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Abstract

This paper is a follow-up to [4]. We give a strenghtening of the main

result on the semantical non-conservativity of the theory of PT− with in-

ternal induction for total formulae (PT− + INT(tot)). We show that if to

PT− the axiom of internal induction for all arithmetical formulae is added

(PT−+ INT), then this theory is semantically stronger than PT−+ INT(tot).

In particular the latter is not relatively truth definable (in the sense of [9])

in the former. Last but not least we provide an axiomatic theory of truth

which meets the requirements put forward by Fischer and Horsten in [8].

1 Introduction

1.1 Axiomatic Theories of Truth

Axiomatic theories of truth is a branch of mathematical logic and philosophy

which studies the properties of formal theories generated in the following way:

1. We take a base theory B which we demand to be sufficiently strong to

(strongly) represent basic syntactical operations.

2. We extend the language of B by adding one new unary predicate T and

some axioms for it so that the resulting theory Th prove all sentences of

the form

T (pφq) ≡ φ

for φ in the language of our base theory B.

For a brief introduction to the subject see [11] and for a more complete one—

[10]. The big question that this paper answers in a tiny part is the following:

how various axioms for the truth predicate influence its strength. For the pur-

pose of investigating this question we focus on the truth theories with Peano

Arithmetic as a base theory. The notion of strength may enjoy many different
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explications. For example, the simplest one is given by inclusion of sets of con-

sequences: we might say that Th1 is not weaker than Th2 if and only if Th1

proves all the axioms of Th2. For many applications this is too fine-grained:

many theories, intuitively differing in strength, become incomparable out of

not-that-important reasons (obviously this is not a formal notion). Better ad-

justed notion was introduced by Kentaro Fujimoto in [9] and is a special kind

of interpretability. We recall the definition:

Definition 1. 1. Let Th1 and Th2 be axiomatic truth theories and let TΘ2
be

the truth predicate of Th2. For any sentence Θ of LTh2
and a formula

φ(x) ∈ LTh1
with precisely one free variable let

Θφ(x)

denote the LTh1
sentence which results from Θ by substituting φ(x) for

every occurrence TTh2
(x) (and renaming variables, if necessary).

2. We say that Th1 relatively truth defines Th2 if and only if there exists a for-

mula φ(x) ∈ LTh1
such that for any axiom Θ of Th2

Th1 ⊢ Θφ(x)

If Th2 relatively truth defines Th1 we will denote it by Th1 ≤F Th2
1.

In terms of interpretations, relative truth definability is a LPA-conservative

interpretation between truth theories (for the terminology related to interpre-

tations see e.g. [?]). It was argued in [9] that relative truth definability provides

a good explication of epistemological reduction between truth theories. We may

treat it as an explication of a notion of strength: Th1 is Fujimoto-stronger than Th2

if and only if Th1 relatively truth defines Th2 but not vice versa. This relation will

be denoted by �F .

1.2 Strength relative to PA

In some philosophical debates, especially the ones related to the deflationism,

the need for a differently oriented formal explication of strength seems to emerge.

It has been claimed (most importantly in [16], [15] and [12]) that deflationary

thesis that truth is a "simple" (aka "light", "metaphysically thin") notion implies

that the deflationary theory of truth should be conservative over PA.2 Let us

recall that a theory of truth can be conservative over PA in two senses:

Definition 2. Let Th be a theory of truth.

1”F ” stands for ”Fujimoto.”
2This thesis however has been recently criticised at length in [2]
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1. We say that Th is proof-theoretically conservative over PA if and only if for

every φ ∈ LPA, if Th ⊢ φ, then PA ⊢ φ.3.

2. We say that Th is model-theoretically conservative over PA if and only if every

model M of PA admits an expansion to a model of Th.4.

Remark 3. Note that, in the definition of model-theoretical conservativity, we

do not merely demand every model to have an extension to a model of Th, in

which case both notion of conservativity would be the same. We say that M′

is an expansion of M if M and M′ are the same model, except that M′ carries

interpretation of additional function, relation and constant symbols.

The two notions lead in the natural way to the following generalisations:

Definition 4. Let Th1 and Th2 be two truth theories.

1. We say that Th1 is proof-theoretically not stronger than Th2 if every LPA sen-

tence provable in Th1 is provable in Th2. If Th1 is proof-theoretically not

stronger than Th1, we will denote it with Th1 ≤P Th2.5

2. We say that Th1 is model-theoretically not stronger than Th2 if every model

which can be expanded to a model of Th2, can be expanded to a model of

Th1. If Th1 is syntactically not stronger than Th1, we will denote it with

Th1 ≤M Th2.6

Obviously we say that Th2 is proof-theoretically (model-theoretically) stronger

than Th1 if Th1 ≤P Th2 but Th2 �P Th1 (respectively, Th1 ≤M Th2 but

Th2 �M Th1). This relation will be denoted �P (�M respectively).

Let us observe that the three notions of strength introduced above can be

ordered with respect to their "granularity". Indeed, for any theories Th1 and

Th2 we have:

Th1 ≤F Th2 =⇒ Th1 ≤M Th2 =⇒ Th1 ≤P Th2. (FMP )

Hence also

Th2 �P Th1 =⇒ Th2 �M Th1 =⇒ Th2 �P Th2 (¬PMF )

Having three different notions of strength makes it possible to decide not only

whether one theory of truth is stronger than another one, but also how much

stronger it is.

3This property is also called syntactical conservativity
4This relation is also called semantical conservativity
5P is meant to abbreviate "Proof".
6M is meant to abbreviate "Model".
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1.3 Compositional Positive Truth and its Extensions

Before continuing let us introduce some handy notational conventions:

Convention 1.

1. By using variablesφ, ψwe implicitly restrict quantification to (Gödel codes

of) arithmetical sentences. For example, by∀φ Ψ(φ)we mean∀x
(
Sent(x) →

Ψ(x)
)

and by ∃φ Ψ(φ) we mean ∃x
(
Sent(x) ∧ Ψ(x)

)
. For brevity, we

will sometimes also use variables φ, ψ to run over arithmetical formulae,

whenever it is clear from the context which one we mean; similarly

(a) φ(v), ψ(v) run over arithmetical formulae with at most one indicated

free variable (i.e. φ(v) is either a formula with exactly one free vari-

able or a sentence); φ(x̄), ψ(x̄) . . . run over arbitrary arithmetical for-

mulae.

(b) s, t run over codes of closed arithmetical terms;

(c) v, v1, v2, . . . , w, w1, w2, . . . run over codes of variables;

2. FormLPA(x), Form≤1
LPA

(x), SentLPA(x) are natural arithmetical formulae strongly

representing in PA the sets of (Gödel codes of) formulae of LPA, formulae

of LPA with at most one free variable, sentences of LPA, respectively.

3. ifφ is aLPA formula, then pφq denotes either its Gödel code or the numeral

denoting the Gödel code of φ (context-dependently). This is the unique

way of using p·q in this paper.

4. to enhance readability we suppress the formulae representing the syntac-

tic operations. For example we write Φ(ψ ∧ η) instead of Φ(x)∧ "x is the

conjunction of ψ and η", similarly, we write Φ(ψ(t)) instead of Φ(x) ∧ x =

Subst(ψ, t);

5. x denotes the (Gödel code of) standard numeral for x, i.e. pS . . . S(0)
︸ ︷︷ ︸

x times S

q

6. y◦ is the standard arithmetically definable function representing the value

of term (coded by) y.

