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1 Introduction
Our paper concerns models of weak theories of truth. By a ”theory of truth” we
mean an extension of Peano Arithmetic (henceforth denoted by PA) with an
additional unary predicate T (x) with intended reading ”x is (a Gödel code of) a
true sentence”. We call a theory of truth ”weak” iff it is a conservative extension
of PA. Theories of truth are of interest both because of the philosophical context
in which they emerged and of insights into the structure of models of PA they
provide us with. Let us briefly comment on both these issues.

Truth theories constitute a well established area of research in contemporary
epistemology and logic (for a comprehensive introduction and reference see [5]).
In particular weak theories of truth has been introduced as a coherent formal
framework for an explication of some stances in the debate over the metaphysical
status of the notion of truth, specifically so called deflationary theories of truth.
Deflationism claims that:

1. the sentences of the form ”φ is true” do not ascribe any actual property
to the sentence φ,

2. the meaning of truth predicate is completely analysible in terms of Tarski’s
disquotation scheme.

The first claim is contemporarily (see [11], [3]) explicated in terms of conser-
vativity of a theory of truth over a theory of syntax (the latter usually modelled
as PA). Namely: the claim that the predicate ”φ is true” does not express
any actual property is rearticulated as a thesis that the correct theory of truth
should be conservative over PA. This is precisely where the interest in weak
theories of truth as defined in the following article comes from.

The second claim is usually explicated as a thesis that the notion of truth is
axiomatisable by Tarski’s scheme or, more precisely, some syntactic restriction
thereof (e.g. Tarski’s scheme restricted to arithmetical sentences, for a detailed
discussion of this explication of the deflationary theory of truth see [8], for a
discussion of both theses see again [5]). Formal theories of truth satisfying both
above conditions such as TB an UTB, defined later on in this paper, are subject
to investigation as deflationary theories par excellence.
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Our research in the structure of models of weak theories of truth has been
initially motivated by another possible interpretation of the first claim of the de-
flationary theory of truth, which can be traced back directly to Shapiro’s paper
[11]. This explication claims that the correct theory of truth should be model-
theoretically conservative over PA, i.e. every model M of PA should admit an
expansion to a model (M,T ) of the deflationary theory of truth. Speaking a bit
näıvely, if ”φ is true” really doesn’t express any genuine property, then its ad-
missability should not impose any conditions of how the object domain look like,
which can in turn be directly explicated as a model-theoretic conservativeness
of the theory of truth.

As of this moment, we are highly sceptical towards adequacy of this explica-
tion in the debate on deflationism. Even if it is the case that some weak theory
of truth is not model-theoretic conservative over PA, this is not a substantial
objection to a deflationist, who precisely does not agree that Tarskian semantics
provides a correct analysis of the relationship between the actual language and
its object domain. It might happen however, that in course of the philosophical
debate new arguments emerge for this stronger notion of conservativeness as an
adequate explication. Model theoretic considerations might be also seen as a
tool for fine-grained classification of the weak theories of truth, which strength
cannot be measured by merely proof-theoretical considerations, since most im-
portant ones, UTB and CT−, are incomparable. Namely: Th1 could be deemed
not stronger than Th2 if all models of PA that admit an expansion to Th2, admit
also an expansion to Th1.

In the following paper we actually prove for three most important weak
theories of truth, i.e. TB, UTB and CT−, the classes of models of PA (TB,
UTB, CT−) that admits an extension to the models of respective truth theory
can be linearly ordered by inclusion, namely:

PA ⊃ TB ⊃ RS ⊃ UTB ⊇ CT−,

where RS denotes the class of recursively saturated models of PA. Note that
⊃ means ”strict inclusion”. Note that we do not assume that models of PA we
deal with are countable, which would make the right part of the above sequence
trivially collapse, due to Barwise-Schlipf theorem.

