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Abstract

We show that a typed compositional theory of positive truth with in-
ternal induction for total formulae (denoted by PTtot) is not semantically
conservative over Peano arithmetic. In addition, we observe that a class
of models of PA expandable to models of PTtot contains every recursively
saturated model of arithmetic. Our results point to a gap in the philosoph-
ical project of describing the use of the truth predicate in model-theoretic
contexts.

For quite a while conservativity has been promoted as an important trait of
deflationary truth theories. To our knowledge, the idea was introduced for the
first time by Leon Horsten, who declared conservativity to be a commitment of
Horwich’s ‘minimal theory’.1 Since then Horsten’s proposal of explaining the
deflationary tenet of ‘thinness’ or ‘neutrality’ of truth in terms of conservativ-
ity has been often repeated, discussed and refined in logical and philosophical
literature.

At least two notions of conservativity have been proposed as tools for the
deflationist to explicate his position. One notion is syntactic; the intended
meaning is that a conservative extension does not prove new theorems of the
base language. The second is semantic and concerns the possibility of expanding
models.2

∗c.cieslinski@uw.edu.pl
†mlelyk@student.uw.edu.pl
‡bar.wcislo@gmail.com
1In Horsten’s own words: ‘The minimalist theory entails that a truth predicate should

be conservative over a given theory that is stated without the truth predicate (or any other
semantical notions).’ See [12], p. 183.

2See [3] for a discussion of the philosophical motivation behind both versions of the con-
servativity demand for deflationary theories of truth.
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Definition 1. Let T1 and T2 be theories in languages L1 and L2 (with L1 ⊆ L2).
Then:

(i) T2 is syntactically conservative over T1 iff ∀ψ ∈ L1 [T2 ` ψ → T1 ` ψ].

(ii) T2 is semantically conservative over T1 iff every model of T1 can be ex-
panded to a model of T2.

Although semantic conservativity entails conservativity in the syntactic sense,
these two notions are not equivalent. There are well-known examples of ax-
iomatic truth theories which are syntactically, but not semantically conservative
over their base theories of syntax.

Research on axiomatic theories of truth permits us to recognise the following
fairly general patterns, exemplified by many truth theories.

• Axiomatic truth theories which are both compositional and fully inductive
are not syntactically conservative over their base theories of syntax. How-
ever, the lack of even one of these properties typically produces syntactic
conservativity.3

• Even without compositionality, full induction in the language with the
truth predicate typically produces semantic non-conservativity of an ax-
iomatic theory of truth. However, it is known that compositionality by
itself (that is, without extended induction) can be squared with semantic
conservativity.4

The initial reception of these and related results has been mainly nega-
tive. Some authors (see in particular [16] and [14]) employed the conservativity
demand as a weapon against deflationary theories of truth, arguing that defla-
tionary truth should be conservative, but immediately adding that it cannot be,
because conservative truth theories are too weak. However, more recently some
defences of conservative truth theories - even in a stronger semantic sense of
the word - have been put forward in the literature. In particular, in [8] Fischer
and Horsten proposed to study axiomatic truth theories treated as characteri-
sations of the use of the truth predicate in model-theoretic contexts. In their
own words:

3Compositional theories CT, KF and FS are syntactically non-conservative over PA, but
they become conservative as soon as the extended induction - that is, induction for formulae
with the truth predicate - is removed (see [11] for further details). On the other hand,
disquotational non-compositional axiomatic theories TB, UTB and PTB are syntactically
conservative, even though they contain full extended induction (see [2] and [4]). A curious
counterexample is a disquotational theory PUTB discussed in [10], which is not syntactically
conservative over Peano arithmetic.