The main objective of this study is to measure the strength of theories that

are compositional, but do not enjoy the global axiom for commutativity with

the negation, i.e.

∀φ
(
T (¬φ) ≡ ¬T (φ)

)
(NEG)

Let us formulate the theories which will be of the main interest.

Definition 5. PT− is the axiomatic truth theory with the following axioms for

the truth predicate:
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1. (a) ∀s, t
(
T (s = t) ≡ (s◦ = t◦)

)

(b) ∀s, t
(
T (¬s = t) ≡ (s◦ 6= t◦)

)

2. (a) ∀φ, ψ
(
T (φ ∨ ψ) ≡ T (φ) ∨ T (ψ)

)

(b) ∀φ, ψ
(
T (¬(φ ∨ ψ)) ≡ T (¬φ) ∧ T (¬ψ)

)

3. (a) ∀v∀φ(v)
(
T (∃vφ) ≡ ∃x T (φ(x))

)

(b) ∀v∀φ(v)
(
T (¬∃vφ) ≡ ∀x T (¬φ(x))

)

4. ∀φ
(
T (¬¬φ) ≡ T (φ)

)

5. ∀φ∀s, t
(

s◦ = t◦ →
(

T (φ(s)) ≡ T (φ(t))
))

In the arithmetized language, we treat ∧ and ∀ as symbols defined contex-

tually, i.e. φ ∧ ψ = ¬(¬φ ∨ ¬ψ) and ∀vφ = ¬∃v¬φ. Then it is easy to check that

the following sentences are provable in PT−:

1. ∀φ, ψ (T (φ ∧ ψ) ≡ (T (φ) ∧ T (ψ))).

2. ∀φ, ψ (T (¬ (φ ∧ ψ)) ≡ (T (¬φ) ∨ T (p¬ψq))).

3. ∀v∀φ(v) (T (∀vφ) ≡ (∀x T (φ(x)))

4. ∀v∀φ(v) (T (¬∀vφ) ≡ (∃x T (¬φ(x)))

In PT− the internal logic (i.e. the logic of all true sentences) is modelled after

the Strong Kleene Scheme. Let us observe that axioms of PT− make it possible

to accept a disjunction φ ∨ ψ as true simply on the basis of the truth of one of φ

and ψ and regardless of whether the second one has its truth value determined.

The second theory we will study is more cautious in this respect. Let us define

tot(φ(v)) := Form≤1(φ(v)) ∧ ∀x
(
T (φ(x)) ∨ T (¬φ(x))

)

In particular if ψ is a sentence, then

PAT− ⊢ tot(ψ) ≡

(

T (ψ) ∨ T (¬ψ)

)

.

where PAT− is the extension of PA in LPA ∪{T }, with no non-logical axioms for

T .

Definition 6. WPT− is the axiomatic truth theory with the following axioms

for the truth predicate:

1. (a) ∀s, t
(
T (s = t) ≡ (s◦ = t◦)

)

(b) ∀s, t
(
T (¬s = t) ≡ (s◦ 6= t◦)

)
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2. (a) ∀φ, ψ
(
T (φ ∨ ψ) ≡

(
tot(φ) ∧ tot(ψ) ∧

(
T (φ) ∨ T (ψ)

))

(b) ∀φ, ψ
(
T (¬(φ ∨ ψ)) ≡ T (¬φ) ∧ T (¬ψ)

)

3. (a) ∀v∀φ(v)
(
T (∃vφ) ≡ tot(φ(v)) ∧ ∃xT (φ(x))

)

(b) ∀v∀φ(v)
(
T (¬∃vφ) ≡ ∀x T (¬φ(x))

)

4. ∀φ
(
T (¬¬φ) ≡ T (φ)

)

5. ∀φ∀s, t
(
s◦ = t◦ → T (φ(s)) ≡ T (φ(t))

)

Using the above mentioned conventions regarding ∧ and ∀, it is an easy

exercise to show that the following sentences are provable in WPT−:

1. ∀φ, ψ (T (φ ∧ ψ) ≡ (T (φ) ∧ T (ψ))).

2. ∀φ, ψ (T (¬ (φ ∧ ψ)) ≡ (tot(φ) ∧ tot(ψ) ∧ (T (¬φ) ∨ T (¬ψ)))).

3. ∀v∀φ(v) (T (∀vφ) ≡ (∀x T (φ(x)))

4. ∀v∀φ(v) (T (¬∀vφ) ≡ (tot(φ(v)) ∧ ∃x T (¬φ(x))))

In WPT− the internal logic is modelled after the Weak Kleene Scheme. (W)PT−

can be seen as a natural stratified counterpart of (W)KF−7 Since in particular

(W)PT− is a subtheory of (W)KF− and the latter are well known to be model-

theoretically conservative over PA (see [1]; we will outline direct proof of model-

theoretical conservativity of PT− in Section 3), we have

Proposition 7. PT− and WPT− are model-theoretically conservative.

In particular we see that the axiom (NEG) may contribute to the strength of

truth theories: it is easy to see that (W )PT− + (NEG) is deductively equivalent

to the theory CT−, hence in particular by the well-known theorem of Lachlan

(see [10],[14]) it is not semantically conservative.

For the sake of convenience let us isolate one easily noticeable feature of PT−

and WPT−:

Definition 8 (UTB). Let φ(x0, . . . , xn) be any arithmetical formula. UTB−(φ) is

the following LT sentence

∀t0 . . . tn
(
T (pφ(t0, . . . , tn)q) ≡ φ(t0

◦, . . . , tn
◦)
)

(UTB−(φ))

Define

UTB− := {UTB−(φ(x0, . . . , xn)) | φ(x0, . . . , xn) ∈ LPA}

And UTB to be the extensions of UTB− with all instantiations of induction

scheme with LT formulae.
7For the definition of all mentioned theories not defined in this paper, consult [10] or [9] (for

WKF).
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Fact 9. Both PT− and WPT− prove UTB−.

In [6],[7] and [8] (this last philosophical motivation was summarized also in

[4]) authors motivated the need for a weak theory of truth which would be able

to prove in a single sentence the fact that every arithmetical formula satisfy the

induction scheme. Such a fact can be naturally expressed by an LT sentence

∀φ(x)

[
(
∀x

(
T (φ(x)) → T (φ(x+ 1)

))
−→

(
T (φ(0)) → ∀xT (φ(x))

)
]

(INT)

For further usage let us abbreviate the formula

(
∀x

(
T (φ(x)) → T (φ(x+ 1)

))
−→

(
T (φ(0)) → ∀xT (φ(x))

)

by INT(φ(x)). Using Fact 9, we see that both PT− + INT and WPT− + INT

can prove any arithmetical instance of the induction schema in a uniform way,

for each formula using the same finitely many axioms8. In particular, it can be

finitely axiomatised by taking IΣ1 together with axioms for the truth predicate

from PT− and (INT). To achieve this goal, however, none of the discussed theo-

ries uses the full strength of (INT). By UTB−(φ) every standard formula is total,

provably in WPT−. Hence it makes good sense to consider a version of (INT)

restricted to total formulae, i.e.