Seen from the purely model-theoretical perspective weak theories of truth
are handy tool for obtaining interesting results about the structure of models
of PA. Most striking examples of their implementation include: easy proof of
Smoryński-Stavi theorem, proof of the existence of recursively saturated rather
classless models of PA (in ZFC; both due to Schmerl see [10]) and the result
that countable recursively saturated models of PA have recursively saturated
end extensions. Although all these proofs had been established independently,
weak theories of truth provided conceptual and uniform way of dealing with
those complicated structures.
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2 Notation and definitions
In this chapter we would like to introduce key definitions along with some no-
tation. As for the latter we make a number of simplifications which strictly
speaking might be ambiguous but on no reasonable reading may invoke any
confusion. Considerations of fairly logical nature might be easily obscured by
inappropriately heavy coding and putting too much stress on this aspect, which
we tried to avoid.

Convention 2.1. 1. PA denotes Peano Arithmetic, and LPA is the lan-
guage in which it is formalized (for the sake of definiteness we assume
that LPA = {·,+,≤, 0, 1} where · and + are two argument functions).

2. We use big capital letters M , N . . . for models of PA even if not stated
explicitly.

3. We use Form(x), Sent(x) Term(x), ClTerm(x) to denote formulae defin-
ing sets of (Gödel codes of) respectively (arithmetical) formulae, sentences,
terms and closed terms.

4. We skip Quine’s corners when talking about Gödel codes of formulae, i.e.
we write

Φ(ψ)

instead of Φ(pψq).

5. We will implicitly assume that variables s, t, . . . refer to (Gödel codes of)
terms and φ, ψ, . . . refer to (Gödel codes of) formulae. In particular we
write

∀t φ(t)

instead of
∀x(ClTerms(x) −→ φ(x)),

and we treat
∀ψ Φ(ψ)

in the same fashion. Analogously for the existential quantifier.

6. We write t◦ to denote the result of formally evaluating the (Gödel code
of) term t.

7. We sometimes write the result of syntactical operations with no mention
of the operations themselves e.g.

∃t Ψ(φ(t))

stands for
∃t Ψ(Subst(φ, t))
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where Subst(x, y) is a formula representing substitution function and

∀ψ
(
∃φ, θ(ψ = φ ∧ θ)→ Ξ

)
stands for

∀ψ
(
∃φ, θ(ψ = Conj(φ, θ))→ Ξ

)
.

where Conj(x, y) stands for the formula representing function which takes
two (Gödel codes of) formulae to (the Gödel code of) their conjunction.

8. If T (x) is any predicate then by Ind(T ) we mean the set of all instantia-
tions of induction scheme for all formulas in the language LPA ∪{T}. We
will denote such language by LT .

We shall now introduce the theories which will be considered in this paper.

Definition 2.2. All the theories are formalized in the language LT and are
extensions of PA (below we list only additional axioms).

1. TB− is a theory axiomatized by the scheme (called Tarski Biconditional
scheme)

Tφ ≡ φ,

where φ is a sentence of LPA.

2. UTB− is a theory axiomatized by the scheme (called Uniform Tarski
Biconditional scheme)

∀t̄
(
Tφ(t̄) ≡ φ(t̄◦)

)
,

where φ is a formula of LPA

3. CT− is finitely axiomatized by the following sentences

(a) ∀t, s
(
T (R(t, s)) ≡ R(t◦, s◦)

)
where R is = or ≤.

(b) ∀φ, ψ
(
T (φ⊗ ψ) ≡ T (φ)⊗ T (ψ)

)
, where ⊗ is ∧ or ∨.

(c) ∀φ
(
T (¬φ) ≡ ¬T (φ)

)
.

(d) ∀φ
(
T (Qxφ(x)) ≡ QtT (φ(t))

)
, where Q is ∃ or ∀.

4. TB, UTB, CT are the extensions of TB−, UTB−, CT− with full induc-
tion for enriched language, i.e. TB = TB− ∪ Ind(T ), UTB = UTB− ∪
Ind(T ), CT = CT− ∪ Ind(T ).

