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Abstract

We prove that the theory of the extensional compositional truth
predicate for the language of arithmetic with ∆0-induction scheme
for the truth predicate and the full arithmetical induction scheme is
not conservative over Peano Arithmetic. In addition, we show that a
slightly modified theory of truth actually proves the global reflection
principle over the base theory.

1 Introduction

This paper concerns conservativeness of the compositional truth predicate
with bounded induction over Peano Arithmetic. We say that a theory Th1

is conservative over a theory Th2 with respect to a class of formulae Γ ⊆
SentLTh2

(or simply Γ-conservative) iff for every sentence φ ∈ Γ if Th1 ` φ,
then Th2 ` φ. If Γ is the whole class of first-order formulae over the lan-
guage of the theory Th2, then we simply say that Th1 is conservative over
Th2. If Γ happens to be the class of all formulae in the language of Peano
Arithmetic, then we say that Th1 is arithmetically conservative over Th2.
Verifying various conservativeness results for theories of interest forms an
established line of research. It is important from both philosophical and
purely logical point of view. From a philosophical point of view, it might be
argued that conservativeness of Th1 over Th2 assures that accepting the ax-
ioms of the former theory does not force us to make any new commitments
as to what is actually the case than accepting the latter. This motivation
is particularly important in case of the truth predicate, whose triviality is
extensively discussed in contemporary philosophy. Namely, the adherents
of the deflationary theory of truth claim that the truth predicate does not
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have any actual content but is rather a purely logical device. This vague and
imprecise claim has been explicated by some critics (most notably Horsten
in [7], Shapiro in [14] and Ketland in [9]) in terms of conservativeness. Were
the truth predicate void of substantial content, whatever that would exactly
mean, the axioms governing it should not allowus to derivemore arithmeti-
cal theorems than our theory of arithmetic alone. Thus conservativeness re-
sults help to clarify the picture and to distinguish the principles of truth that
account for it having a substantial content. From the point of view of pure
logic, conservativeness is one of the very basic relations between the theo-
ries of interest. It shows which principles may be added to a given theory
without the risk of inconsistency or inadequacy. In this context it is impor-
tant that in practice most conservativeness results are possible to obtain in
weak theories like PRA or IΣ1.1 Moreover verifying that one theory is con-
servative over another might deliver new information about the strength
of the latter, especially when the first one allows us to employ notions and
principles which are prima facie not available in the second one.

The situation was particularly interesting in the case of the composi-
tional truth predicate over PA. Let us first define what we precisely mean
by this notion. Before that, let us introduce a few notational conventions.
We assume that the reader is familiar with the arithmetization of syntax as
explained, e.g. in [8].

Convention 1. • We assume that we have some fixed Gödel coding. By
pxq we denote the Gödel code of x. We will also use pxq to represent
the numeral for the Gödel code of x.

• ”y = x” is an arithmetical formula representing a natural primitive
recursive function assigning to an element x the code of its numeral,
i.e. pSS . . . S(0)q, where the successor function symbol S occurs x
times;

• Term(x) is some fixed arithmetical formula representing the set of
(Gödel codes of) arithmetical terms;

• the arithmetical formula Form(x) represents the set of (Gödel codes
of) arithmetical formulae, the formula Sent(x) represents the set of

1Theorem 5.2 in [2] states that the conservativity proof for CT− may be carried out in
PRA. The same argument is valid in the case of CT− with the internal induction for the
arithmetical formulae. In [13] (Theorem 2) it is shown that CT− and CT− with the internal
induction for the arithmetical formulae are conservative over PA provably in I∆0 + exp1,
where exp1 denotes the hyper-exponential function.
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(Gödel codes of) arithmetical sentences, i.e. formulae with no free
variables;

• the arithmetical formulaAxPA(x) represents the set of axioms of Peano
Arithmetic;

• by a proof in the sequent calculus from some set of axioms Γ wemean
a proof in the sequent calculus, where the additional initial sequents
”−→ φ” are allowed, where φ ∈ Γ. In particular, by a proof of φ from
PA in the sequent calculus we mean an ordinary proof of φ from ax-
ioms of PA in sequent calculus for first-order logic;2

• by PrTh(x) we mean an arithmetical formula formalising the unary
relation: ”there exists (a code of) a proof d of the sentence x in the
sequent calculus from the axioms of the theory Th”;

• if τ(y) is some formula, then by Prτ (x) we mean an arithmetical for-
mula formalising the relation: ”there exists (a code of) a proof d of the
sentence x in the sequent calculus, where the initial sequents of the
form ’−→ φ’ are allowed for φ such that τ(φ)”. Since in our applica-
tions τ(y) will be thought of as some form of a truth predicate, Prτ (x)
reads as: ”there exists a proof of x from true premises”;

• Subst(φ(v), t) is an arithmetical formula representing the primitive re-
cursive substitution function, which assigns to a (code of a) formula
φ(v) with at most one free variable and (a code of a) term t the unique
(code of the) sentence resulting from substituting t for every free oc-
currence of v in φ. Additionally we assume that Subst is the identity
functionwhenever applied to sentences (i.e., whenever there is no free
variable in φ);

• the arithmetical formula ”y = t◦” represents a natural primitive re-
cursive function assigning to each (code of a) term t its value (and
undefined if t is not a code of a term);

• ”x ∈ y” is an arithmetical formula expressing that x-th bit of the bi-
nary expansion of y is 1 and we write that x /∈ y iff either it is 0 or
y < 2x;

2Rather than a proof of φ from the empty set of premises in sequent calculus with the
additional induction rule or with the ω-rule.
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• letM be an arbitrary model of a signature expanding the language of
PA. Let I ⊂ M be an arbitrary set. We say that I is coded in M iff
there exists an element c such that x ∈ I iffM |= x ∈ c.We call that
c the code of the set I . We will sometimes identify the subset I with
its code c.3

Wewill usually suppress the distinction between syntactical objects and
their codes, e.g. we will sometimes write, e.g. PrTh(0 = 0) instead of
PrTh(p0 = 0q). In order to avoid any confusion let us introduce a few more
notational conventions.

Convention 2.

• By using variables φ, ψ we implicitly restrict quantification to (Gödel
codes of) arithmetical sentences. I.e. by∀φ Ψ(φ)wemean ∀x Sent(x)→
Ψ(x) and by ∃φ Ψ(φ) wemean ∃x Sent(x)∧Ψ(x). For brevity we will
sometimes also use variables φ, ψ to run over arithmetical formulae,
whenever it is clear from the context which one we mean;

• similarly, φ(v), ψ(v) run over arithmetical formulae with at most one
indicated free variable (i.e. φ(v) is either a formula with exactly one
free variable or a sentence);

• s, t run over codes of closed arithmetical terms;

• v, v1, v2, . . . , w, w1, w2, . . . run over codes of variables;

• to enhance readabilitywe suppress the formulae representing the syn-
tactic operations. We will usually be writing the results of these oper-
ations instead, e.g. Φ(ψ ∧ η) instead of Φ(x)∧ ”x is the conjunction of
ψ and η” similarly, we write Φ(ψ(t)) instead of Φ(x) ∧ Subst(ψ, t);

• Let M be an arbitrary model of PA. If x ∈ M is greater than k for
any number k ∈ ω, then we call it nonstandard. We call it standard
otherwise. Since we often ignore the difference between syntactical
objects and their Gödel codes, we will often say that a sentence, for-
mula or term is nonstandard meaning that its code x satisfies inM all
the sentences x > k for natural numbers k.

3There is a difference between the above definition of a coded set, and the notion of a
coded subset of ω. Usually we say that a subset A ⊆ ω is coded in a modelM ⊃ ω iff there
exists c such that {x ∈ M | M |= x ∈ c} ∩ ω = A. The set A will not, in general, be coded
in any model of PA in our sense of coding.
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Definition 3. By CT− we mean the theory obtained by extending the arith-
metical signaturewith an additional predicateT (x) (with the intended read-
ing ”x is a Gödel code of a true sentence”) and extending axioms of PAwith
the following ones:

1. ∀s, t
(
T (s = t) ≡ s◦ = t◦

)
.

2. ∀φ, ψ
(
T (φ⊗ ψ) ≡ Tφ⊗ Tψ

)
.

3. ∀φ
(
T (¬φ) ≡ ¬Tφ

)
.

4. ∀v, φ(v)
(
T (Qv φ(v)) ≡ Qx T (φ(x))

)
.

Here ⊗ ∈ {∧,∨} and Q ∈ {∀,∃}.

Note thatwe in CT− do not assume that any formulaewith the truth pred-
icate satisfy the induction scheme.