∀φ(v)

[

tot(φ(v)) −→ INT(φ(v))

]

(INT ↾tot)

The theory PT− + INT ↾tot was claimed to be model-theoretically conserva-

tive in [5] (and then used in [6],[7] and [8] as such). However, as shown in [4],

the proof of its conservativity contained an essential gap and no prime model

of PA9 admits an expansion to the model of PT− + INT ↾tot. Moreover, it was

shown that every recursively saturated model of PA can be expanded to a model

of this theory. In particular, PT−+ INT ↾tot is model-theoretically stronger than

PT− and weaker than UTB and CT−.

In the current study, we further approximate the class of models expandable

to PT− + INT ↾tot and compare the strength of UTB with the strength of PT− +

INT. Moreover we show that WPT− + INT is model theoretically conservative

and meets the requirements posed in [8]. Our results jointly with some well-

known facts from the literature give the following picture of interdependencies

between proof-theoretically conservative theories of truth:

8The proof is really easy: we fix φ(x) (with parameters), prove the instantiation of the UTB−(φ)

scheme for φ and substitute φ(x) for T (φ(x)) in INT
9For the definition of all notions from the model theory of PA see [14].
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CT− + INT

CT− ?
⇐⇒ PT− + INT

UTB

PT− + INT ↾tot

TB

PT− ⇐⇒ WPT− + INT

where −→ stands for �M and =⇒ for ≤M . The question whether any of =⇒

arrows is in fact a −→ arrow is open. Similarly, the relation between classes of

models of CT− and PT− + INT is unknown.

2 Models of PT−
+ INT ↾tot

In the paper [4], it has been shown that PT−+INT ↾tot is not semantically conser-

vative over PA and, moreover, any (not necessarily countable) recursively satu-

rated model of PA admits an expansion to a model of PT− + INT ↾tot. The non-

conservativity result has been obtained by demonstrating that no prime model

of PA can be expanded in such a way. Now, we will show a strengthening of

that result. Let us first recall one definition.

Definition 10. Let M be a model of PA. We say that M is short recursively

saturated if any recursive type (with finitely many parametres from M ) of the

form p(x) = {x < a ∧ φi(x) | i ∈ N} is realised in M where a is some fixed

parameter from M .

In other words, a model is short recursively saturated if it realises all types

which are finitely realised below some fixed element. This notion is strictly

weaker than full recursive saturation. For example, the standard model N is

short recursively saturated but not recursively saturated. More generally, a

countable model is short recursively saturated if and only if it has a recursively

saturated elementary end extension, see [18], Theorem 2.8.

Theorem 11. Let M |= PA and suppose that M has an expansion (M,T ) |= PT− +

INT ↾tot. Then M is short recursively saturated.
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The proof of our theorem will closely parallel the proof of Theorem 4 from

[4]. In particular, we will again use a propositional construction invented by

Smith.

Definition 12. Let (αi)i≤c, (βi)i≤c be any sequences of sentences. We define the

alternative with stopping condition (αi)

c,α
∨

i=i0

βi

by backwards induction on i0 as follows:

1.
∨c,α

i=c βi = αc ∧ βc.

2.
∨c,α

i=k βi = ¬(αk ∧ ¬βk) ∧
(

(αk ∧ βk) ∨
(
¬αk ∧

∨c,α

i=k+1 βi
))

.

We may think that this is a formalisation in propositional logic of the follow-

ing instruction: for i from i0 up to c, search for the first number j such that αj

holds and then check whether also βj holds. Then stop your search. The whole

formula is true if this βj is true and is false if either βj is false or there is no j

such that αj holds. It turns out that this intuition may be partially recovered in

theories of truth, even if one does not assume that the truth predicate satisfies

induction axioms.

Lemma 13. Fix (M,T ) |= PT−. Suppose that (αi)i≤c is a sequence of arithmetical

sentences coded in M . Suppose that the least j such that T (αj) holds is standard, say

j = j0, and that for any k ≤ j0 either T (βk) or T (¬βk) holds. Then

1. (M,T ) |= T
(
∨c,α

i=c βi

)

≡ T (βj0) .

2. (M,T ) |= T
(

¬
∨c,α

i=c βi

)

≡ T (¬βj0) .

For a proof, see [4], Lemma 2.3. Now we are ready to prove that any model

of PA expandable to a model of PT− + INT ↾tot is short recursively saturated.

Proof. Fix any recursive type p(x) = (φi(x) ∧ x < a)i∈ω (with a parameter a)

and suppose that for any finite set φ0, . . . , φk there is some bk < a such that

M |= φ0(bk) ∧ . . . ∧ φk(bk). Let

α0(x) = ¬x < a ∨ ¬φ0(x)

αj+1(x) = x < a ∧ φ0(x) ∧ . . . ∧ φj(x) ∧ ¬φj+1(x).

In a sense, formulae αj(x) measure how much of the type p is realised by x.

Now, if the type p is ommitted in the model M , then for any x, there exists a

standard j such that (M,T ) |= Tαj(x). Let βj(y) be defined as

βj(y) = y < a ∧ φ0(y) ∧ . . . ∧ φj+1(y).

9



Now, fix any nonstandard c and consider the (nonstandard) formula

φ(x, y) =

c,α(x)
∨

i=0

βi(y).

By Lemma 13 and our assumption that the type p is omitted inM , the sentence

φ(x, y) is either true or false for any fixed x, y ∈ M. But this means that the

formula φ(x, y) is total. One can check that then a formula

ψ(z) = ∃y∀x < zφ(x, y)

is also total. Note that this formula intuitively says that there is a y which satis-

fies more of a type p than any of the elements of M up to z.Now, we will show

that ψ(z) is progressive, i.e.,

(M,T ) |= ∀z
(

Tψ(z) → Tψ(z + 1)
)

.

Fix any z and suppose that Tψ(z) holds. Then there exists a y such that T (p∀x <

z φ(x, y)q).Now, let j be the least number such that Tαj(z). Since j is a standard

number and p is a type, there exists y′ such that φ0(y
′) ∧ . . . ∧ φj+1(y

′) holds in

M , i.e. (M,T ) |= Tβj(y
′). Let y′′ = y if also

T
(

φ0(y) ∧ . . . ∧ φj+1(y)
)

and y′′ = y′ otherwise. In other hand, we fix either y or y′, whichever satisfies

”more” formulae φi. One readily checks that then

(M,T ) |= ∀x < z + 1 φ(x, y′′).

We have shown that the formula ψ(z) is total and progressive. By the inter-

nal induction for total formulae this means that

(M,T ) |= ∀z Tψ(z).

In particular, we have Tψ(a), where a is the parameter used as a bound in the

type p. But then for some d, we have

(M,T ) |= ∀x < a Tφ(x, d).

Now, since p is a type, for an arbitrary k ∈ ω, there exists some x < d such that

φ0(x)∧ . . .∧φk(x). Since (M,T ) |= Tφ(x, d), it follows that d < a∧φ0(d)∧ . . .∧

φk+1(d). As we have chosen an arbitrary k, we see that actually d satisfies the

type p. We conclude that M is short recursively saturated.

Let us summarize our findings from [4] and this paper:
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• Any recursively saturated model of PA (possibly uncountable) admits an

expansion to a model of PT− + INT ↾tot .