Convention 2.3. As suggested by the examples of weak theories of truth in
the Introduction, if T is any theory extending PA then by T we denote the class
of those models of PA which admits an extension to a model of T .
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3 Easy or already known results
In this section we show how to prove almost all inclusions mentioned in the
introduction. Let us begin with some trivial observations:

Proposition 3.1. TB ⊇ UTB

Proof. This follows immediately from the fact, that TB is a subtheory of UTB.

Fact 3.2. RS ⊇ UTB

Proof. Fix any model M |= UTB and a recursive type p(x, ā) with parameters
ā ⊆M . Let φ(x) represent p(x, ȳ) in PA−. Since p(x, ā) is a type, for all n ∈ N

M |= ∃c∀ψ < n
(
φ(ψ) −→ Tψ(c, ā

)
.

Hence, by overspill, there is a nonstandard b ∈M and a c ∈M s.t.

M |= ∀ψ < b
(
φ(ψ) −→ Tψ(c, ā

)
.

Which proves the thesis.

In proving the inclusion TB ⊃ RS, we will need the characterization of TB,
which was observed independently by Fredrik Engström and Cezary Cieśliński.

Proposition 3.3. M ∈ TB if and only if the set

ThLPA(M) = {φ ∈ N | φ ∈ SentLPA and M |= φ}

is coded in M .

Proof. Fix any model M .
(⇒) Observe that for all n ∈ N,

(M,T ) |= ∃x∀ < n
(
φ ∈ x ≡ Tφ

)
and use overspill to find a code of the theory of M .
(⇐) Take T = {a ∈M | M |= a ∈ c}, where c is the code of ThLPA(M).

Corollary 3.4. TB ⊇ RS

Proof. Suppose that M is recursively saturated and consider the following re-
cursive type with a free variable x:

{φ ≡ φ ∈ x | φ ∈ SentLPA}.

Any element of M realizing this type will be a code of the theory of M . Hence
by Proposition 3.3 M |= TB.

Corollary 3.5. TB ⊂ PA.
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Proof. Take any prime model K of a complete extension Th 6= Th(N) of PA.
Suppose that K admits an expansion to a model

(K,T ) |= TB.

But then by Proposition 3.3 there would be an element c ∈ K which codes
the theory Th. Since all elements of K are arithmetically definable without
parametres, then the formula

x ∈ c
would yield an arithmetical definition of truth for Th, contradicting Tarski’s
theorem.

Now we proceed to the construction of a model which codes its theory and
is not recursively saturated, in this way proving that the inclusion TB ⊇ RS
is strict. It shows up that this is an easy consequence of MacDowell-Specker
theorem and the following lemma:

Lemma 3.6. Suppose that there are M ≺cons M ′ i.e. M ′ is a proper, elemen-
tary and conservative supmodel of M . Then M ′ is not recursively saturated.

Proof. Let M , M ′ be as in the formulation of the lemma and suppose that M ′
is recursively saturated. Pick c ∈ M ′ \M and let b ∈ M ′ realize the following
recursive type with free variable y:

{∀x̄
(
φ(x̄) < c −→ (φ(x̄) ≡ (φ(x̄) ∈ y)

)
| φ(z̄) ∈ FormLPA}.

Consider the set
X = {a ∈M |M ′ |= a ∈ b}.

Since the extension M ≺ M ′ is conservative, X should be definable with
parameters from M. On the other hand note that by definition of b X is exactly
the set of codes of formulae from elementary diargam of M, hence undefinable
in M by Tarski’s Theorem.

Theorem 3.7. TB ⊃ RS. Moreover, every model M has an elementary ex-
tension to (M ′, T ) |= TB with M ′ not recursively saturated.

Proof. We prove the ”moreover” part which of course suffices. Let us fix any
M . Let c be a fresh constant. By compactness the following theory

ElDiag(M) ∪ {φ ∈ c | φ ∈ SentLPA ∧M |= φ}

has a model M ′, which is an elementary extension of M . Note c is a code of the
theory of ThLPA(M ′). Using MacDowell-Specker theorem we can find

M ′′ �cons M ′.