Remark 4. Note that the compositionality axioms for quantifiers which we
have listed above are not exactly the ones typically assumed in the definition
of compositional theories of truth with no induction. For simplicity, let us
discuss this difference in a specific case of the universal quantifier, although
analogous remarks apply to the existential quantifier as well. A standard
axiom as given e.g. in [5] has the following form:

∀v, φ(v) T (∀v φ(v)) ≡ ∀t T (φ(t)). (∗)

According to the above axiom a universal formula ∀v φ(v) is true only if
for arbitrary term t its substitutional instance φ(t) is true, which is not the
same as to say that for arbitrary numeral x the formula φ(x) is true. In the
presence of Σ1-induction for the formulae containing truth predicate both
versions of the quantifier axioms are equivalent, since in such a casewemay
prove the principle of extensionality (or, as we will also sometimes call it,
regularity), i.e. the following sentence:

∀φ∀t, s
(
s◦ = t◦ → Tφ(t) ≡ Tφ(s)

)
. (REG)

The principle states that the truth-value of a formula does not depend
on specific termswhich occur in the formula, but rather on their values (and
PA proves that for every term there exists a numeral with the same value).
It is arguable however, whether the axiom (∗) as stated above is really in-
tuitive under the assumption that we lack any induction for the extended
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language whatsoever. Presumably the initial intuition is that ∀x φ(x) is true
iff the formula φ(x) is satisfied by all elements. If we want to work with
the truth predicate rather than the satisfaction relation, we have to rethink
what it means to be satisfied by all elements. One way to say it is that for an
arbitrary element x the sentence φ(t) is true, where t is some term denoting
x.And since in systems whose intended domain are natural numbers every
element x is denoted by a numeral SS . . . S0 (with S repeated x times), this
intuition seems to be perfectly addressed by the axiom we opt for, i.e.:

∀v, φ(v) T (∀v φ(v)) ≡ ∀x T (φ(x)).

On the other hand, there is the intuition that universal sentences should
satisfy dictum de omni principle, i.e. whenever ∀v φ(v) is true, we expect
φ(t) to be true for arbitrary terms. These two intuitions for the truth of
universal sentences may diverge when we lack induction for the formulae
containing the truth predicate, but we see no obvious reason why substi-
tution principle should be regarded more essential than the intuition that
all natural numbers can be named by numerals. Therefore, we do not think
that the compositional axioms for quantifiers which we assume are less nat-
ural than the ones that are typically formulated. Namely, we assume that to
infer that a universal sentence ∀v φ(v) is true, we only need to assume that
φ(x) holds for all numerals x rather than require the stronger hypothesis to
hold, namely that φ(t) holds for all terms. Probably the most satisfactory
solution, when working with such weak theories as CT−, would be to em-
brace both intuitions and accept asymmetric compositional axioms for the
universal quantifier, i.e.:

1. ∀v, φ(v) T
(
∀v φ(v)

)
−→ ∀t T

(
φ(t)

)
.

2. ∀v, φ(v) ∀x T
(
φ(x)

)
−→ T

(
∀v φ(v)

)
.

Of course, in this case, we should also introduce an analogous pair of
axioms for the existential quantifier. We remark that, since a variant of CT−
using the above asymmetric axioms for quantifiers is stronger than the one
chosen by us, our non-conservativity results apply also to the extensions of
CT− with the compositional axioms for quantifiers defined in such way.4

Let us make one more comment at the end of this section. Taking into
account that the choice of the precise formulation for the quantifier axioms
seems problematic, one may wonder, whether it would not be easier to

4We thank the anonymous referee for the remark that led to this discussion.

6



prove our results for the compositional satisfaction predicate rather than the
truth predicate, since then there seems to be a canonical choice of quantifier
axioms.

The basic reason why we have decided to work with the truth predi-
cate is rather trivial. We wanted to conform to the standard conventions
in the field of the axiomatic truth theories, especially that in the context of
weak theories results obtained for the satisfaction predicate do not in gen-
eral carry over to the truth-theoretic framework quite automatically pre-
cisely because of the extensionality issues.

2 Known Results on Conservativity of Extensions of
CT−

Let us list a few important theories obtained via augmentingCT−with some
induction.
Definition 5. By CT we mean the theory obtained by adding to CT− all
the instances of the induction scheme (i.e. including the ones for formulae
containing the truth predicate). By CT1 we mean CT− with induction for
Π1-formulae containing the truth predicate. By CT0 we mean CT− with
induction for ∆0 formulae containing the truth predicate.

One of the most important questions of theory of truth may be now
rephrased: which reasonable extensions of CT− are conservative over PA?
This question is indeed nontrivial thanks to the following theorem:5

Theorem 6 (Krajewski–Kotlarski–Lachlan, Enayat–Visser, Leigh). CT− is
conservative over PA.

This result may be still improved in a substantial way.
Definition 7. By the principle of internal inductionwemean the following
axiom:

∀φ(v)

(
∀x
(
T (φ(x))→ T (φ(Sx))

)
−→

(
T (φ(0))→ ∀x T (φ(x))

))
. (INT)

5Let us explain ourselves for this complicated attribution. A related result has been ob-
tained by Kotlarski, Krajewski and Lachlan in [12], who essentially proved Theorem 6 for a
variant of CT− with satisfaction relation in place of the truth predicate. However, it is by no
means obvious to us how to modify the proof of Kotlarski, Krajewski and Lachlan so that
it works for the truth predicate. In order to do this we would apparently have to prove that
the extensionality principle for the satisfaction relation is conservative over PA, which does
not seem trivial. Theorem 6 for the version of CT− axiomatised in purely relational language
was proved by Enayat and Visser in [2]. The full-blown result was shown by proof-theoretic
methods by Leigh in [13].
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The name of this axiom is introduced in analogy to the distinction be-
tween internal and external induction axioms in subsystems of second-order
arithmetic.

The proof from [2] (as well as the one from [13]) of conservativeness of
CT− over PA , gives as a corollary the following theorem.6

Theorem 8 (Enayat–Visser, Leigh). CT−+ (INT) is conservative over PA.

Let us recall the regularity principle (REG). Instead of considering an
unusual variant of CT− we could have added the above principle to the
standard list of axioms, because it yields both forms of the compositional
axiom for the quantifiers equivalent. Fortunately, this would not trivialise
our work, thanks to the following theorem, which may be read directly off
the Enayat–Visser construction.

Theorem 9 (Enayat–Visser). CT−+ (INT) + (REG) is conservative over PA.

It is easily observed that the internal induction may be proved in a sys-
tem CT0 that is in CT− with ∆0-induction for the truth predicate. Then, as
we shall briefly indicate, it follows that CT− with Π1 induction for the truth
predicate is enough to prove the following principle:

Definition 10. By the Global Reflection Principle we mean the following
axiom:

∀φ
(
PrT (φ) −→ T (φ)

)
, (GRP)

where PrT (x) is a special case of the predicate Prτ (x) defined in Convention
1 with τ(y) = T (y).Hence the intuitive reading of PrT (x) is: ”there exists a
proof d of the sentence d in sequent calculus from the initial sequents ’−→ φ’,
where we have T (φ), i.e. a proof in sequent calculus from true premises”.

Note that, speaking informally, (GRP) says that the set of true sentences
is closed under reasonings in First-Order Logic.

Definition 11. By the Axiom Soundness Property for Th we mean the fol-
lowing principle:

∀φ
(
AxTh(φ) −→ T (φ)

)
. (ASP)

6Actually in the both cited papers amuchmore general theoremhas been presented from
which Theorem 8 follows as a direct corollary, see [2], remarks in Section 6 and [13], Theorem
3.
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Note that if a theory of truth proves both the axiom soundness of Th and
satisfies the global reflection principle, then it proves the following state-
ment:

∀φ
(
PrTh(φ) −→ T (φ)

)
.

Then a crude lower-bound for the strength of non-conservative truth-
theoretic principles is given by the following theorem:

Theorem 12. CT1 proves the global reflection principle and the axiom soundness
property for PA and thus the consistency of PA. In effect, this theory is not conser-
vative over PA.

The above result is obtained as follows: working in CT1, by a straightfor-
ward induction on length of proofs in the sequent calculus we show that for
every substitution of closed terms for free variables in the sequent, if every
formula in the antecedent is true, then some formula in the succedent of the
sequent arrow is true. This is obviously aΠ1 statement, since the quantifiers
”every formula in the antecedent”, ”every formula in the succedent” may
be assumed to be bounded by the size of the proof in question (under a rea-
sonable coding of syntax and of sets). The consistency of PA follows, since
wemay prove in CT0 that the parameter-free variant of induction holds and
then, byΠ1 induction on the length of the block of universal quantifiers, that
any universal closure of an instance of the induction scheme is true as well.