• If a model M expands to a model of PT− + INT ↾tot, then it is short recur-

sively saturated.

Unfortunately, we do not know whether any of the implications reverses.

Cieśliński and Engström have (independetly) found the following charac-

terisation the class of models of PA which admit an expansion to a model of

TB, i.e., the truth theory axiomatised with the induction scheme for the whole

language and the following scheme of Tarski’s biconditionals:

T (pφq) ≡ φ,

where φ is an arithmetical sentence.

Theorem 14 (Cieśliński, Engström). 10 Let M be a nonstandard model of PA. Then

the following are equivalent:

1. M admits an expansion to a model (M,T ) |= TB.

2. There exists an element c ∈M such that for all (standard) arithmetical sentences

φ, M |= pφq ∈ c iff M |= φ, i.e., M codes its own theory.

It can be easily shown that every nonstandard short recursively saturated

model M |= PA satisfies the second item of the above characterisation. Hence,

every short recursively saturated model of PA admits an expansion to a model

of TB. Thus we obtain the following corollary:

Corollary 15. TB ≤M PT− + INT ↾tot, i.e., every model M |= PA which admits an

expansion to a model of PT− + INT ↾tot, also admits an expansion to a model of TB.

2.1 A non-result

We are going to show that the method used to prove that every recursively

saturated model of PA admits an expansion to a model of PT−+ INT ↾tot cannot

be used to obtain a stricter upper bound on the class of models expandable to

this theory (if such a stricter upper bound exists). Let us recall that in [4], it

was shown that every recursively saturated model of PA can be expanded to

a model of PT− + INT ↾tot. Let us recall the standard definition of a function

which generates possible extensions for the PT− truth predicate.

10See [3], Theorem 7.
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Convention 2. If M |= PA, then SentM, Form≤1
M , TermM denote the set of

sentences of LPA, the set of formulae with at most one free variable and the set

of terms, respectively, in the sense of M.

Definition 16. Let M |= PA and A ⊆ M. Define:

ΘM(φ,A) := M |= ∃s, t [φ = (s = t) ∧ s◦ = t◦]

∨ M |= ∃s, t [φ = ¬(s = t) ∧ s◦ 6= t◦]

∨ ∃ψ ∈ SentM[M |= φ = ¬¬ψ] ∧ ψ ∈ A

∨ ∃ψ1, ψ2 ∈ SentM[M |= φ = (ψ1 ∨ ψ2)] ∧
(
ψ1 ∈ A) ∨ (ψ2 ∈ A)

)

∨ ∃ψ1, ψ2 ∈ SentM[M |= φ = ¬(ψ1 ∨ ψ2)] ∧
(
(¬ψ1 ∈ A) ∧ (¬ψ2 ∈ A)

)

∨ ∃ψ(x) ∈ Form1
M[M |= φ = ∃xψ] ∧ ∃x ∈ M (ψ(x) ∈ A)

∨ ∃ψ(x) ∈ Form1
M[M |= φ = ¬∃xψ] ∧ ∀x ∈ M (¬ψ(x) ∈ A)

Let ΓM : P(M) → P(M) be the function defined:

ΓM(A) = {φ ∈ M | ΘM(φ,A)}. (Γ)

Let us now define:

ΓM
0 = ΓM(∅)

ΓM
α+1 = ΓM(ΓM

α )

ΓM
β =

⋃

α<β

ΓM
α , for β a limit ordinal.

It can be checked that for some ordinal α we must get ΓM
α+1 = ΓM

α , i.e., ΓM
α is a

fixpoint of ΓM. In general, if A is any fixpoint of ΓM, then

(M, A) |= PT−.

Let αM denote the least ordinal α such that ΓM
α is a fixpoint of ΓM.

In [4], the following lemmata were proved:

Lemma 17. If M |= PA is recursively saturated, then αM = ω.

Lemma 18. If M |= PA and αM = ω, then (M,ΓM
ω ) |= PT− + INT ↾tot.

Now we shall show that the converse to 17 holds. In particular, our method

of finding extensions for PT− + INT ↾tot works only for recursively saturated

models.

Lemma 19. For every non-standard M |= PA. If αM = ω, then M is recursively

saturated.

12



Proof. We prove the contraposition: suppose that a non-standard model M is

not recursively saturated. Let p(x) be a recursive type using parameters from ā

which is omitted in M. Let (φi(x, ȳ))i be an arithmetically representable enu-

meration of formulae in p(x). Without loss of generality, assume that φ0(x, ȳ) =

(x = x). Let

ψi(x, ȳ) =
∧

j<i

φj(x, ȳ) ∧ ¬φi(x, ȳ)

Then every b ∈ M satisfies exactly one of ψi(x, ā) (since p(x) is omitted). Now,

for every n ∈ ω we shall define formulae θn(x) as follows:

θ0n(x) = (x 6= x)

θk+1
n (x, ȳ) = ψn−(k+1)(x, ȳ) ∨ θ

k
n(x, ȳ)

θn(x, ȳ) = θnn(x, ȳ)

Let us observe that the above construction can be arithmetized and therefore

for some b ∈ M \ N there exists a (code of a) formula θb(x, ȳ), which is of the

following form:

(ψ0(x, ȳ) ∨ (ψ1(x, ȳ) ∨ (ψ2(x, ȳ) ∨ (. . . (ψb−1(x, ȳ) ∨ x 6= x) . . .)

Then for each c ∈ M , there exists n ∈ ω such that θb(c, ā) ∈ ΓM
n , since each c

satisfies some ψi(x, ā). But also for every i ∈ ω, there exists c ∈M such that the

least n for which ψn(c, ā) is greater than i. Consequently, there is no k ∈ ω for

which

θb(c, ā) ∈ ΓM
k

for every c ∈M . In particular, ∀vθ(v, ā) /∈ ΓM
ω and consequently the PT− axiom

∀v∀φ(v)
(
T (∀vφ) ≡ ∀xT (φ(x))

)

is not satisfied in (M,ΓM
ω ). Hence αM 6= ω.

3 Models of PT−
+ INT

Since we have shown that PT− + INT ↾tot is not a model-theoretically weak

theory, as was originally hoped, one could start wondering whether it differs

in some significant respect from PT− + INT. In this section, we will show that

actually this is the case. Namely, it turns out that PT− + INT is still model-

theoretically stronger than PT− + INT ↾tot . As we shall see, any model of PA

expandable to a model of PT− + INT, is also expandable to a model of UTB.

We know that any model of PA expandable to a model of UTB is recursively

saturated and that this containment is strict, i.e., not every recursively saturated

13



model of PA admits an expansion to a model of UTB.11 On the other hand, it

has been shown in [4], Theorem 3.3 that any recursively saturated model of PA

admits an expansion to a model of PT− + INT ↾tot .

Theorem 20. Suppose that (M,T ) is a model of PT− + INT. Then there exists a T ′

such that (M,T ′) |= UTB.

Proof. Let (M,T ) |= PT−+INT. We will find T ′ such that (M,T ′) |= UTB.With-

out loss of generality we may assume thatM is nonstandard. As in the previous

section, we will use Lemma 13. Let us fix any primitive recursive enumeration

(φi)
∞
i=0 of arithmetical formulae. Then let

α′
i(φ, t)

be defined as the (formalised version of the) formula "t is a (finite) sequence of

terms (t1, . . . , tn) and φ = φi(t1, . . . , tn)" and let

αi(φ, t, b) = α′
i(φ, t) ∨ i > b.