Since Th(M ′) = Th(M ′′), we see that c ∈M ′′ is a code of a theory of M′′. By
Proposition 3.3 M ′′ can be expanded to a model (M ′′, T ) |= TB. But by lemma
3.6 it cannot be recursively saturated.
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Let us now return to the inclusion RS ⊇ UTB. It is easy to show that
for a counterexample to equality here we have to search among models with
uncountable cofinality. By a result of Smorynski-Stavi [?] (restated in [10]) if T
is an extension of PA in a language L ⊇ LPA such that T contains induction
axioms for FormL, then T is preserved in cofinal supmodels, i.e.

M |= T ∧M ≺cf N ⇒ N |= T.

Putting it together with the fact that countable and recursively saturated models
of PA are resplendent and that UTB is a conservative extension of PA we see
that every recursively saturated model of PA with countable cofinality can be
expanded to a model of UTB. In order to prove the existence of recursively
saturated models which do not expand to a model of UTB we will profit from
the fact that the interpretation of UTB-truth predicate, if exists, is always a
proper class.

Observation 3.8. If T ⊆ M is such that (M, T ) ∈ UTB then T is a proper
class on M . Indeed, T is a class, because UTB contains induction axioms for
all formulas of enriched language and T is obviously undefinable by Tarski’s
theorem.

Recall that model M is rather classless if it contains no proper class. The
existence of recursively saturated rather classless models of PA was first demon-
strated by Matt Kauffman in ZFC + � ([?]). The assumption about existence
of �-sequence was later eliminated by Shelah (in [?]). We will present another
argument, which was given in [10]. The proof of the following theorem can be
found in appendix.

Theorem 3.9. There is a recursively saturated and rather classless model of
PA.

4 Main Result
In the following part we will present the most technically involved part of our
result i.e.

Theorem 4.1. Let (M,T ) |= CT−. Then there exists T ′ such that (M,T ′) |=
UTB.

Before we proceed to the proof, let us introduce some notation.

Definition 4.2. Let δ(x̄) be arbitrary formula in the language LPAP i.e. lan-
guage of arithmetics with a unary predicate P (x) added . Then for arbitrary
formula φ with one free variable by δ[φ] we mean a result of formally substituting
the formula φ(xi) for any occurence of P (xi) in the formula δ (possibly preceded
by some fixed renaming of bounded variables in δ, so as to avoid clashes). If
M |= δ[φ] we will say that φ satisfies a property δ.
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Definition 4.3. By φ[ξ 7→ δ] we mean a result of formally substituting a formula
δ for a subformula ξ in a formula φ.

Let us quickly give an example, which probably could be more illuminating
than a definition.

Example 4.4. Let δ(x, y) =
(
P (x) ≡ P (y)

)
. Then

δ[z = z] =
(

(x = x) ≡ (y = y)
)
.

Certainly both notions may be formalised in PA. We our now ready to state
the main lemma. This is the combinatorial core of our theorem. Essentially it
has been proved in [?], although in a special case. Basically, the lemma states
that the existence of a truth predicate satisfying CT− allows us to define a
predicate satisfying UTB− and some additional definable properties shared by
arithmetical formulae.

Lemma 4.5. Let δ be arbitrary formula in LPAP . Let (M,T ) |= CT−. Suppose
that for arbitrary standard arithmetical formula φ we have

(M,T ) |= δ[φ].

Then there exists a formula T ′(x) in LPAT with parametres such that

(M,T ) |= T ′ψ(t) ≡ ψ(t◦)

for arbitrary standard arithmetical formula ψ and arbitrary term t ∈ Term(M)
and moreover

(M,T ) |= δ[T ′].