Then a natural question arises of how to improve bounds on minimal
truth-theoretic principles which, combinedwith CT−, are non-conservative
over PA. The first natural candidate to consider is the theory CT0. Indeed,
Kotlarski in his paper [11] has presented an alleged proof that the theory
CT0 proves the global reflection principle.7 Unfortunately, as observed in-
dependently by Albert Visser and Richard Heck, the proof contained a gap
which seemed to require an essentially new approach to surmount. Actu-
ally, after the gap has been revealed, it has been completely unclear whether
or not the theorem is true at all. We shall discuss the erroneous proof in the
appendix. In the present paper we provide a non-conservativeness proof
for our variant of CT0.Moreover, we prove that the global reflection princi-
ple is arithmetically conservative over CT0. In addition we show that a very
natural modification of CT0 actually proves the principle.

7More precisely, he considered a theory of satisfaction rather than truth, and only aimed
to show that every formula derivable in PA is satisfied under all valuations.
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3 The main result

In the paper [3] Fujimoto has argued that the right way to compare the con-
ceptual strength of theories of truth Th1, Th2 over the same base theory
B (in our case B = PA) is to check whether Th1 defines a truth predicate
satisfying axioms of Th2. In such case we say that Th2 isB-relatively defin-
able8 in Th1. The relative definability is a very natural and strong relation
between two theories. In particular, if Th2 is relatively definable in Th1, it
implies the following other relations9 (on the other hand none of the these
relations implies that Th2 is relatively interpretable in Th1):

1. Th2 is arithmetically conservative over Th1.

2. Th2 is interpretable is Th1.

3. Every model of Th1 expands to a model of Th2.

Let us briefly comment upon the first of the three points. Suppose that
Th1 relatively interprets Th2, i.e. there is a formula τ(x) which provably
satisfies the truth axioms of Th2. Consider any proof in Th2 with an arith-
metical consequence φ. Then replace all occurrences of the truth predicate
in that proof with the formula τ(x) and precede all the uses of Th2’s truth-
theoretic axioms with a proof in Th1 that τ(x) indeed satisfies the axioms
that we used. In such a way we can obtain a proof of φ in Th1.

We show that in this sense CT0 with the global reflection principle and
the axiom soundness property is as strong as CT0 alone.

Theorem 13. CT0 with the global reflection axiom and the axiom soundness prop-
erty for PA is PA-relatively definable in CT0. In particular CT0 is not conservative
over PA.

In other words, there is a formula T ′(x) such that in CT0 one can prove
that T ′(x) satisfies compositional conditions for arithmetical sentences,
global reflection principle and axiom soundness property for PA. More-
over, we can prove in CT0 every instance of ∆0-induction scheme for the
predicate T ′(x).

Before we present the proof of the above theorem in full detail, let us
give a sketch of our argument. This outline will be imprecise and not fully

8Fujimoto calls this relation relative truth interpretability (and keeps the parameter B
implicit).

9All the three points have been observed in the original paper [3], see p. 324 for the first
two of them and Proposition 28 (1) for the third one.
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correct, but the rest of the section will be generally devoted to spelling out
all the details in a proper manner.

One of the main tools in metamathematics are various forms of partial
truth predicates. Probably the best known of them are arithmetical truth
predicates for the classes Σn.10 Consider a partial arithmetical truth predi-
cate τ(x). Its main feature is that for some formulae we have:

τ(pφq) ≡ φ.

If τ(x) is an arithmetical formula and the truth predicate T (x) satisfies
CT−, then this entails that for standard sentences φwe have:

Tτ(φ) ≡ Tφ.

Now, it may be hoped that we can define some families of formulae for-
mulae Tc(v) (or, more precisely, their codes, so that the parameter cmay be
nonstandard), which behave like truth predicates in the sense that CT0 may
prove:

TTc(φ) ≡ Tφ

for all arithmetical formulae φwith codes smaller than c. We couldwish
to do still better and to require that the newly defined truth predicates are
compositional for small enough formulae in the sense that we have e.g.

TTc(φ ∧ ψ) ≡ TTc(φ) ∧ TTc(ψ).

Now, the key idea is that in the presence of ∆0 induction for our original
truth predicate T (x) we may hope for a full induction for the ”truth predi-
cates” TTc(x). Before we explain why this should be case, let us introduce
some notation, which will also be used in the proof proper.

First of all, we define a formula T ′c(x) as TTc(x). The next notational
convention deserves a separate definition.

Definition 14. Let P (u) be a fresh11 unary predicate with the only variable
u, δ(x) an arbitrary formula and ψ another formula with exactly one free
variable, possibly with parameters. Then by

δ[ψ/P ](x)

10For a definition see e.g. [4] Definitions 1.71 and 1.74. See [4] pp. 50–61 for a general
discussion.

11That is, neither from the arithmetical signature, nor T (u).
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wemean the effect of formally substituting the formulaψ(t) for all occurences
of P (t), where t is an arbitrary term, possibly changing the names of the
bounded variables so as to avoid clashes.

Probably, the above definition is best understood via an example.

Example 15. Let δ(x) = ∃z, w (P (z +w)∧ ∀z < w¬P (z))∧ (x = x)∧ P (x).
Then

δ[(u > u)/P ](x) = ∃z, w (z+w > z+w∧∀z < w (¬z > z))∧(x = x)∧x > x.

It is clear that the formula substitution operation may be formalized in
PA.

Let us sketch, why the predicates T ′c(x) := TTc(x) satisfy full induction
scheme. First, one can check that the principle of internal induction (INT)
may be proved by a straightforward application of ∆0-induction. Then we
would like to show that for arbitrary arithmetical φwe have:

(
∀x
(
φ[T ′c/P ](x)→ φ[T ′c/P ](Sx)

))
−→

(
φ[T ′c/P ](0)→ ∀x φ[T ′c/P ](x)

)
.

So let us fix any arithmetical formula φ and consider the formula
T (φ[Tc/P ])(x).Now, since T is compositional we can push it down the syn-
tactic tree of the (nonstandard, but arithmetical) formula φ[Tc/P ] finitely
many levels, until it meets a partial truth predicate Tc, but not any further.
Since we assumed that φ is of standard syntactic shape we do not need any
induction to do that. We obtain the following equivalence, whichwe call the
generalised commutativity principle (strictly speaking, we only get some-
thing resembling it — see the further comments):

T (φ[Tc/P ](x)) ≡ φ[TTc/P ](x). (GC)

Now, by the internal induction principle we have:

∀x
(
T
(
φ[Tc/P ](x)

)
→ T

(
φ[Tc/P ](Sx)

))
−→(

T
(
φ[Tc/P ](0)

)
→ ∀x T

(
φ[Tc/P ](x)

))
.

If the (GC) principle were really the case, we could conclude that:
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(
∀x
(
φ[T ′c/P ](x)→ φ[T ′c/P ](Sx)

))
−→

(
φ[T ′c/P ](0)→ ∀x φ[T ′c/P ](x)

)
.

Unfortunately, (GC) is strictly speaking not true, since we do not have for
example:

T (∃x Tc(x)) ≡ ∃x T (Tc(x)),

but rather

T (∃x Tc(x)) ≡ ∃x T (Tc(x)).

Most probably, reformulating (GC) in a properwaywould be quitemessy.
Instead of it, weuse a different statement suggested to us byCezaryCieśliński
as a way to bypass the mentioned difficulty, which will appear as Lemma
21.

Sowemay hope to construct a family of predicates T ′c(φ)which are com-
positional for formulae φ with the complexity smaller than c (under an ap-
propriate choice of the complexity measure) and satisfy the full induction
scheme. Nowwe are very close to construct a compositional truth predicate
satisfying the global reflection scheme. Namely, pick any model (M,T ) of
CT0 and choose some formula ψ and a set of sentences Γ both in the domain
ofM such thatM |= PrΓ(ψ) with a proof d in the domain ofM . Now, one
can check that the standard argument using induction on the structure of
the proof allows us to show that if all the sentences γ in Γ satisfy T ′d(γ), then
also T ′d(ψ) holds.

The last step of our construction is simply to take the sum over c ∈ M
of the predicates T ′c(x). If we can show that the predicates T ′c(x) and T ′d(x)
agree on the formulae of complexity smaller than both c and d, then the
predicate T ′(x) =

⋃
c∈M T ′c(x) should be fully compositional and satisfy the

global reflection principle. Moreover, T ′(x) should satisfy ∆0-induction,
since for any a its restriction to the interval [0, a] is equal to T ′a ∩ [0, a] and
therefore fully inductive.

Now, our task is essentially twofold: first, we have to define the family
of arithmetical predicates (Tc(x)) such that provably in CT0 the predicate
Tc(x) is compositional for formulae of complexity smaller than c. Second,
we have to spell out all the details of the above argument. The rest of this
section will be devoted to these issues. Let us start with some definitions,
whichwill play a crucial role in constructing our family of arithmetical truth
predicates with nice properties.
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Definition 16. LetM |= PA, c ∈M and (φi)i≤c ∈M be a coded sequence of
sentences. Then

∨
i≤c φi denotes the code of the disjunction of all φi-s with

parentheses grouped to the left (for the sake of determinateness only —
provably in CT0 the truth of a sentence does not depend on how we paren-
thesize blocks of disjunctions and conjunctions).