Let

β′
i(t)

be defined as ”t is a (finite) sequence of terms t1, . . . , tn and φi(t1, . . . , tn).” Let

βi(t, b)

be β′
i(t) ∧ i ≤ b. Note that φ is not a free variable of the formula βi. Let us fix

any nonstandard c ∈M and let

τ(φ, t, b) =

α(φ,t,b),c
∨

i=0

βi(t).

Note that for any standard c the predicate τ is equivalent to the very simple

arithmetical truth predicate:

τn(φ, t, b) =

n∨

i=0

φ = φi(t) ∧ φi(t) ∧ i < b.

At this point one may wonder, what is the role of the variable b. It is indeed

technical. We artificially truncate our truth predicates so that they work only

11We know that there exist rather classless recursively saturated models of PA, i.e., recursively

saturated models M |= PA with the following property: for every X ⊆ M such that every initial

segment of X is coded M , the set X is definable in M with an arithmetical formula (with parame-

tres). Since no subset of M definable with an arithmetical formula can satisfy UTB−, we see that no

such model M can admit an expansion to a model of UTB. The existence of recursively saturated,

rather classless models has been shown by Kaufmann in [13] under an additional set-theoretic as-

sumption ⋄. The assumption has been dropped by Shelah, [17], Application C, p. 74.
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for the first b formulae. This is to some extent controlled by the parameter c

in the definition of τ , since whenever c is standard, the formula τ works like a

truth predicate only for the first c sentences. However, c is not a variable in the

formula τ , but rather a parameter describing the syntactic shape of τ , whereas

we need this truncation to be expressed with a variable for reasons which will

shortly become clear.

It turns out that for some parameter b the formula given by

T ′(φ) = ∃t T (τ(φ, t, b))

satisfies UTB. We will prove this claim in a series of lemmata. This will obvi-

ously conclude our proof.

Lemma 21. Let τ ′(φ, t) = τ(φ, t, b) for some fixed nonstandard b. Then for an arbi-

trary standard arithmetical formula φ(v1, . . . , vn) and an arbitrary sequence of terms

t = (t1, . . . , tn), possibly nonstandard (the length of the sequence is assumed to be

standard).

(M,T ) |= Tτ ′(φ(t1, . . . , tn), t) ≡ φ(t1, . . . , tn).

Proof. If φ is standard, then φ = φi for some standard i. So by Lemma 13

(M,T ) |= Tτ ′(φ(t1, . . . , tn), t) ≡ βi(t) ≡ φi(t1, . . . , tn),

which is exactly the claim of the lemma.

Note that the above lemma is true in pure PT−. We have used no induction at

all. Now we only need to check that for some parameter b the predicate T ′(φ, t)

defined as Tτ(φ, t, b) is fully inductive.

Lemma 22. Let T ′ be defined as in the above proof. Then for some b, the formula

τ ′(φ, t) = τ(φ, t, b) is total and consistent i.e. for all φ and t, exactly one of Tτ ′(φ, t),

T¬τ ′(φ, t) holds.

Proof. Note first that for any standard b, the formula τ(φ, t, b) is total and con-

sistent. Namely, since αi(φ, t, n) is true for any i > n, we see that for any φ, t

the least i such that αi(φ, t, n) holds is standard (it is at most n + 1) and then

the assumptions of Lemma 13 are satisfied. This implies that for any fixed ξ

the formula Tτ(ξ, t, n) is equivalent to some φi(t
◦)∧ i ≤ n, which is a standard

formula. This implies that for any t, exactly one of Tτ(ξ, t, n), T¬τ(ξ, t, n) holds.

Now, consider the formula

ψ(b) = ∀φ, t
(

τ(φ, t, b) ∨ ¬τ(φ, t, b)
)

.
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We have just shown that for an arbitrary standard n we have T∀b < n ψ(b). So

by internal induction we have for some nonstandard d1

T

(

∀b ≤ d1∀φ, t
(

τ(φ, t, b) ∨ ¬τ(φ, t, b)
))

,

which gives

∀b ≤ d1∀φ, t
(

Tτ(φ, t, b) ∨ T¬τ(φ, t, b)
)

Similarly, let

ξ(b) = ∃φ, t
(

τ(φ, t, b) ∧ ¬τ(φ, t, b)
)

.

Suppose that T (∃d < b ξ(d)) holds for any nonstandard b < d1. Then by un-

derspill we would have Tξ(n) for some n ∈ ω. But we have just shown that this

is impossible. So there exists some nonstandard b < d1 such that for any d ≤ b

and any φ, t at most one of Tτ(φ, t, d), T¬τ(φ, t, d) holds. At the same time, we

know that at least one of these formulae holds. So τ ′(φ, t) = τ(φ, t, b) is total

and consistent.

We are very close to showing that we have defined a predicate satisfying

full induction. Before we proceed, we have to introduce some new notation.

Let η be any formula containing a unary predicate P not in the language of

PT− and let ξ(v) be an arbitrary formula with one free variable. Then by η[ξ/P ]

(or simply η[ξ]) we mean a formula resulting from substituting ξ(vi) for any

instance of P (vi) in η. We assume that all the variables in η has been renamed

so as to avoid clashes.

Let us give an example. Let η(x, y) = P (x + y) ∧ ∃z (z = y ∧ P (z)). Let

ξ(v) = (v > 0). Then

η[ξ] = x+ y > 0 ∧ ∃z (z = y ∧ z > 0).

Now, basically, we would like to finish the proof in the following way. Let

τ ′ be a total formula defined as in the above lemmata and let η be an arbitrary

standard formula from the arithmetical language enlarged with a fresh unary

predicate P . Then, applying compositional axioms a couple of times, we see

that

T (η[τ ]) ≡ η[Tτ ].

Let us call this principle the generalised commutativity. If this were true, then

we could conclude our proof. Namely, by the internal induction principle, we

know that

(
∀x

(
T (η[τ ](x)) → T (η[τ ](x + 1))

)
−→

(
T (η[τ ](0)) → ∀xT (η[τ ](x))

)

which, by generalised commutativity, would allow us to conclude that

(
∀x

(
η[Tτ ](x) → (η[Tτ ](x+ 1)

))
−→

(
η[Tτ ](0) → ∀xη[Tτ ](x)

)
.

16



Since the choice of η was arbitrary, this precisely means that τ satisfies the full

induction scheme.

The generalised commutativity principle in the form stated above does not

even quite make sense, since we would have to apply the truth predicate to a

formula containing free variables. Therefore, we have to restate it in somewhat

more careful manner.

Definition 23. Fix a unary predicate P . Let η be an arbitrary formula from the

language containing that predicate. We say that η is in semirelational form if

the predicate P is applied only to variables rather than to arbitrary terms.

We may always assume that formulae we use are semirelational, since we

may eliminate any occurrence of P (t) for complex terms t, by replacing it with

∃x (x = t ∧ P (x)). This is expressed in the following lemma:

Lemma 24. Any formula is equivalent in first-order-logic to a formula in semirelational

form.