Proof. We will try to construct an analoge of simplistic arithmetical partial
truth predicates

τ(x) = ∨ni=1(x = φi) ∧ φi
but in such a way that we can use a form of overspill available in models of
CT−. Let (χi)i<ω be arbitrary primitive recursive enumeration of arithmetical
formulae. Let

ξ2i(x) = ∀t̄∀j ≤ i x = χj(t̄) −→
∨
j≤i

(
x = χj(t̄) ∧ χj(t̄◦)

)
ξ2i+1(x) = ∃t̄∃j ≤ i x = χj(t̄).

Finally, let us define formulae which will play the role of the partial truth
predicate τ above.

ρ0 = ξ0
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ρ2i+1 = ρ2i[ξ2i 7→ ξ2i ∧ ξ2i+1]
ρ2i+2 = ρ2i+1[ξ2i+1 7→ ξ2i+1 ∨ ξ2i+2].

Obviusly the definitions may be formalised. Here are two simple properties
of so defined ρi’s for arbitrary i ∈ ω and a ∈M .

1. Tρa(x)→ Tρ2i(x).

2. Tρ2i+1(x)→ Tρa(x).

To prove the first one assume that Tρa(x). Note that

ρa(x) = ρ2i[ξ2i 7→ ξ2i ∧ γ]

for some nonstandard formula γ. Since ρ2i is a positive formula (i.e. no negation
symbol occurs in it) a substitution of ξ2i ∧ γ for ξ2i yields a formula stronger
(no weaker) than ρ2i. As it is purely a matter of finite boolean calculus, this
can be proved in CT−. Proof of the second one is analogous.

We are now in a position to show that for arbitrary nonstandard a formula
Tρa(x) satisfies uniform disquotation scheme i.e for arbitrary standard arith-
metical φ and t ∈ Term(M)

Tρaφ(t) ≡ φ(t◦).

Let us take any φ(t). We know that φ(t) = χi(t) for some i ∈ ω. Suppose

Tχi(t◦).

Then it is easy to see that

1. Tξ2i+1(χi(t))

2. ¬Tξ2j+1(χi(t)), for j < i

3. Tξ2j(χi(t)) for arbitrary j.

It is enough to show that Tρ2i+1(χi(t)). To this end we will prove by external
backwards induction that for any subformula ψ of ρ2i+1 righthandside part of
ψ is true. By assumption the claim holds for

ψ = ξ2i(χi(t)) ∧ ξ2i+1(χi(t)).

Now any righthandside of any subformula of ρ2i+1 is exactly of one of the
two following forms:

1. ξ2j ∧ γ

2. ξ2j+1 ∨ γ.
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But by induction hypothesis we can assume that γ is true. Now, since the main
connective in the formula ρ2i+1 is a conjunction of the form ξ0 ∧ γ, we are able
to prove in CT− that

Tρ2i+1(χi(t)).

By previous observation it follows that

Tρa(χi(t)).

The converse implication is handled in a similar fashion (but now using Tρa(x)→
Tρ2i(x)).

Finally, we will prove the lemma. It will be similar to prove of Lachlan’s
theorem. Define the following sequence of formulas:

γ0(x) = (x = x)
γi+1(x) = δ[γi] −→ αi,i(x)
αi,0(x) = ρ2i(x)

αi,j+1(x) =
(
∀t γi(χi−(j+1)(t)) ≡ χi−(j+1)(t◦)

)
∧ αi,j(x)

∨ ¬
(
∀t γi(χi−(j+1)(t)) ≡ χi−(j+1)(t◦)

)
∧ ρ2(i−(j+1))(x).

Observe again that this definition may be formalised in PA. We will show
that for some b > ω Tγb(x) satisfies both property δ and uniform disquotation
scheme. In understanding the following part it helps to think of αi,j as organised
in lower-triangle matrix.

Observe first that if for some c it happens that Tγc doesn’t satisfy the
property δ, then Tγc+1 does satisfy it, since it is then equivalent to standard
formula.

