an arbitrary NE dBR with delegation profiles that reflect
different voting models. The first is acyclic liquid democracy acyc to replicate the models of liquid democracy in which
cycles are not permitted. We create a delegation profile dacyc for each of the instances mentioned previously in the section that
modifies the corresponding dBR by breaking each cycle at a random point and replacing the delegation within the cycle with
a self-loop. The second delegation profile models the direct democracy voting model without delegations. We model this with
the delegation profile ddir where every voter delegates to themselves.

C.3 Experimental Analysis of the Structure of NE

We complement our theoretical results with simulations illustrating how delegation graphs of Nash equilibria, found using our
best-response dynamic (Appendix C.1), can appear in synthetic instances. We create instances at random of various sizes:
n ∈ {20, 50, 100, 200}. For each instance size, we create 30 instances comprised of x,p and τ chosen uniformly at random
such that for each i ∈ V , pi, τi ∈ [0, 1] (rounded to 2 d.p.), and xi ∈ [0, 1] (rounded to 3 d.p.).In total, we have 120 instances
for which we ran our best-response protocol and found a NE, analyzing its structure according to average measurements for
various metrics (see Table 7). First, observe that all of the values present in the table are the average values over the 30 instances
with the same number of voters. For example, each of the 30 instances when n = 20, on average, has 2.66 have cycles, and
when n = 50, the average width of a cycle, averaged over all 30 instances, is 0.05. We observe that components are large in
the number of voters included. Their size compared to the total number of voters also grows as the latter increases. Both the
width of cycles and components (i.e., maximum distance between voters therein) decrease as the number of voters increases,
with voters in the same component, especially in cycles, having very close positions. The proportion of voters who prefer
self-delegation over participating in a cycle remains steady at approximately 5%, similar to the proportion in weakly connected
components of size 1.

The second way we analyze the structure of a NE within the default delegation model is via the impact of the randomly
chosen values of τ . Thus, we restrict the following experiments to our previous 30 instances when n = 50, and we then study
the impact of scaling the tolerance vectors by 0.75 and 0.5. We take 20 vectors τ⩽1 ∈ [0, 1]n chosen uniformly at random for
each pair x,p. We let τ⩽0.75 = 0.75 × τ and τ⩽0.5 = 0.5 × τ , scaling each value in the vector by either 0.75 or 0.5. For
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τ⩽1 τ⩽0.75 τ⩽0.5

Av. tolerance 0.50 0.37 0.25
No. SCC 5.63 6.35 7.69
No. cycles 4.55 4.96 5.77
No. self loops 1.08 1.39 1.92
No. WCC of size 1 0.98 1.23 1.60
Av. no. paths into SCC 6.68 7.05 7.69
Av. width of SCC 0.043 0.039 0.032
Av. width of WCC 0.17 0.15 0.12
Av. size of cycle 4.59 4.35 3.99

Table 8: Reporting various average measurements of the structure each of the 600 equilibria found for each tolerance vector τ⩽k with
k ∈ {0.5, 0.75, 1}. Note that SCC denotes strongly connected components (i.e., cycles and self-loops), and WCC denotes weakly connected
components (i.e., an SCC and the paths entering the SCC).

dBR dacyc ddir
20 voters 0.953 0.859 0.497
50 voters 0.966 0.900 0.494

100 voters 0.969 0.916 0.504
200 voters 0.976 0.940 0.501

τ⩽1 0.983 0.913 0.494
τ⩽0.75 0.978 0.902 0.494
τ⩽0.5 0.965 0.878 0.494

Table 9: The average percentage of the votes cast across the 30 instances when varying n ∈ {20, 50, 100, 200} and 600 instances when
varying τ⩽k for k ∈ {1, 0.75, 0.5}. The three models we compare the percentage of votes cast are the equilibria within our default delegation
model (NE), acyclic liquid democracy (acyc), and direct democracy (dir).

x,p and each τ⩽k with k ∈ {1, 0.75, 0.5}, a NE is found via our best response protocol (see Algorithm 1 in Appendix C.1).
We then take the average measurements over the 600 equilibria found from a certain kind of τ . These values can be found in
Table 8.

We see that the number of connected components increases while the values in the tolerance measures decrease, and we see
that the number of connected components ending in a self-loop increases slightly as well. Moreover, the number of connected
components of size one, i.e., voters delegating to themselves without receiving any delegations, (slightly) increases as the
tolerance vector decreases. Another measure we looked at was the width of a cycle and of a weakly connected component, i.e.,
the largest distance between any two voters within it. The width of cycles and weakly connected components and the size of
cycles all decrease slowly as the tolerance vectors decrease, consistently maintaining notably small widths.

C.4 Experimental Analyses of Approximating SW

Our experimental setup created 400 instances for each n ∈ {5, 6, 7, 8}, where each i ∈ V had a distinct position xi ∈ [0, 1]
rounded to three decimal places where no two voters are at the same position, a randomly chosen τi ∈ (0, 1) without rounding,
and a pi ∈ (0, 1) rounded to two decimal places. For each of these instances, we identified the delegation profile dSW that
maximized SW (dSW ) and computed ODP(I). We then examined the values of SW (dSW )/n and ODP(I)/n, which allowed us to
calculate the increase in the average expected utility of a voter in dSW compared to their optimal path. This led to ODP(I)/n
being 3.0%, 3.0%, 2.8%, and 2.6% higher than SW (dSW )/n for n = 5, 6, 7, 8, respectively. Thus, our upper bound ODP(I)
is close to the highest possible social welfare SW (dSW ). However, there appears to be a trend of decreasing distance as the
number of voters grows.

C.5 Expected Number of Votes Cast in Equilibria

We now revisit our instances with varying n and τ⩽k (from Appendix C.2), which include 30 and 600 instances for each variant,
respectively. To contextualize our model, we compare the expected percentage of votes cast under three scenarios: a NE the
default delegation model NE, acyclic liquid democracy acyc, and direct democracy dir. We use the delegation profiles for
the three models described in Appendix C.2. We computed the average expected percentage of votes cast in each instance for
all three models, and the results are presented in Table 9.

When varying the number of voters, we observe that in the default delegation model, a random NE achieves a very high
percentage of votes being cast—starting at 95% for 20 voters and steadily increasing as the number of voters grows. A similar
pattern is seen in the acyc setting, though the increase is sharper, and, even at its peak (with 200 voters) the percentage of votes
cast in the acyc setting remains below the lowest value achieved in the default delegation model (achieved for 20 voters). In
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stark contrast, the direct democracy setting consistently loses around half of the votes of votes, which corresponds to the average
probability of delegating. These results highlight the significant advantage of our framework in preserving voting power. When
varying the values of τ⩽k for k ∈ {1, 0.75, 0.5} leads to 98.3%, 97.8%, and 96.5% expected votes cast in the default delegation
model.

16


	Introduction
	Related Work
	Our Contribution

	The Default Delegation Model
	Existence of Nash Equilibria
	Special Cases
	Variants of the Model

	Structure of Nash Equilibria
	Quality of Nash Equilibria
	Conclusion
	Omitted Proofs
	Additional Concepts and Results
	Further Insights On the Structure of Nash Equilibria
	Further Insights on the Structure of Optimal Delegation Profiles
	Individually Optimal Delegation Profiles
	Providing an Upper Bound for the Optimal Social Welfare

	Expected Number of Votes Cast

	Experimental Analyses of Our Model
	Best-Response Dynamics
	Creating General Instances of our Model
	Experimental Analysis of the Structure of NE
	Experimental Analyses of Approximating SW
	Expected Number of Votes Cast in Equilibria