Now we are ready to state generalised commutativity lemma in a proper

manner.

Lemma 25. Let (M,T ) |= PT−. Let T ∗ ξ(x) = T (ξ(x)) for every x. Suppose that

ξ is total and consistent. Let η be an arbitrary standard formula from the arithmetical

language extended with a fresh unary predicate P . Then the formula η[ξ] is total and

consistent, and

(M,T ) |= ∀x1, . . . , xn
(
T (η[ξ](x1, . . . , xn)) ≡ η[T ∗ ξ](x1, . . . , xn)

)
.

The lemma generalises to the case, where the predicate P is not unary (i.e.

ξ may have more than one variable). The proof may be easily adapted to cover

this case. We will actually use the lemma for the case with P binary.

Proof. We prove both claims simultanously by induction on complexity of η.

Suppose that η is an atomic formula. Then it is either of the shape s = t for

some standard arithmetical terms s,t, or of the form P (x).

In the first case, η[ξ] = η, and the following equivalences hold:

T (s(x1, . . . , xn) = t(x1, . . . , xn)) ≡ s(x1, . . . , xn)
◦ = t(x1, . . . , xn)

◦

≡ s(x1, . . . , xn) = t(x1, . . . , xn)

= η[T ∗ ξ](x1, . . . , xn).

If η = P (x), then η[ξ] = ξ and

T (η[ξ](x)) = Tξ(x) = η[T ∗ ξ](x).
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So let prove the induction step. If η is a conjunction or disjunction, then the

proof is straightforward (the fact that a conjunction or disjunction of sentences

which are either true or false is itself either true or false is an easy application

of the compositional axioms of PT−). If η = ¬ρ, then we know by induction

hypothesis that ρ[η] is total and consistent. Then by the compositional axiom

for double negation for the truth predicate, the formula ¬ρ[η] is also total and

consistent and the following equivalences hold:

T (¬ρ[η](x1, . . . , xn)) ≡ ¬T (ρ[η](x1, . . . , xn))

≡ ¬ρ[T ∗ η](x1, . . . , xn).

The induction step for quantifier axioms is also simple. Let us prove it for

the existential quantifier. Suppose that η = ∃x ρ(x, x1, . . . , xn). Then

T (∃x ρ[ξ](x, x1, . . . , xn)) ≡ ∃x T (ρ[ξ](x, x1, . . . , xn)

≡ ∃x ρ[T ∗ ξ](x, x1 . . . , xn)

= η[T ∗ ξ](x1, . . . , xn).

The second equivalence follows by the induction hypothesis and the last equal-

ity by definition. So let us check that η[ξ] is total and consistent. Suppose that

T (∃xρ[ξ](x, x1, . . . , xn)) does not hold. Then by compositional axioms for the

truth predicate, there is no x such that

T (ρ(x, x1, . . . , xn)).

By induction hypothesis, ρ is total and consistent, so for all x we must have

T (¬ρ[ξ](x, x1, . . . , xn)).

This entails, again by compositional clauses

T (¬∃x ρ[ξ](x, x1, . . . , xn)).

Now we are ready to conclude the proof of our theorem.

Lemma 26. Let (M,T ) be any nonstandard model of PT−+INT. Suppose that τ ′(φ, t)

satisfies the claim Lemma 22. Then the predicate T ′(φ, t) defined as T ∗τ ′(φ, t) satisfies

the full induction scheme.

Proof. By internal induction principle, the following holds for an arbitrary stan-

dard η from the arithmetical language extended with one fresh unary predicate

P (v):
(

∀x
(
T (η[τ ](x)) → T (η[τ ](x + 1)

))

−→
(

T (η[τ ](0)) → ∀xT (η[τ ](x))
)

,
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Since τ ′ is total, if we additionally assume that η is semirelational, we can reach

the following conclusion by Lemma 25:

(

∀x
(
η[T ∗ τ ](x) → (η[T ∗ τ ](x + 1)

))

−→
(

η[T ∗ τ ](0) → ∀xη[T ∗ τ ](x)
)

.

Since ηwas an arbitrary semirelational formula and any formula is equivalent to

a semirelational one, this shows that T ′ satisfies the full induction scheme.

The conclusion of the proof of Theorem 20. We have defined a formula T ∗ τ ′(φ, t)

which satisfies full induction scheme and such that for an arbitrary standard

φ(v1, . . . , vn) and an arbitrary sequence of terms (t1, . . . , tn) the following holds:

(M,T ) |= T ∗ τ ′(φ(t1, . . . , tn), t) ≡ φ(t1, . . . , tn).

Then the formula T ′(φ) defined as

∃t T ∗ τ ′(φ, t)

satisfies the uniform disquotation axioms of UTB as well as the full induction

scheme. So it defines a predicate satisfying UTB in (M,T ).

This model-theoretic result allows us to make some conclusions concerning

relative definability of the introduced theories.

Corollary 27. The theory PT−+INT ↾tot does not relatively truth defines PT−+INT.

Proof. We have just checked that every model (M,T ) |= PT− + INT ↾tot may

be expanded to a model of UTB. By Theorem TODO, there exist recursively

saturated rather classless models which cannot be expanded to any model of

UTB. On the other hand in [4], Theorem 3.3, it has been shown that any recur-

sively saturated model can be expanded to a model of PT− + INT ↾tot . Thus,

there exist models of PT− + INT ↾tot which cannot be expanded to a model of

PT− + INT. This contradicts relative definability.

4 Weak and Expressive Theories of Truth

In [8], the authors searched for a theory of truth that would simultaneously

satisfy two requirements:

1. It could model the use of truth in model theory;

2. It would witness the expressive function of the notion of truth.
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The way to satisfy the former is to be model-theoretically conservative over

PA. Being such, the theory would not discriminate among possible interpreta-

tions of our basis theory. The way to satisfy the latter is to allow for expressing

"thoughts" which are not expressible in the basis theory. There are many ways

in which a theory of truth can witness the expressive role of the notion of truth.

To mention just two (for the rest of the examples the Reader should consult [8]):

if a theory of truth is finitely axiomatizable, then it is more expressive (than PA)

and if a theory of truth has non-elementary speed-up over PA, then it is more

expressive (than PA). There is a canonical construction which produces a theory

of truth satisfying both finite-axiomatizability and the speed-up desideratum:

the theory has to be (at least partially) classically compositional and it has to

prove that all standard instantiations of the induction scheme are true. With-

out aspiring to any sort of completeness, let us offer the following explication

of both properties. We start with a useful definition:

Definition 28. Let CC(x) denote the disjunction of the following formulae

• ∃s, t
(
x = (s = t) ∧ (T (x) ≡ s◦ = t◦)

)

• ∃φ, ψ
(
x = φ ∨ ψ ∧ (T (x) ≡ T (φ) ∨ T (ψ))

)

• ∃φ
(
x = ¬φ ∧ (T (x) ≡ ¬T (φ))

)

• ∃φ∃v
(
x = ∃vφ ∧ (T (x) ≡ ∃yT (φ(y)))

)

• Form≤1(x) ∧ ∀s, t
(

s◦ = t◦ →
(
T (x(s)) ≡ T (x(t))

))

Informally, CC(x) says that x is a formula on which T behaves composition-

ally in the sense of classical first-order logic.