Let nc be the least n < ω such that

T
(
¬
(
∀t γc(χn(t)) ≡ χn(t◦)

)
,

if such n exists and arbitrary nonstandard number otherwise.
Now let us make key observation. If Tγc does satisfy δ but does not satisfy

disquotation scheme, i.e. nc < ω, then neither Tγc+1 does but nc+1 > nc.
Indeed, suppose nc < ω. Then by definition

Tαc,c−nc(x) ≡ ρ2ni(x).

But then for j ≥ c− nc we have

Tαc,j(x) ≡ Tαc,j+1(x).

In particular
Tαc,c(x) ≡ Tαc,c−nc(x) ≡ ρ2nc(x).

Since Tγc+1 is then equivalent to αc,c i.e. to ρ2nc it follows that

nc+1 = nc + 1 > nc.
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Now we will finish the proof of the lemma. Suppose that for no nonstandard
c does Tγc satisfy both property δ and uniform disquotation. Then it follows
that actually no γc satisfies uniform disquotation. Indeed: take any c > ω
and observe that if γc−1 doesn’t have either of the two properties, then by our
previous observation γc doesn’y satisfy scheme of uniform disquotation.

So if for all c our γc fails to enjoy one of desired properties, then for arbitrary
γc we have nc < ω. But then

nc > nc−1 > nc−2 > . . .

form an infinite decreasing sequence of natural numbers. It follows from this
contradiction that for some nonstandard c we have both:

(M,T ) |= δ[Tγc]

and
(M,T ) |= Tγcφ(t) ≡ φ(t◦)

for arbitrary standard φ and t ∈ Term(M).

Now we are ready to prove our theorem. As a matter of fact, we shall obtain
slightly stronger result. The predicate T we are going to construct will display
additional property that

(M,T ) |= UTB

will be recursively saturated as a model of UTB.

Proof. Let (M,T ) |= CT− and let θ̃(y) be a formula ’P (x) is a compositional
predicate for formulae < y’ i. e. a conjuction of the following formulae:

1. ∀φ < y P (¬φ) ≡ ¬P (φ).

2. ∀φ, ψ < y P (φ� ψ) ≡ P (φ)� P (ψ).

3. ∀φ < y P (Qxφ) ≡ Qt P (φ(t◦),

where � ∈ {∧,∨}, Q ∈ {∀,∃}.
Let θ be a sentence ’θ̃ is inductive’ i.e.(

∀xθ̃(x)→ θ̃(x+ 1)
)
−→

(
θ̃(0)→ ∀xθ̃(x).

Let now (indk) be some recursive enumeration of instances of the induction
scheme in the arithmetical language with an additional predicate P (x). For
arbitrary formula φ let

∗Ind0(φ) = ind0[φ]
Indi+1(φ) = Indi(φ)

[
indi[φ] 7→ indi[φ] ∧ indi+1[φ]

]
.

(1)
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*
So Indk(φ) is simply a conjunction of first k instances of the induction

scheme for a formula φ with parentheses put in reverse order. Be not confused
with the fact, that we used a predicate P to define Ind(φ). It does not occure
in our formula anymore.

Let ζ̃(x) be defined as

P (Indx(ρx)).

So it is a formula saying ’x-th formula ρx satisfies first x instances of the
induction scheme’. Let zeta be defined in an analogous fashion to theta i.e.

ζ =
(
∀y ζ̃(y)→ ζ̃(y + 1)

)
→
(
ζ̃(0)→ ∀y ζ̃(y)

)
.

Let finally

δ = ζ ∧ θ.

Observe that every standard formula φ has the property δ, since δ[φ] is
simply an instance of the induction scheme. So by our lemma there is a formula
T ′(x) such that

(M,T ) |= δ[T ′]

and T ′ satisfies uniform disquotation scheme. Since it satisfies the scheme,
it is compositional for standard formulae, i.e. for all k ∈ ω.

(M,T ) |= θ̃(k)

So, by overspill we have
(M,T ) |= θ̃(c)

for some c > ω.
Now, since ρk for k ∈ ω are standard formulae, they satisfy full induction

scheme. In particular
(M,T ) |= ζ̃(k).