Lemma 17 (Disjunctive correctness). CT0 proves that for all x and all indexed
families of sentences12 (φi)i≤x

T

(∨
i≤x

φi

)
≡ ∃i ≤ x T (φi). (DC)

Lemma 18 (The internal induction). CT0 proves the internal induction axiom
(INT).

Proofs of both lemmata are carried out by a completely straightforward
application of ∆0-induction. Let us show as an example the proof of dis-
junctive correctness.

Proof of Lemma 17. We show by induction on x that the disjunctive correct-
ness holds for all indexed families of sentences a < x. In particular we will
assume that under our coding, every subfamily of a is also smaller than
x.We can assume that by convention a disjunction over empty sequence is
some fixed falsum, say 0 6= 0 and a disjunction

∨
i≤0 φi over a sequence of

length one is simply φ0.
Assuming the above conventions, the claim is trivial, when a is the empty

sequence or when a has exactly one element. Suppose now that a =
∨
i≤l φi

and that a < x+ 1. If a < x, then our claim holds by the induction hypothe-
sis, sowemay assume that a = x.Wewill focus on the left-to-right direction
in our equivalence. Let

a =
∨
i≤l
φi.

Without loss of generality wemay assume that l > 0. Then by definition
we have:

12Note that the quantification over indexed families of sentences is expressed here with
an arithmetical formula ”for all y, if y is a (code of a) sequence of arithmetical sentences of
length x”. In particular, such a sequence will always have, according toM , the number of
its elements equal to some x ∈ M . Therefore, from the point of view ofM it will be finite
(but not necessarily equal to some k ∈ ω).
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T
(∨
i≤l
φi

)
≡ T

(
(
∨
i≤l−1

φi) ∨ φl
)
.

By compositionality this implies:

T
(∨
i≤l
φi

)
≡ T

( ∨
i≤l−1

φi

)
∨ T (φl).

Which by induction hypothesis is equivalent to:(
∃i ≤ (l − 1)T (φi)

)
∨ T (φl).

The claim follows. The right-to-left direction is proved in a similar fash-
ion.

Before we proceed to the proof of our theorem, let us discuss a few
preparatory steps.

Let us introduce our main technical tool — a particular class of partial
truth predicates. Let An be the set of arithmetical sentences whose logical
complexity is exactly n, where by the logical complexity wemean the maxi-
mal depth of nesting of logical symbols, i.e. quantifiers and connectives and
each symbol is counted separately (e.g. prefixing a formula with a block of
five universal quantifiers, raises its complexity by five). The binary relation
x ∈ Ay is clearly primitive recursive and thus represented in PA. Its precise
definition is as follows:

x ∈ A0 ≡ ∃s, t x = (s = t)

x ∈ Ay+1 ≡ ∃v, φ(v) x = (∃v φ(v)) ∧ (φ(0)) ∈ Ay
∨ ∃v, φ(v) x = (∀v φ(v)) ∧ (φ(0)) ∈ Ay
∨ ∃φ, ψ x = (φ ∨ ψ) ∧

∨
v,w:max(v,w)=y

(
φ ∈ Av ∧ ψ ∈ Aw

)
∨ ∃φ, ψ x = (φ ∧ ψ) ∧

∨
v,w:max(v,w)=y

(
φ ∈ Av ∧ ψ ∈ Aw

)
∨ ∃φ x = (¬φ) ∧ (φ ∈ Ay).

Let us define a family of arithmetical predicates (Θn)n∈ω in the following

15



way:

Θ0(x) = ∃s, t x = (s = t) ∧ s◦ = t◦

Θn+1(x) = ∃v, φ(v) x = (∃v φ(v)) ∧ ∃y Θn(φ(y))

∨ ∃v, φ(v) x = (∀v φ(v)) ∧ ∀y Θn(φ(y))

∨ ∃φ, ψ x = (φ ∨ ψ) ∧
∨
k,l≤n

(
φ ∈ Ak ∧ ψ ∈ Al ∧ (Θk(φ) ∨Θl(ψ))

)
∨ ∃φ, ψ x = (φ ∧ ψ) ∧

∨
k,l≤n

(
φ ∈ Ak ∧ ψ ∈ Al ∧ (Θk(φ) ∧Θl(ψ))

)
∨ ∃φ x = (¬φ) ∧ ¬Θn(φ).

Clearly, the functions n 7→ pAnq and n 7→ pΘnq are primitive recursive.
Following our conventions we will write Ax and Θx for the arithmetical
formulae representing these functions as well as for their values. We will
sometimes write a ∈ Ac meaning that an element a satisfies the formula
Ac(x) (where c is a parameter, possibly nonstandard). Note, thatAc(x) may
indeed be expressed with an arithmetical formula with a parameter.

Let a simplistic partial arithmetical truth predicate Tn(x) be defined in
the following way:

Tn(x) =
∨
j≤n

x ∈ Aj ∧Θj(x).

As before, we shall write simply Tx(y) to denote the function x, y 7→
pTx(y)q. Note that the definition of the predicates Tn closely parallels that
of the arithmetical satisfaction predicates forΣn-classes, only it ismuch sim-
pler. Namely: we assume that every single quantifier or connective increases
the complexity of a formula anddonotmake a distinction between bounded
and unbounded quantifiers.

The key fact needed in the proof of our theorem is that if T (x) satisfies
the axioms of CT0, then partial truth predicates defined for a parameter c
as

T ′c(x) = T (Tc(x)),

or, in more detail, as

T ′c(x) = ∃y, z, w
(
y = x ∧ z = pTc(v)q ∧ w = Subst(z, y) ∧ T (w)

)
enjoy remarkably good properties: they are compositional for formulae in
the respective classes Ac and they are fully inductive.
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Lemma 19 (Compositionality of T ′c). CT0 proves that for every y the following
conditions hold:

1. ∀s, t T ′y(s = t) ≡ s◦ = t◦.

2. ∀φ, ψ
(

(φ⊗ ψ) ∈ Az ∧ y > z →
(
T ′y(φ⊗ ψ) ≡ T ′yφ⊗ T ′yψ

))
.

3. ∀φ
(

(¬φ) ∈ Az ∧ y > z →
(
T ′y(¬φ) ≡ ¬T ′yφ

))
.

4. ∀v, φ
(

(Qv φ) ∈ Az ∧ y > z →
(
T ′y(Qv φ) ≡ Qx T ′y(φ(x))

))
.

Where ⊗ ∈ {∧,∨} and Q ∈ {∀,∃}.

Proof. Let us fix arbitrary c. We will prove that the above conditions hold
for T ′c andwewill focus on the case of existential quantifier. Let (∃v φ) ∈ Aj
for some j < c and suppose that

T
(
Tc(∃v φ)

)
.

Then, by the disjunctive correctness of T , we must have T (η) for some
of the disjuncts η in Tc(∃v φ). Fix any y and note that, since (∃v φ) ∈ Ay is
an arithmetical formula of standard syntactic structure with (possibly non-
standard) parameters, we have:

T
(

(∃v φ) ∈ Ay
)
≡ (y = j).

Therefore the only possible candidate for our true disjunct η is:

T
(

(∃v φ) ∈ Aj ∧Θj(∃v φ)
)
.

This implies that in particular we have:

T
(

Θj(∃v φ)
)
.

Which entails:

T
(
∃y Θj−1(φ(y))

)
.

This by definition equals to the following statement:

T
(
∃y, z, ψ( z = y ∧ ψ = Subst(φ(v), z) ∧Θj−1(ψ))

)
.
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Since the compositional truth predicate T satisfies Tarski biconditionals
for standard sentences with possibly nonstandard numerals, this implies:

∃y, z, ψ
(

(z = y) ∧ (ψ = Subst(φ(v), z)) ∧ T (Θj−1(ψ))
)
,

which may be again abbreviated as:

∃x T
(

Θj−1(φ(x))
)
.

This, again by the disjunctive correctness property, entails:

∃x T
(
Tc(φ(x))

)
.

Finally, by definition this is simply:

∃x T ′c(φ(x))

The other cases are analogous.

The next lemmawewill use is the key ingredient of our non-conservativeness
result. It states that for arbitrary c (possibly nonstandard) the predicates
T ′c(x) satisfy the full induction scheme.

Lemma 20. Let φ(v) be any formula of the arithmetical language expanded with a
fresh unary predicate P (v). Then CT0 proves that for every c(
∀x
(
φ[T ′c/P ](x)→ φ[T ′c/P ](Sx)

))
−→

(
φ[T ′c/P ](0)→ ∀x φ[T ′c/P ](x)

)
.