Definition 29. A truth theory Th is partially classically compositional if there exists

a formula D(y) such that Th proves the following sentences:

1. ∀y(D(y) → ∀x ≤ yD(x));

2. D(0) ∧ ∀y(D(y) → D(y + 1));

3. ∀y
(
D(y) → ∀φ(dp(φ) ≤ y → CC(φ))

)
;

where dp(φ) ≤ x denotes an arithmetical formula representing the (primitive

recursive) relation "the depth of the syntactic tree of φ is at most x".

If a formula satisfies the first requirement, we say that it is downward closed. If

a formula satisfies the second one, we say that it is progressive. If a formulaD(y)

is both downward closed and progressive, we will say that it defines an initial

segment. This is justified, since ifD(y) satisfies 1 and 2, then in each model M |=
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Th the set {a ∈ M | M |= D(a)} is an initial segment of the model. In fact,

being downward closed is not a very restrictive condition: if D(y) is progressive,

then the formula

D′(x) := ∀y ≤ xD(y)

defines an initial segment. (this corresponds to a model-theoretic fact that each

cut can be shortened to an initial segment). The third condition says that if φ is

not too complicated (i.e., its complexity belongs to the initial segment defined

by D), then T behaves classically on φ.

Definition 30. Let ind(φ(x)) denote the instantiation of the induction scheme

with φ(x), i.e., the universal closure of the following formula:

∀x(φ(x) → φ(x + 1)) −→
(
φ(0) → ∀xφ(x)

)

Following our conventions, we will use ind(·) to denote an arithmetical formula

representing the function which, given a Gödel code of a formula with at most

one free variable, returns the Gödel code of the corresponding induction axiom.

Definition 31. A truth theory proves the truth of induction if there exists a formula

D(y) such that Th proves that D(y) defines an initial segment and

∀φ(v)

(

D(φ(v)) → T
(
ind(φ(v))

)
)

. (T(IND))

We shall say that Th is finitely axiomatisable modulo PA if there is a sen-

tence φ such that the logical consequences of Th are precisely the logical conse-

quences of PA ∪ {φ}. For example, CT−, PT− and WPT− are finitely axiomati-

sable modulo PA.

Now we have the following theorem whose unique novelty rests on isolating

the features that are usually used to prove the thesis for concrete theories of

truth.

Theorem 32. Assume that

1. Th is partially classically compositional and proves the truth of induction and

2. Th is finitely axiomatizable modulo PA,

then Th is finitely axiomatizable and it has super-exponential speed-up over PA.

Sketch of the proof. Let D1(y) define an initial segment on which T is classically

compositional. LetD2(y)define an initial segment on which Th proves the truth

on induction. Then D(y) := D1(y)∧D2(y) defines an initial segment on which
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T is classically compositional and proves the truth of induction. Obviously, for

every standard natural number n we have

Th ⊢ D(n)

In particular, Th ⊢ UTB−, which for every concrete formula of standard com-

plexity can be proved by external induction on the complexity of its subformu-

lae. Now, for every standard formula φ(x0, . . . , xn), we can prove ind(φ(x̄)) in

Th in the following way:

1. prove that D defines an initial segment on which T is classically compo-

sitional;

2. prove that D(pind(φ(x̄))q) and conclude D(pφ(x̄)q);

3. prove T(IND);

4. using 2. and 3. conclude T (pind(φ(x̄))q);

5. prove UTB− (ind(φ(x̄)));

6. conclude ind (φ(x̄)).

Observe that, given 1., the proof of D(pind(φ(x̄))q can be constructed in pure

First-Order Logic. Similarly, given 1., all we need to use in proving UTB− (ind(φ(x̄)))

are some basic syntactical facts provable in IΣ1. Let φ be a sentence such that

PA∪{φ} is a finite-modulo-PA axiomatisation of Th. It follows that for some n,

every proof of ind(φ(x̄)) can be given in IΣn + φ, hence the theory

IΣn ∪ {φ}

is a finite axiomatization of Th. To prove that Th has super-exponential speed-

up over PA, we show that there is a formulaD′(y) which provably in Th defines

an initial segment and that

Th ⊢ ∀y
(
D′(y) → ConPA(y)

)

where ConPA(y) is a finitary statement of consistency of PA saying that there is

no PA proof of 0 = 1 which can be coded using less than y bits. For the details,

see [6], Theorem 9.

In [6], it was shown that PT−+INT ↾tot satisfies the assumptions of the above

theorem. However, as was shown in [4], this theory is not model-theoretically

conservative over PA. We shall now show that the right theory to use is WPT−+

INT.
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Proposition 33. WPT− is partially classically compositional and WPT−+INT proves

the truth of induction.

Proof. Let us define

D′(y) := ∀x ≤ y∀φ

(

dp(φ) ≤ x −→
(
T (¬φ) ≡ ¬T (φ)

)
)

.

Then it can be easily shown thatD′(y) provably in WPT− defines an initial seg-

ment on which T is classically compositional (that D′(y) is progressive is as-

sured by the compositional axioms of WPT−). For convenience, let us define:12

GC(x) := Form(x) ∧
(
T (ucl(x)) ≡ ∀σ(Asn(x, σ) → T (x[σ]))

)

where

1. ucl(φ(x̄)) denotes the universal closure of φ(x̄);

2. Asn(φ, σ) represents the relation "σ is an assignment for φ", i.e., σ is a

function defined exactly on the free variables of φ;

3. x[σ] denotes the result of simultaneous substitution of numerals naming

numbers assigned by σ to the free variables of x.

Further define

D(y) := D′(y) ∧ ∀φ(x̄)

(

|FV(φ(x̄))| ≤ y −→ GC(φ(x̄))

)

where, , |FV(φx̄)| ≤ x represents the relation "φ(x̄) contains at most x free vari-

ables". For the sake of definiteness, we assume that ucl(φ) starts with a quan-

tifier binding the variable with the least index among the free variables if φ. It

can be easily seen that D(y) is downward closed. Let us now show that D(y) is

progressive. We work in WPT−. Fix arbitrary a and suppose that D(a). Then

D′(a) and, asD′(y) is progressive, we have alsoD′(a+1). Let us fix an arbitrary

formula φ with less than a + 1 free variables and let v be its free variable with

the least index. Then the following are equivalent

1. T (ucl(φ))

2. ∀xT (ucl(φ(x/v)))

3. ∀x∀σ
(
Asn(φ(x/v), σ) → T (φ(x/v)[σ])

)

4. ∀σ
(
Asn(φ, σ) → T (φ[σ])

)
.

12GC stands for ”generalised commutativity.” GC(x) expresses that the truth predicate com-

mutes with the whole block of universal quantifiers in the universal closure of x.
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The equivalence between 1. and 2. is by the axiom for universal quantifier in

WPT−. The equivalence between 2. and 3. holds because φ(x/v) has ≤ a free

variables. The last equivalence holds because each assignment for φ consists of

an assignment to v and an assignment to the free variables of φ(x/v).

We show that WPT−+ INT proves the truth of induction onD(y). We work

in WPT−+ INT. Let us observe that for each formula φ, we have dp(φ) ≤ φ and

|FV(φ)| ≤ φ. 13 Hence if D(φ), then D′(dp(φ)) and D(|FV(φ)|). In particular,

if D(φ) then T is classically compositional on subformulae of φ and T can suc-

cessfully deal with the universal closure for φ. Let us fix an arbitrary formula

φ(v, w̄) such that D(φ(v, w̄)). We have to show T (ind(φ(v, w̄)), i.e.