So applying overspill once more we get some nonstandard d such that

(M,T ) |= T ′ζ̃(d).

W.l.o.g. we may assume that d < c.
We claim that

(M,T ′(ρd(x))) |= UTB.

Since d < c our predicate is compositional, so we may show that it satisfies
disquotation scheme exactly as for CT−. It is enough to show that it satisfies
full induction scheme, that is

(M,T ) |= indk(T ′(ρd(x))
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for arbitrary k ∈ ω. By assumption we have

(M,T ) |= T ′Indd(ρd),

but since T ′ is compositional for formulae < c and indk is located in the
formula Indd on finite syntactic depth, we see that

(M,T ) |= T ′indk[ρd].

Which, by compositionality again, implies that

(M,T ) |= indk[T ′ρd].

So indeed (M,T ′ρd(x)) is a model of UTB.

An inspection of the proof shows that the UTB predicate we have defined
is of the form

Tγaρb(x),

for some nonstandard a, b. Thus by Theorem 3.1 of [?] th model we defined is
recursively saturated.

5 Appendix
Proof of Schmerl’s theorem makes use of some set theoretic notions which we
shall now briefly recall.

Definition 5.1. Let α be a regular and uncountable cardinal.

• Subset A ⊆ α is a club iff A is closed and unbounded in α, i.e.

1. for every subset Y of A, if supY < α then supY ∈ A and
2. supA = α.

The set of all clubs on α will be denoted by Club(α)

• Subset A ⊆ α is stationary iff for every d ∈ Club(α), A ∩ d 6= ∅.

• Function f : α −→ α is regressive on a subset A ⊆ α iff for all β ∈
A, f(β) < β.

For completeness we cite the following well-known theorem about regressive
functions on stationary sets:

Theorem 5.2. (Fodor’s lemma)
Let κ be an uncountable regular cardinal and S ⊆ κ be stationary. Then for every
function f : κ→ κ regressive on S exists T ⊂ S such that f �T is constant and
T is stationary.
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We introduce also an enriched notion of satisfaction class.

Definition 5.3. Let S(·, ·) be a new binary predicate. We call an interpretation
of S(·, ·) in a modelM a counting satisfaction class1 iff the following conditions
holds for all k ∈ N and all φ,ψ ∈ Σk

1. ∀t, s(S(t = s, k) ⇐⇒ t◦ = s◦);

2. (S(φ⊗ ψ, k) ⇐⇒ S(φ, x)⊗ S(ψ, k));

3. S(¬φ, k) ⇐⇒ ¬S(φ, k);

4. S(Qxφ(x), k + 1) ⇐⇒ QtS(φ(t), k);

where as usual ⊗ ∈ {∧,∨} and Q ∈ {∀,∃}. If moreover for all k ∈ N

S �k:= {< e, c >∈ S ‖c ≤ k} 6= ∅

we call such a class proper. If

(M, S) |= Ind(S)

we call such a class inductive.

The proof of following two observations is standard (the second one can be
done exactly in the same way as the proof of Proposition ??):

Proposition 5.4. For all M there is an N and S ⊂ N2 such that

M≺ N

and S is a proper, inductive counting satisfaction class.

Proposition 5.5. If S is a proper and inductive counting satisfaction class in
M , then M is recursively saturated.

This lemma is one of the main reason for considering proper, nonstandard
and counting satisfaction classes:

Lemma 5.6. If S is a proper and inductive counting satisfaction class on M
and for all nonstandard b ∈M

X ∈ Def(M, S �b),

then X ∈ Def(M)

Proof. Observe that if X is definable in (M, S �b) by a Σn+1 formula, then it
is definable in (M, S �b+1) by a Σn formula. It follows that for all nonstandard
b X is definable in (M, S �b) by a Σ1 formula. Hence, by underspill there is a
standard n such that X is definable in (M, S �n). But for all standard k S �k
is arithmetically definable, so X is definable in M.