4If a theory of truth proves biconditionals ‘T (ϕ) ≡ ϕ’ for all arithmetical sentences ϕ and in
addition contains full extended induction, then it is not semantically conservative over PA (see
[2]). On the other hand, compositional positive truth axioms without any extended induction
produce theories which are semantically conservative over PA (see [11] for the details).
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There are contexts where one is reluctant to privilege one model over
another, and where one does not want a theory of truth to exclude
models for the original language. In particular, this is the case in
the single mathematical field where truth predicates play a major
role, viz. model theory, and in uses of model theory in proof theory.
([8], p. 345)

In effect, Fischer and Horsten describe their endeavour as similar in impor-
tant respects to that of Tarski, who attempted to establish ‘beyond reasonable
doubt that the uses of truth predicates in metamathematics are legitimate.’ ([8],
p. 345)

Apart from semantic conservativity, there is also another desirable trait of
the aforementioned ‘uses of truth predicates’. Truth has expressive power - it
‘widens the class of thoughts that we can express’ ([8], p. 345). One indication
of the expressive power is the non-interpretability of our theory of truth in
its base theory of syntax; there is then a precise sense in which truth brings
conceptually something new. Another indication is the non-elementary speed-
up of the theory of truth with respect to its arithmetical base theory. Here the
expressive power of truth manifests itself in the instrumental value of the truth
predicate, namely, truth permits us to shorten proofs. All in all, the moral is
that we should search for an axiomatic theory of truth Th which jointly satisfies
the following requirements:

(a) Th is semantically conservative over its arithmetical base theory of syntax
B,

(b) Th is not interpretable in B,

(c) Th has non-elementary speed-up over B.

Do we have at our disposal an axiomatic truth theory which would capture
the uses of the truth predicate in model theory? It has been suggested that a
theory of typed positive truth with internal induction for total formulae (denoted
as PTtot in this paper5) fills the bill. Below we introduce the relevant definitions.

Let LPA be the language of Peano arithmetic, with V ar and Tmc being
(respectively) the sets of variables and constant arithmetical terms. By LT we
denote the extension of LPA with the new one-place predicate ‘T (x)’. For the
sentences of LPA the notation ‘SentLPA

’ will be used. By x we mean the x-th
numeral, i.e. the only numeral denoting the number x. We define:

5Some authors, notably Fischer in [6], have been using the notation “PT−” instead of our
PTtot. We prefer a different notation, reserving “Th−” for truth theories Th without any
induction for formulae containing the truth predicate.
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Definition 2. PT− is the theory in the language LT which is axiomatised by
the usual axioms of Peano arithmetic (PA), together with the following truth
theoretic axioms:

(1) ∀s∀t ∈ Tmc
(
T (s = t) ≡ val(s) = val(t)

)
(2) ∀s∀t ∈ Tmc

(
T (¬s = t) ≡ val(s) 6= val(t)

)
(3) ∀ψ ∈ SentLPA

(
T (¬¬ψ) ≡ T (ψ)

)
(4) ∀ϕ∀ψ ∈ SentLPA

(
T (ϕ ∧ ψ) ≡ T (ϕ) ∧ T (ψ)

)
(5) ∀ϕ∀ψ ∈ SentLPA

(
T¬(ϕ ∧ ψ) ≡ T (¬ϕ) ∨ T (¬ψ)

)
(6) ∀v ∈ V ar∀ϕ ∈ LPA

(
T (∀vϕ) ≡ ∀xT (ϕ(x/v))

)
(7) ∀v ∈ V ar∀ϕ ∈ LPA

(
T (¬∀vϕ) ≡ ∃xT (¬ϕ(x/v))

)
The above axiomatisation is the same as presented in [6]. In [8] the consid-

ered theory has been augmented with two new axioms to the effect that truth is
extensional and only sentences are true, i.e with the following extensionality
principle

∀φ ∈ LPA∀s, t ∈ Tmc
(
val(t) = val(s)→

(
T (φ(t)) ≡ T (φ(s))

))
(EXT)

and the normality principle

∀x
(
T (x)→ x ∈ SentLPA

)
. (NORM)

Although at some point we will consider also these additional axioms, we
emphasise that in the terminology adopted in this paper they do not belong to
PT− proper.

In the next move we extend PT− with a weak form of induction for total
arithmetical formulae.

