Homework assignment for 23rd March

March 16, 2017

Some of the problems below were solved in the class.

Exercise 1. Let *M* be the following Kripke model for intuitionistic logic. *M* has infinitely many worlds w_n for $n \in \mathbb{N}$ (here $0 \in \mathbb{N}$). For each *n*, the domain of w_n is \mathbb{N} . A model w_i is accessible from w_j if and only if $i \ge j$. The signature consists of one unary predicate P(x) such that in the world w_n , P(k) holds iff $k \le n$. Check whether the following sentences are satisfied in *M*:

- $\exists x P(x)$.
- $\neg \forall x \neg P(x)$.
- $\neg \exists x \neg P(x)$.
- $\forall x \exists y \ (P(x) \to \neg P(y)).$
- $\exists x(P(x) \to \forall y \ P(y)).$

Exercise 2. Let M be the following Kripke model for the intuitionistic logic. M has infinitely many worlds w_n for $n \in \mathbb{N}$. For each n, the domain of w_n is $\{0, 1, \ldots, n\}$. A model w_i is accessible from w_j if and only if $i \ge j$. The signature consists of one unary predicate P(x) such that in the world w_n , P(k) holds iff k < n (note that in each world there is exactly one element x which does not satisfy P(x)). Check whether the following sentences are satisfied in M:

- $\neg \forall x P(x).$
- $\exists x \neg P(x)$.
- $\forall x \exists y \neg P(y)$.
- $\exists x (\exists y P(y) \rightarrow P(x))).$

Exercise 3. Find a sentence which is true in exactly one of the models described in the above problems.

Exercise 4. For each of the following formulae, find a model in which they are not satisfied.

- $\neg \neg \forall x P(x) \rightarrow \exists x P(x).$
- $\forall x \exists y (P(x) \lor \neg P(y)).$
- $\exists x \forall y (P(x) \rightarrow P(y)).$

Observe that all the above sentences are classically valid.

Exercise 5. Find a model in which only one of the following sentences holds:

- $\neg P(a) \lor Q(a)$.
- $P(a) \rightarrow Q(a)$.

Exercise 6. Find a model in which only one of the following sentences holds:

- $\forall x (\exists y Q(y) \lor P(x)).$
- $\exists y \ Q(y) \lor \forall x \ P(x)$