1We introduce this name for the use in this paper. Schmerl called it just ”satisfaction
class”
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Now we can prove Schmerl theorem:

Theorem 5.7. If κ is a singular cardinal with uncountable cardinality, then
every consistent extension of PA has a κ-like, recursively saturated and rather
classless model.

Lemma 5.8. If α is a limit ordinal, cf(α) > ℵ0 and (Nβ)β≤α is a chain of
conservative elementary extensions, then Nα is rather classless.

Proof. Let X be a class on Nα. We show that X ∈ Def(Nα). Observe that
since Nα is an elementary end extension of each of Nβ , then for arbitrary β
X ∩Nβ is a class on Nβ . Moreover, since for each β < α, Nβ+1 is a conservative
extension of Nβ then X ∩Nβ is definable in Nβ . Let us consider the following
function f : α −→ α:

f(β) = minν [X ∩Nβ is definable in Nβ from parameters in Nν ].

By the observations above this function is well defined. Since in the definition
of the chain (Nν)ν≤α at limit levels we took sums of previously constructed
models, f is regressive on the set

LIM ∩ α.

Hence by Fodor’s lemma (5.2) there is a γ such that f−1(γ) is unbounded in
α. Moreover, since cf(α) > ℵ0, then there is an n ∈ N and an unbounded
J ⊂ f−1(γ) such that for each ρ ∈ J

X ∩Nρ is definable in Nρ by a Σn formula.

For each ν ∈ J let aν be an of Nν such that

Nν |= aν is the least a such that X ∩Nν is definable by a− th Σn formula.

Let us observe that this is well defined since for each ν, X ∩Nν is definable by
a standard Σn formula. From this it also follows that for each ν ∈ J , aν ∈ Nγ .
We shall show that for all ν ∈ J , aν = a some a ∈ Nγ . This observation will
end the proof, since

1. J is cofinal in α.

2. Nα is a common elementary extension of all Nβ for β ∈ J .

Let us pick ν < µ ∈ J . Since aµ ∈ Nν and Nν ≺ Nµ, then it must be the
case that

Nν |= aν-th and aµ-th subsets are the same.

By elementarity

Nµ |= aν-th and aµ-th subsets are the same.

So in Nµ, aν = min{aµ, aν} = aµ, which ends the proof.
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We now return to the proof of 5.7. Fix arbitrary M and κ as in the statement
of the theorem. Let cf(κ) = λ > ℵ0 and let (βα)α<λ be an increasing sequence
of ordinals converging to κ. Let M0 be an elementary extension of M such that

1. |M0| = β0

2. there is a strictly decreasing sequence (bγ)γ<λ with no nonstandard lower-
bound.

3. there is S0 ⊂M2
0 - an inductive, proper and counting satisfaction class for

M0.

Let us put M∗0 = (M0, S0). Let (Mα, Sα)α<β be a chain of models defined:

1. if ν = µ + 1 then (Mν , Sν) is a conservative, elementary and finitely
generated end extension of (Mµ, Sµ)

2. if ν is a limit ordinal and for some α < λ κα < ν < κα+1 then let
(Mν , Sν) =

⋃
δ<ν(Mδ, S �bα).

Finally let Mκ =
⋃
α<κMα. We show that Mκ is as required.

First of all, Mκ is recursively saturated, since each of Mα was (by lemma
5.5), and by construction it is a κ-like elementary extension of M . We show
that it is rather classless. Aiming at a contradiction suppose X is an undefinable
class of Mκ. By the proof of lemma 5.8 there is a α < κ such that X ∩Mα is
not definable in Mα and by lemma 5.6 there is a β < λ and α < κβ such that
X ∩Mα is not definable in (Mα, S �bδ). But

(Mα, S �bδ) ≺ (Mβ , Sβ)

so X ∩Mβ cannot be a class of (Mβ , Sβ). This contradicts X being a class of
Mκ.
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