Note that in the above lemma by φ[T ′c/P ](x) wemean an actual formula,
rather than its formalised version. Thus, in effect, the above lemma states
that the formulae T ′c are really inductive for an arbitrary choice of the pa-
rameter c.

As outlined at the beginning of the current section, the above lemma
would be very easily proved, if the generalized commutativity principle
(GC) were true, which is unfortunately not the case. We shall bypass the
difficulty with the following lemma.13

13We are grateful to Cezary Cieśliński for formulating this fact and suggesting it as a way
to prove inductiveness of T ′c in a proper manner.
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Lemma 21. Let φ(x1, . . . , xn) be an arbitrary formula, in the arithmetical lan-
guage augmented with a fresh predicate P (x). Then CT0 proves that for every c
there exists an arithmetical formula ψ(x1, . . . , xn) such that

∀x1, . . . , xn

(
φ[T ′c/P ](x1, . . . , xn) ≡ T (ψ(x1, . . . , xn))

)
.

Proof. We proceed by (meta-)induction on the complexity of a formula φ. If
φ is an arithmetical atomic formula s(x1, . . . , xn) = t(x1, . . . , xn) then:

φ[T ′c/P ](x1, . . . , xn) = φ(x1, . . . , xn) ≡ T (φ(x1, . . . , xn)).

If φ(x) = P (t(x1, . . . , xn)), then:

φ[T ′c/P ](x1, . . . , xn) = T ′c(t(x1, . . . , xn)).

By definition the last formula may be expanded to:

∃x, y, z
(
x = t(x1, . . . , xn) ∧ y = x ∧ z = Subst(Tc, y) ∧ T (z)

)
.

Let

ψ(x1, . . . , xn) = ∃x
(
x = t(x1, . . . , xn) ∧ Tc(x)

)
.

Now, by compositional clauses in CT− we have the following equiva-
lences:

T

(
∃x
(
x = t(x1, . . . , xn) ∧ Tc(x)

))
≡ ∃x T

(
x = t(x1, . . . , xn) ∧ Tc(x)

)
≡ ∃x

(
x◦ = t(x1, . . . , xn)◦ ∧ T (Tc(x))

)
≡ ∃x

(
x = t(x1, . . . , xn) ∧ T (Tc(x))

)
.

Note, that the term t above is standard and, consequently, it may bewrit-
ten down explicitly in the last step. Now, the last formula in the above equiv-
alences is precisely the abbreviation of the following one:

∃x, y, z
(
x = t(x1, . . . , xn) ∧ y = x ∧ z = Subst(Tc, y) ∧ T (z)

)
.

So the claim follows with ψ as above.
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If φ is a boolean combination of some formulae ξ, η, then the induction
step is straightforward, so suppose that φ = ∃y η(x, y). Then we have:

φ[T ′c/P ](x1, . . . , xn) = ∃ y(η[T ′c/P ](x1, . . . , xn, y)).

By induction hypothesis, there exists ψ′(x1, . . . , xn, y) such that

∀x1, . . . , xn, y
(
η[T ′c/P ](x1, . . . , xn, y) ≡ T (ψ′(x1, . . . , xn, y))

)
.

Using the compositional clauses for T , we have:

∀x1, . . . , xn

(
φ[T ′c/P ](x1, . . . , xn) ≡ T (∃yψ′(x1, . . . , xn, y))

)
.

So, the claim holds with ψ = ∃yψ′. The universal quantifier case is anal-
ogous.

Proof of Lemma 20. Fix φ(v) as in the claim of the lemma. Working in CT0, fix
an arbitrary c. By the previous lemma, there exists an arithmetical formula
ψ(x) such that

∀x
(
φ[T ′c/P ](x) ≡ Tψ(x)

)
.

By the internal induction principle we have:

(
∀x
(
T (ψ(x))→ T (ψ(Sx))

))
−→

(
T (ψ(0)→ ∀x T (ψ(x))

)
.

By lemma 21 this entails:

(
∀x
(
φ[T ′c/P ](x)→ φ[T ′c/P ](Sx)

))
−→

(
φ[T ′c/P ](0)→ ∀x φ[T ′c/P ](x)

)
.

Hence Lemma 20 follows.

Let us stress that we did not put any restrictions on the complexity of
φ, so that what we obtain for the predicates T ′c is the full induction, rather
than ∆0-induction as one could possibly expect.

Now let us state another important lemma. It states that the predicates
of the form T ′c are compatible.

20



Lemma 22. Provably in CT0 the predicates T ′d have the following properties:

1. If x /∈ Ac for all c ≤ d, then we have ¬T ′d(x).

2. For arbitrary d < e and φ ∈ Ad we have T ′d(φ) ≡ T ′e(φ).

Proof. Both claims are a straightforward application of the disjunctive cor-
rectness and the fact that the formula ”x ∈ Ay” is standard, so we have:

∀x, y
(
T (x ∈ Ay) ≡ (x ∈ Ay)

)
.

Now we introduce one more truth predicate, whose properties will al-
most immediately imply our theorem.

Definition 23. Let the formula T ′(x) be defined in the following way:

T ′(x) = ∃v
(
(x ∈ Av) ∧ TTv(x)

)
.

Intuitively, the extension of the predicate T ′(x) is the sum of the exten-
sions of predicates T ′c(x). We should expect that it behaves reasonably, since
by Lemma 22 the predicate T ′c(φ) is an extension T ′d(φ) to arithmetical sen-
tences in Ac \ Ad whenever c > d. Provably in CT0 the newly introduced
predicate T ′(x) satisfies the following four properties:

1. ∆0-induction scheme.

2. Compositionality.

3. Regularity.

4. Global reflection principle.

5. Axiom soundness property for PA.

Now we will spell out the listed properties in the series of lemmata.

Lemma 24 (Bounded induction for T ′). For any ∆0 formula φ in the arithmeti-
cal language enriched with the fresh unary predicate P (x), CT0 proves that:

∀x
(
φ[T ′/P ](x)→ φ[T ′/P ](Sx)

)
−→

(
φ[T ′/P ](0)→ ∀x φ[T ′/P ](x)

)
.
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In the proof of the above lemma we will use the following characterisa-
tion of ∆0-induction:14

Fact 25. Let A(x) be an arbitrary formula in a language L extending the language
of the arithmetic. Then the following conditions are equivalent for an arbitrary L-
structureM satisfying PA:

1. M |= ∆0-induction for the formula A(x).

2. For every b there exists an element (a coded set) c such that

M |= ∀x < b

(
A(x) ≡ x ∈ c

)
,

in which case we say that the set of elements below b satisfying A(x) inM is
coded.

Proof of Lemma 24. We will show that for an arbitrary modelM of CT0 and
arbitrary element b ∈M the set of elements below b satisfying T ′(x) is coded
inM . Then the claim of the lemma will follow by the above Fact.

In anymodel of CT0 the extension of the predicate T ′ is the sum over a’s
of the extensions of the predicates T ′a. Now observe that for arbitrary b and
arbitrary x < b the following conditions are equivalent by Lemma 22 (if we
assume, as we may, that the complexity of every formula is no greater than
its code, i.e. for arbitrary xwe have x ∈ Ay for some y ≤ x):

1. T ′(x).

2. T ′b(x).

Now, there clearly exists an element c such that:

∀x < b

(
T ′b(x) ≡ x ∈ c

)
,

since the predicate T ′b(x) is fully inductive by Lemma 20.

Lemma 26 (Compositionality of T ′). Provably in CT0 the following conditions
hold:

1. ∀s, t
(
T ′(s = t) ≡ s◦ = t◦

)
.

2. ∀φ, ψ
(
T ′(φ⊗ ψ) ≡ T ′φ⊗ T ′ψ

)
.

14See [10], Proposition 1.4.2.
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3. ∀φ
(
T ′(¬φ) ≡ ¬T ′φ

)
.

4. ∀v, φ(v)
(
T ′(Qv φ(v)) ≡ Qx T ′(φ(x))

)
.

Where ⊗ ∈ {∧,∨} and Q ∈ {∀,∃}.

Proof. The lemma follows immediately from the definition of T ′(x), Lemma
22 and Lemma 19.

The fact that the predicate T ′(x) may be presented as a sum of the pred-
icates T ′c, which are fully inductive and compositional for formulae of logi-
cal complexity no greater than c guarantees that T ′ enjoys all sorts of good
properties. The next lemma states that it is fully extensional.

Lemma 27 (Regularity of T ′). The predicate T ′ satisfies the regularity axiom, i.e.

∀φ∀t, s
(
s◦ = t◦ → T ′φ(t) ≡ T ′φ(s)

)
.

The same hold for predicates T ′b for arbitrary b

Proof. We know that for all d ≤ b and x ∈ Ad we have

T ′(x) ≡ T ′b(x).