T

(

ucl
(

∀v(φ(v) → φ(v + 1)) −→
(
φ(0) → ∀vφ(v)

))
)

(1)

(we skip the reference to w̄ and assume that they are bounded by the universal

quantifiers from ucl). Since the formula

(
∀v(φ(v) → φ(v + 1)) −→

(
φ(0) → ∀vφ(v)

))

contains less free variables then φ(v), we know that (1) is equivalent to

∀σT
(

∀v(φ(v)[σ] → φ(v + 1)[σ]) −→
(
φ(0)[σ] → ∀vφ(v)[σ]

))

. (2)

Let us fix an arbitrary σ. Then φ(v)[σ] is a formula with at most free variable v.

Let us abbreviate it with ψ(v). Hence it is enough to show:

T
(

∀v(ψ(v) → ψ(v + 1)) −→
(
ψ(0) → ∀vψ(v)

))

. (3)

Since dp(ψ(v)) = dp(φ(v)) and the depth of (3) is equal to dp(ψ(v)) + 3, then

T is classically compositional on (3). Hence (3) is equivalent to

∀x
(
T (ψ(x)) → T (ψ(x+ 1))

)
−→

(
T (ψ(0)) → ∀xTψ(x)

)

which follows by INT. Hence WPT− + INT proves the truth of induction on

D.

Hence WPT− + INT exemplifies the expressive role of truth. Let us observe

that, as it contains no restriction on arithmetical formulae admissible in the

axiom of internal induction, it is more natural than PT− + INT ↾tot.
14 WPT− +

INT proves that all arithmetical formulae, and not only total, satisfy induction,

which is clearly the idea behind PA. Let us show that despite having such an

expressive axiom, it is a model-theoretically conservative theory of truth.

13Being precise, this is a property of our coding. But most natural codings surely have it.
14In [8] authors discuss this restriction in the context of PT− and admit it is as a possible objection

to their theory.
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Theorem 34. WPT− + INT is model-theoretically conservative over PA.

Proof. Let M |= PA. For b ∈M let b ∈ Tr′ if and only if for some t0, . . . , tn such

that

M |=
∧

i≤n

Term(ti)

and some (standard!) φ(x0, . . . , xn) ∈ LPA

M |=
(
b = pφ(t0, . . . , tn)q

)
∧ φ(t0

◦, . . . , tn
◦)

Let us observe that with such a definition, we have

(M, T r′) |= UTB−

To become the appropriate interpretation of WPT− truth predicate, Tr′ requires

only one small correction. Let ∼α denote the arithmetical formula representing

in PA the relation of two sentences being the same modulo renaming variables

(α-conversion). Let us define

b ∈ Tr

if and only if for some ψ ∈ Tr′, M |= b ∼α ψ. Now it can be easily shown that

(M, T r) |= WPT− + INT.

Indeed, compositional axioms are satisfied, since for every x ∈ M such that

M |= Form≤1(x)

(M, T r) |= tot(x) if and only if for some n ∈ ω, M |= dp(x) ≤ n (∗)

and moreover (M, T r) |= UTB−. Hence in verifying compositional axioms we

may use the fact that |= is compositional. Let us check the axiom for ∨. Suppose

φ = ψ ∨ θ and (M, T r) |= T (φ). Then there exists φ′ ∼α φ such that T (φ′)

and φ′ = pφ′′(t0, . . . , tn)q for some standard LPA formula φ′′(x0, . . . , xn) and

t0, . . . , tn terms in the sense of M. If so, then φ′ = ψ′ ∨ θ′ such that ψ ∼α ψ′

and θ ∼α θ′. Also ψ′ and θ′ are of the form ψ′′(t0, . . . , tn) and θ′′(t0, . . . , tn),

respectively. By UTB−, we have

M |= ψ′′(t0
◦, . . . , tn

◦) ∨ θ′′(t0
◦, . . . , tn

◦)

Without loss of generality, assume that M |= ψ′′(t0
◦, . . . , tn

◦). It means that

(M, T r) |= T (ψ) and consequently (M, T r) |= T (ψ) ∨ T (θ). By (∗), we have

(M, T r) |= tot(ψ) ∧ tot(θ) ∧
(
T (ψ) ∨ T (θ)

)
.

which completes the proof of one implication. Let us now assume that the

above holds. Since we have tot(ψ) and tot(φ), it follows that for some n,k,

M |= dp(ψ) ≤ n ∧ dp(θ) ≤ k.
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In particular, dp(φ) ≤ max{n, k}+ 1. Let us assume that (M, T r) |= T (ψ). Let

ψ ∼α ψ
′ and θ ∼α θ

′ be such that (M, T r′) |= T (ψ′). Reasoning as previously,

we conclude that (M, T r′) |= T (ψ′ ∨ φ′) and hence

(M, T r) |= T (ψ ∨ φ)

which completes the proof of the compositional axiom for ∨.

Let us now verify that (M, T r) |= INT. Fix an arbitrary formula φ(x) in the

sense of M and assume that

(M, T r) |= T (φ(0)) ∧ ∀x
(
T (φ(x)) → T (φ(x+ 1))

)

It follows that M |= dp(φ(x)) ≤ n for some n ∈ ω and for some standard

φ′0(x, y0, . . . , yk), φ
′
1(x, y0, . . . , yk), φ

′
2(x, y0, . . . , yk),

we have

M |= φ(x) ∼α pφ′i(x, t0, . . . , tk)q

for some terms in t0, . . . , tk in the sense of M and for i ≤ 2. In particular, by

UTB− we have

M |= φ′0(0, t0
◦, . . . , tk

◦) ∧ ∀x
(
φ′1(x, t0

◦, . . . , tn
◦) → φ′2(x + 1, t0

◦, . . . , tn
◦)
)
.

But as satisfiability in a model is closed under α-conversion and each two of φ′0,

φ′1, φ′2 are α-equivalent, we get that

M |= φ′0(0, t0
◦, . . . , tk

◦) ∧ ∀x
(
φ′0(x, t0

◦, . . . , tn
◦) → φ′0(x+ 1, t0

◦, . . . , tn
◦)
)

Hence, by induction in M we get

M |= ∀x φ′0(x, t0
◦, . . . , tn

◦)

which by UTB− again gives us (M, T r′) |= ∀xT (φ′0(x, t0, . . . , tk)). Hence also

(M, T r) |= ∀x T (φ(x, t0, . . . , tk)),

which ends the proof.

In order to find a theory satisfying the Fischer-Horsten criterion, we decided

to switch the inner logic of the truth theory. It allowed to formulate a very nat-

ural theory of truth modelled after Weak Kleene Scheme. Is it possible to re-

alise Fischer-Horsten desiderata using a compositional theory of truth extend-

ing PT−? With the meaning we gave to the term ”axiomatic theory of truth”,

we are not allowed to add more symbols to the language.15 For the moment,

we leave it as an open problem.

15Without this restriction the answer is trivial: simply take PT− together with (WPT− + INT)

but formulated with a different truth predicate symbol.
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