Thus it is enough to prove that for arbitrary b the following equivalence
holds:

∀d ≤ b∀φ(v) ∈ Ad∀t, s
(
s◦ = t◦ → T ′bφ(t) ≡ T ′bφ(s)

)
.

This however may be shown by a straightforward Π1-induction on d.

Lemma 28 (Quantifier axioms forT ′). Provably inCT0 The predicateT ′ satisfies
the compositional axioms for quantifiers in the term formulation, i.e.

1. ∀v, φ(v) T ′(∀v φ(v)) ≡ ∀t T ′(φ(t)).

2. ∀v, φ(v) T ′(∃v φ(v)) ≡ ∃t T ′(φ(t)).

Proof. This follows immediately from Lemma 27, since provably in PA (and
in fact in much weaker theories) for every term t there exists a unique nu-
meral awith t◦ = (a)◦.

Recall that by the global reflection principle for T ′ we mean the axiom:

∀φ
(
PrT ′φ −→ T ′φ

)
,

where PrT ′ is an instance of Prτ defined in Convention 1 with τ = T ′. Intu-
itively PrT ′ means first-order provability from some premises φ satisfying
T ′(φ).
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Lemma 29 (Global reflection for T ′). CT0 proves the global reflection principle
for the formula T ′.

Proof. Working in CT0, take an arbitrary (code of a) proof d with the con-
clusion φ, all of whose premises ψ satisfy T ′(ψ). Then there exists a b such
that for every formula η in d there exists y < b such that:

η ∈ Ay.

Then for each x < bwe have:

T ′(x) ≡ T ′b(x).

So it is enough to prove that T ′b(φ) holds. But this may be easily proved
byLemmata 20 and 28 analogously to the usual proof of the global reflection
principle for CTwith compositional clauses for quantifiers in term formula-
tion and with the full induction for the compositional truth predicate, since
the formulae T ′b(x) are fully inductive by Lemma 20 and compositional for
formulae of logical complexity at most b by Lemma 19. They satisfy com-
positional axioms for quantifiers in the term formulation, since T ′ does by
Lemma 28 and as already noted for all x < bwe have T ′(x) ≡ T ′b(x).

Analogously, we obtain the following lemma:

Lemma 30 (Axiom soundness property). CT0 proves the following sentence:

∀φ
(
AxPA(φ) −→ T ′(φ)

)
.

Now we are ready to prove the main theorem of our paper.

Proof of Theorem 13. We want show that CT0 PA-relatively defines CT0 ex-
tended with the global reflection principle and the axiom soundness prop-
erty for PA. It is enough to observe that by the lemmata 24, 26, 29 and 30
the formula T ′(x) satisfies the axioms of the latter theory, so it gives us the
interpretation of the latter theory in CT0 which fixes the arithmetical vocab-
ulary.

Let us observe that to establish the non-conservativity result for CT0 one
actually needs only twoproperties of the compositional truth predicate: dis-
junctive correctness and internal induction. By Theorem 8 of Enayat–Visser
and Leigh15 the theory CT− augmented with the latter principle is still con-
servative. We do not know yet whether this is true also for the former.

15See [2], remarks in Section 6 and [13], Theorem 3.
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Let us end this section by a corollary we have referred to in the abstract.
Recall the usual version of CT− with compositional axioms for quantifiers
of the form

∀φ(v) T (Qv φ(v)) ≡ Qt T (φ(t)).

Let us denote by CT−t this usual version of CT−. Since the regularity
principle implies that the theories CT− and CT−t are equivalent, our results
actually imply:

Corollary 31. CT−t extended with ∆0-induction for the full language and the reg-
ularity principle is not conservative over PA.

4 A variation of the main result

In this section we shall prove that CT0 is actually very close to proving the
global reflection principle for its truth predicate. We will show that a very
natural modification of this theory accomplishes this aim. First we shall
formulate CT0 over a theory PA+ which is simply PA formalized in an en-
riched languagewith additional function symbols for some primitive recur-
sive functions and extended with axioms determining the meaning of new
symbols. Observe that the axioms of CT0 remain unchanged, but the notion
of a term is substantially enriched. To such a theory we add an axiomwhich
generalizes the regularity principle (REG) to substitutions of boundedly-
many terms at once.

Now we introduce a short sequence of definitions:

Definition 32.

1. Let L+ = LPA ∪ {(x)y}, where (x)y is a two-argument function (with
the intended reading “the result of the projection of x to its y-th com-
ponent”).

2. Let π(x, y, z) be an LPA formula expressing that z is the y-th element
of the sequence x. PA+ is the theory theory inL+ containing the usual
axioms of PA (we allow formulae of L+ in the induction axioms) and
additionally the following axiom for (x)y

∀x, y, z
(
(x)y = z ≡ π(x, y, z)

)
Convention 33. For each n, v = 〈x1, . . . , xn〉 is the arithmetical formula
representing in PA the relation ”v is the code of the sequence of length n,
containing as its first element x1, as its second x2,..., and as its n-th xn”.

25



We extend the arithmetization so that it embraces the two-argument
symbol (x)y. We assume that in PA+ the definable syntactical relations ap-
ply to the enriched language, hence Term(x), Form(x) mean ”x is a (code of
a) L+ term”, ”x is a (code of a) L+ formula” respectively. Additionally, we
need the following formulae 16:

Definition 34 (PA+).

1. TermSeq(x) which says ”x is a sequence of closed terms.”

2. We extend the function (·)◦ to terms of L+ by putting

((t)s)
◦ = ((t)◦)(s)◦

where t, s are arbitrary terms. In PA+ wedefine a generalized function
of valuation which, apart from terms, is applicable also to sequences of
terms, yielding the sequence of values of those terms. Since we will
be interested only in values of sequences of terms, we will denote this
function by (·)◦, in the same way in which the standard function of
valuation was denoted.

3. Subst(x, y) is now a generalized function of substitution with the fol-
lowing properties

(a) ymust be a sequence of closed terms such that if a is the number
of distinct variables occurring in x then the length of y is at least
a,

(b) Subst(x, τ) is the effect of formal substitution in x for free variable
xz the term coded by the z-th element of sequence τ (for every
z).

As indicated in the previous section, in order not to complicate the
formulae, we shall be writing φ(τ) instead of Subst(φ, τ), even in the
case when τ is a sequence of terms.

4. Let τ be any sequence. By τ∗ we denote the unique sequence y such
that

(a) len(τ) = len(y)

16Mind that sequence, term etc. in the definition belowmean a code of sequence, a code of term
rather than truly finite sequence, true term, defined externally.
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(b) y has on its i−th place (i < len(y) = len(τ)) the Gödel code of
the term (τ)i.17

Example 35. Let n = 〈pSS(0)q, pS(0) + 0q, pS(S(0) + S(0))q〉. Then

(n)◦ = 〈2, 1, 3〉

and
n∗ = 〈p(Sn0)S0q, p(Sn0)SS0q, p(Sn0)SSS0q〉

and (p(Sn0)S(0)+S(0)q)◦ = (n)2 = pS(0) + 0q.

Remark 36 (PA+). Let τ be any sequence. Then τ∗ is a sequence of closed
terms and τ = (τ∗)◦.

Remark 37. Mind the difference between φ(τ∗) and φ(τ). For example if

φ = px1 + x2 = x3q

and τ = 〈p0q, pS0 + SS0q, pSS0q〉, then (provably in PA+)

φ(τ) =def Subst(φ, τ) = p0 + (S0 + SS0) = SS0q

and
φ(τ∗) =def Subst(φ, τ∗) = p(τ)S0 + (τ)SS0 = (τ)SSS0q

Note that in the previous sections it was irrelevant for our argumenta-
tion whether the above mentioned functions are primitive or defined sym-
bols. Now it becomes crucial to our argument, and the reason for extending
the language will become apparent when proving the main theorem of this
section.

Definition 38. Let φ be an L+ formula. We say that an occurrence of term t
in φ is bounded if and only if it contains a bounded occurrence of a variable.
An occurrence of a term t is free if it is not bounded.

Example 39. pSS(v)q and pSS(v) + S(y)q have bounded occurrences in

φ = p∃v SS(v) + S(y) = SS(z)q

but pS(y)q and pSS(z)q don’t.
17Formally: ∀i < len(y) (y)i = p(q_τ_p)q_i.
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We will need a more refined measure of complexity of formulae than
the one defined in the previous section (called logical complexity there). To
define precisely the conditions which it should meet, let us introduce one
more notion, borrowed from [13]:

Definition 40 (PA+). Let φ be an L+-formula and w be any number which
is not a code of any L+ symbol. Let Lw be a language resulting by adding
w to L+. We treat w as an additional free variable for marking places for
terms in a formula. Formally: the formula φ′ results from φ by formally
substituting w for every free variable of φ. The formula φ̄ results from φ′ by
formally substituting w for every term t such that every variable occurring
in t is equal to w. If ψ is any L+- formula, we put

φ ∼ ψ

iff φ̄ = ψ̄.

The above definition serves for formalizing the relation of ”being the
same up to substitution of terms for free occurrences of terms”. We demand
that our measure of complexity have two properties:18

FIN Provably in PA+, for everyn, k, there are only finitelymany∼-equivalence
classes of formulae of complexity less than n which use variables (ei-
ther as bounded or free ones) with indices smaller than k.

COM The measure of φ⊗ ψ and ¬ψ is greater than the measure of φ, ψ (for
⊗ ∈ {∧,∨}). The measure of Qxφ(x) (for Q ∈ {∀, ∃}) is greater than
the measure of φ(t) for every closed term t.

The measure given by the logical complexity of a formula, as used in the
previous section, does not satisfy property FIN (at least for formulae of
language L (and consequently L+) which contains infinitely many closed
terms19). If we tried to use the Gödel number of φ as its size, then the re-
sulting measure would not satisfy COM. The next definition supplies us
with an appropriate measure.

Definition 41. Let φ be an Lw formula.

1. The syntactic tree of an Lw formula φ is defined as usual except for
the fact that we unravel also terms occurring in φ. In consequence the
only Lw symbols that are allowed to occur in leaves of the syntactic
tree of φ are individual constants and variables.

18”FIN” is a short for ”FINite” and ”COM” for ”COMpositional”.
19For example there are infinitely many sentences of the form t1 = t2 and syntactic tree

for every such formula has logical complexity 0.
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2. We say that a formula φ has complexity at most n if and only if the
height of the syntactic tree of φ̄ (i.e. the largest number of vertices on
a maximal path) is at most n. The complexity of φ is the least n such
that φ is of complexity at most n.

It is straightforward to check that our definition of complexity measure
satisfies FIN and COM as stated above. φ̄ will serve us also to define the
template of φ. In fact φ̄ is very close to match our objectives: the only im-
provement we need to introduce is to number the occurrences of w in φ̄.
The next definition accomplishes this aim:

Definition 42 (PA+).

1. Let {ei} be an injective enumeration of a set of numbers which are
not codes of any L+ symbols (starting from e1 for simplicity). We will
treat them as additional free-variable symbols (we will allow substi-
tuting closed terms for them but they are not part ofL+). LetL∗ be the
language resulting fromL+ by adding {ei} as newvariable symbols.20

2. Let φ be an Lw formula and x1, x2 be two occurrences of free variables
in φ. We put

x1 4φ x2

if and only if x1 is more to the left in the syntactic tree of φ than x2.

3. Suppose now ψ is an L+ formula. φ∗ is the formula resulting from φ̄
by substituting e0, e1, e2, . . . in φ̄ for the first, the second, the third, . . .
occurrence of w respectively, (where the respective ordering of occur-
rences of free variables is 4φ). φ∗ is called the template of φ. Let us
note that the only variables which occurs freely in φ∗ are the ei’s. In
particular no variables fromL occurs freely in φ∗. Let us note also that
for every φ ∈ L+

φ ∼ φ∗

4. Provably in PA+, for every φ ∈ L+ there exists a coded set of those
indices i such that ei occurs in φ∗. For a given φ, such a set will be
denoted by E(φ).

5. We define a natural extension of the function Subst so that it can oper-
ate on templates (and denote with the same symbol and use the same
conventions): we assume that if φ∗ is the template of an L+ formula

20In particular we assume that provably in PA+ L+ is a sublanguage of L∗.
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and τ is a sequence of L+ closed terms, then Subst(φ∗, τ) is the result
of the following substitution in φ∗: for every i ∈ E(φ)21.

the i-th element of τ is substituted for ei

6. Provably in PA+ for every φ ∈ L+ the template of φ is uniquely deter-
mined. Moreover there is only one sequence of terms τ such that

(a) φ = φ∗(τ)

(b) len(τ) = max{i | ei ∈ E(φ)}

The last condition is added only to guarantee uniqueness of such τ ,
and it won’t play any important role in our proof. Such a sequence of
terms will be denoted by τφ.

Example 43. The syntactic tree of p∃v SS(v) + S(y) = SS(z)q is the (code
of the) following:

∃v

��
=

}}   
+

��   

S

��
S

��

S

��

S

��
S

��

y z

v

The ordering on the set of occurrences of free variables in this formula is
simply:

pyq 4φ pzq

Example 44. The following formula

φ = p∃z SSS(z) + v = SSSSSSSS(y)q

21For simplicity we do not assume that Subst is defined for all formulae of L∗, but only
for formulae of L+ and templates (which do not contain any free variables from L+.)
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has complexity 7. φ̄ is equal to p∃z SSS(z) + w = wq. The template of φ is

φ∗ = p∃z SSS(z) + e1 = e2q

and the corresponding sequence of terms is

τφ = 〈pvq, pSSSSSSSS(y)q〉

To give another example: if

ψ = pSSS(z) + v = SSSSSSSS(y)q

then ψ̄ = pw = wq and
ψ∗ = pe1 = e2q.

The corresponding sequence of terms is

τψ = 〈pSSS(z) + vq, pSSSSSSSS(y)q〉

So far we introduced four different languages: L, L+, Lw and L∗. Let
us stress that the last two play only auxiliary roles in our reasoning and the
first one was relevant only in the previous chapter and now is replaced by
L+ as the ”basic” language. Formulae Term(x), Sent(x) etc. should be read
as ”x is a L+ term” and ”x is a L+ sentence” (respectively). In particular by
writing ∀φ we implicitly quantify over L+ sentences (compare Convention
1).

Definition 45. CT+
0 is the theory containing the following axioms

• PA+

• compositional axioms for T for the language L+, as in Definition 3.

• ∆0−induction for formulae of the language L+ ∪ {T}.

• Generalized regularity principle:

∀φ∀x, y
(
TermSeq(x)∧TermSeq(y)∧(x)◦ = (y)◦ → T (φ(x)) ≡ T (φ(y))

)
(GREG)

By an adaptation of methods of Enayat–Visser from their proof of con-
servativity of CT− + (INT), one can show that CT− + (INT) + (GREG) is
conservative over PA.

Lemma 46. CT+
0 ` ∀φ∀x, y

(
TermSeq(x)∧y = (x)◦ → T (φ(x)) ≡ T (φ(y∗))

)
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Proof. Using the definitions introduced above and Remark 36 one shows
that provably in PA+ for every sequence σ and every sequence of terms τ
such that σ = (τ)◦,

(τ)◦ = σ = (σ∗)◦

hence by the Generalized regularity principle

T (φ(τ)) ≡ T (φ(σ∗))

which ends the proof.

Definition 47 (PA+). Let φ be any L∗ formula and let x be any L+ variable
not occurring in φ (either as free or a bounded one). Let τx be the sequence
of terms satisfying the following conditions:

1. len(τx) = len(τφ)

2. for every i ∈ E(φ), (τx)i = p(x)iq

We define φx = Subst(φ∗, τx).

Example 48. Let φ = p∃z SSS(z) + v = SSSSSSSS(y)q be the formula
from Example 44. Then φ∗ = p∃z SSS(z) + e1 = e2q and

φx = p∃z SSS(z) + (x)0 = (x)1q

Definition 49 (PA+). The index of a formula φ is the maximum of its com-
plexity and the greatest index of a variable occurring in it (either as free or
a bounded one).

Example 50. Templates of sentences of index ≤ 3 are precisely (codes of)
the following ones:

1. e1 = e2, ¬(e1 = e2)

2. (e1 = e2) ∧ (e3 = e4), (e1 = e2) ∨ (e3 = e4)

3. Qxi(xi = e1), Qxi(e2 = xi), Qxi(e1 = e2), Qxi(xi = xi), for i ≤ 3 and
Q ∈ {∀, ∃}.

The following is the last technical definition in our paper.

Definition 51 (PA+). Let φ∗ be a template. Two sequences of terms τ, σ are
said to be φ∗-equivalent if for all i such that ei occurs in φ∗, (τ)i = (σ)i. If τ
and σ are φ∗ equivalent, we denote it by τ ∼φ∗ σ.
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Example 52. Let φ = p∃x(S(x) = 0 ∧ y < z)q. Then φ∗ = p∃x S(x) =
0∧e1 < e2q and the following two sequences of terms are not φ∗ equivalent:

1. 〈pS0q, p0q〉

2. 〈p0q, p0q〉

Remark 53 (PA+). If τ ∼φ∗ σ then φ∗(τ) = φ∗(σ).

Remark 54. Let us observe that provably in PA+ we have: for any (arith-
metical) formula φ and any sequence of terms τ it holds that

φx(τ) =df Subst(φx, τ) = Subst(φ∗, τ∗) =df φ
∗(τ∗) (1)

Hence, in CT+
0 we have: for every L+ sentence φ, every sequence σ and

every sequence of terms τ such that τ ∼φ∗ τφ (for the definition of τφ see
Definition 42 point 6) and σ = (τ)◦

Tφ ≡ Tφ∗(τ) by definitions of φ∗ and tφ and Remark 53
≡ Tφ∗(σ∗) by Lemma 46
≡ Tφx(σ) by (1)

In particular for any τ ∼φ∗ τ ′ if σ = (τ)◦ and σ′ = (τ ′)◦ we have

Tφx(σ) ≡ Tφx(σ′)

After these comments we are ready to state and prove our second theo-
rem.

Theorem 55. CT+
0 proves the Global Reflection Principle and the Axiom Sound-

ness Property for PA.

Proof. We work in CT+
0 . The fact that CT+

0 proves that all axioms of PA+

are true is obvious. Let us show the Global Reflection Principle. Note that,
provably in PA+, for every c, d there are only finitely many templates for
formulae of index less than c. Each such formula can be obtained from one
of those finitely many templates by the procedure of substituting terms for
the ei’s. Let γ(c) be a (code of a) set of all templates for sentences of index at
most c. Let y, z be any L+ variables which do not occur in those sentences.
As in the main theorem we shall make use of simplistic truth predicates.
But this time working in extended language enables us to make them even
more simplistic. Let us put:

Tc(x) :=
∨

φ∈γ(c)

(
∃y, z (TermSeq(y) ∧ x = Subst(φ, y) ∧ z = (y)◦ ∧ φz)

)
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For example the disjuncts of T3(x) corresponding to the templates pe1 = e2q
and p∃x2(x2 = e1)q are the following(
∃y, z (TermSeq(y) ∧ x = Subst(pe1 = e2q, y) ∧ z = (y)◦ ∧ (z)0 = (z)1)

)
(
∃y, z (TermSeq(y)∧x = Subst(p∃x2(x2 = e1)q, y)∧z = (y)◦∧∃x2(x2 = (z)0))

)
Observe that having projection functions as primitive symbols in the lan-
guage makes it possible to use finitely many quantifiers at the beginning of
each disjunct of Tc(x). In case of their absence we would have to add one
quantifier for each variable ei of a template φ, which in case of non-standard
formulae would result in a block of quantifiers of non-standard length. As
in the proof of the main theorem the function c 7→ Tc is primitive recursive.
As in the proof of our main theorem, define

T ′c(x) = T
(
Tc(x)

)
Arguing exactly as in the proof of Lemma 20 we show that for every c every
formula with T ′c satisfies the induction scheme. This time our simplistic
predicates have an additional feature: for any sentence φ of index less or
equal to cwe have

T (φ) ≡ T ′c(φ)

Note that it follows from the above, that TTc are compositional on the sen-
tences of index less than c. To prove the above assertion let us fix a sentence
φ of index less than or equal to c and observe that for σ = (τφ)◦ we have

T
(
Tc(φ)

)
≡ T

( ∨
ψ∈γ(c)

(
∃y, z (TermSeq(y) ∧ φ = Subst(ψ, y) ∧ z = (y)◦ ∧ ψz)

))
≡ T (φz(σ))

≡ T (φ)

Indeed, the first equivalence holds by definition, and the third is obtained
by Remark 54. Let us focus on the second one. From left to right: if

T

( ∨
ψ∈γ(c)

(
∃y, z (TermSeq(y) ∧ z = (y)◦ ∧ φ = Subst(ψ, y) ∧ ψz)

))

holds then by Disjunctive Correctness of T we get that for some template ψ
it holds that

T
(
∃y, z (TermSeq(y) ∧ z = (y)◦ ∧ φ = Subst(ψ, y) ∧ ψz)

)
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Hence for some τ ′, σ′ such that σ′ = (τ ′)◦ we have by compositionality of T

TermSeq(t) ∧ φ = Subst(ψ, τ ′) ∧ Tψz(σ′)

But for ψ 6= φ∗ this sentence can be easily disproved in CT− (because the
middle conjunct is disprovable already in PA+). Moreover it must be the
case that τ ′ ∼φ∗ τφ. Hence, for σ = (τφ)◦ we get T (φz(σ)) (invoking Remark
54). From right to left it is easier: if, for σ = (tφ)◦ we have T (φ(σ)) then also

TermSeq(τφ) ∧ φ = Subst(φ∗, τφ) ∧ σ = (τφ)◦ ∧ Tφz(σ)

Hence T (∃y, z TermSeq(y) ∧ φ = Subst(φ∗, y) ∧ z = (y)◦ ∧ φz) and once
again by Disjunctive Correctness we get

T

( ∨
ψ∈τ(c)

(
∃y, z (TermSeq(y) ∧ φ = Subst(ψ, y) ∧ z = (y)◦ ∧ ψz)

))
Now we proceed as in the proof of our main theorem. Let d be a proof
in First Order Logic of a sentence φ ∈ L+ from true premises. There is
a c such that each formula ψ occurring in d is of index at most c. Then
by induction on the length of d we check that in each sequent Γ −→ ∆ in
d if for every ψ in Γ we have T ′c(ψ), then for some θ in ∆ we have T ′c(ψ).
This is legitimate, since T ′c(x) is inductive and compositional on formulae
occurring in d. Hence T ′c(φ) and by the above considerations also T (φ).

5 Appendix

In the following section we shall discuss the proof by Kotlarski and the
mistake that has been pointed out by Richard Heck and Albert Visser. We
decided to include this discussion, since the alleged result has been cited,
sometimes with repeating the erroneous proof, in at least three different
papers, some of them written already after the gap in the proof has been
observed. Let us present Kotlarski’s argument.

We would like to show that CT0 proves that all theorems of PA (axioma-
tised with a parameter-free induction scheme) are true. We know that CT0

proves that any instance of the parameter-free induction scheme for arith-
metical formulae under any substitution of closed terms for free variables
is true. It suffices to show that for any proof d formalized in Hilbert system
if all its premises are true, then the conclusion is true. But the only rule of
Hilbert calculus, namely Modus Ponens, is clearly truth-preserving. In the
Hilbert system, we assume only finitely many axiom schemes for first-order
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logic and arbitrary propositional tautologies. We may also easily check in
CT− that all these finitely many axiom schemes are true for arbitrary sen-
tences. By ∆0-induction we may check that all sentences which are propo-
sitional tautologies are true. Thus every provable sentence is true.

However Kotlarski overlooked a crucial detail in the formulation of
Hilbert calculus. We can assume that metavariables φ, ψ occurring in the
axiom schemes for this calculus represent arbitrary arithmetical formulae,
not necessarily sentences. In such a case we apparently have to add a gener-
alization rule to Hilbert calculus. Then if wewant to show by induction that
first-order derivations preserve truth, the actual induction thesis should
state something like: ”for any substitution of terms for free variables the
resulting sentence is true” which is a Π1 statement. In another possible for-
mulation of Hilbert calculus we may assume that metavariables φ, ψ occur-
ring in its axiom schemes represent only arithmetical sentences, but then we
have to take as logical axioms arbitrary universal closures of propositional
tautologies rather than tautologies themselves. But then in turn we have to
prove the following statement: universal closures of propositional tautolo-
gies are true. So consider any sentence of the form:

∀x1∀x2 . . . ∀xc φ(x1, . . . , xc),

where φ(x1, . . . , xc) is a propositional tautology. Using∆0-induction for the
truth predicate we may indeed prove that for arbitrary numerals a1, . . . , ac
the following sentence is true:

φ(a1, . . . , ac).

Then by compositional axiomswemay evenprove for anyfixed standard
k (i.e. an element of trueω, viewed externally) that the following is also true,
where the block of the universal quantifiers is of standard length:

∀xc−k . . . ∀xc φ(a1, . . . , ac−k−1, xc−k, . . . , xc).

But to prove that the whole universal closure is true we apparently need
to use induction over the following statement: ”For all y < c and all numer-
als a1, . . . , ac−y the sentence ∀xc−y . . . ∀xc φ(a1, . . . , ac−y−1, xc−y, . . . , xc) is
true”. And to do this we would need Π1 induction, since we quantify over
arbitrary numerals.

Moreover, it seems that the problem of nonstandard blocks of universal
quantifiers is not a mere technicality. Note that taking universal closures
of propositional tautologies in Hilbert calculus basically allows us to dis-
pense of eigenvariables of sequent calculus and it seems reasonable that to
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prove that reasoning in sequent calculus preserves truth, we really need to
quantify over all possible substitutions of terms for eigenvariables and thus
basically we are forced to employ Π1 induction for the truth predicate.
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