Definition 3. Let tot(φ) be a shorthand for ∀x [T (φ(x)) ∨ T (¬φ(x))]. By the
principle of internal induction for total formulae (Indtot) we mean the following
single sentence of the language LT :

∀φ(x) ∈ LPA
(
tot(φ(x)) −→(
∀x [T (φ(x))→ T (φ(x+ 1))] −→

(
T (φ(0))→ ∀x T (φ(x))

)))
,

where the quantifier ‘∀φ(x)’ reads ‘for every formula φ(x) with at most x free’.
We read the expression ‘tot(x)’ as ‘x is total’. We denote the theory PT− +

Indtot by PTtot.
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One could wonder whether such a form of induction is not overly restrictive.
Why should we have induction for total formulae only? However, Fischer and
Horsten claim that the restriction becomes natural and well-motivated as soon
as we appreciate that it is all models of arithmetic - including the nonstandard
ones - that matter:

We do not want to accept instantiations of induction for non-standard
elements that are not truth-determinate for the property in ques-
tion for exactly the same reason that we resist inductive premises
for soritical predicates. Note that the reply that in the “intended”
model there are no such non-standard elements to be found is not
undermining our motivation for restriction; as we have emphasised
repeatedly, we are adopting the model-theoretic viewpoint, and from
this viewpoint, all models are on a par. ([8], p. 355)

In [6] it has been claimed that PTtot is semantically conservative over PA;
in the same paper the author proves that PTtot is not interpretable in its base
theory (PA). In turn, in [5] it is shown that PTtot has a non-elementary speed-up
over PA. Taken together, these results imply that PTtot is indeed an excellent
candidate for the role of the theory characterising the use of the truth predicate
in model-theoretic contexts.

Unfortunately, the conservativity proof presented in [6] contains a flaw.6

Indeed, the main result of the present paper is that PTtot is not semantically
conservative over Peano arithmetic (hence the same is true about PTtot with
(EXT) and (NORM) added). In view of this, the question still remains whether
we have at our disposal a natural axiomatic truth theory satisfying requirements
(a)-(c).

***

An easy argument based on the existence of fixed points for monotone operators
shows that PT− is model-theoretically conservative over PA (see [11]). However,
it transpires that adding internal induction for total formulae comes with a price.
The following theorem states the semantic non-conservativity of PTtot.

Theorem 4. There is a model of PA which cannot be expanded to a model of
PTtot.

Before we proceed to the proof, we shall define one construction in propo-
sitional logic which is very useful in the context of investigating compositional
theories of truth with restricted induction. The construction has originally ap-
peared in [17] although its properties were not spelled out in full generality.

6We are grateful to Martin Fischer for the email correspondence concerning this matter.
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Definition 5. Let α = (α0 . . . αc) and β = (β0 . . . βc) be arbitrary sequences
of formulae. By a disjunction of βi (for 0 ≤ k ≤ n ≤ c) with stopping
condition α, denoted

n,α∨
i=k

βi

we mean any of the following formulae defined by backward induction on k:

1.
n,α∨
i=n

βi = (αn ∧ βn).

2.
n,α∨
i=k

βi = ¬(αk ∧ ¬βk) ∧
(

(αk ∧ βk) ∨
n,α∨

i=k+1

βi

)
.

The intuition behind the above formulae is as follows: we want to search
through i as long as we do not see i0 such that αi0 is true. Then we stop and
check whether βi0 is satisfied. If it is, then the whole formula is true, if not, then
the whole formula is false, regardless of the truth value of βj for j > i0. We call
it a disjunction, since if α is chosen so that exactly one of the αi-s is true, then
the above construction is equivalent in propositional logic to the disjunction:

n∨
i=k

(αi ∧ βi).

Although one should note that in this case it is also equivalent to

n∧
i=k

(αi → βi).

So, in a sense, it is a propositional analogue of a ∆1-formula.

Given a model M of Peano arithmetic and sequences α, β ∈ M ,7 the con-

struction can be reproduced inside M . In such a case the expression ‘
n,α∨
i=k

βi’ will

refer to the unique, possibly nonstandard formula in the sense of M . The most
important property of the above construction, one we have already alluded to,
is that formulae obtained in this way (even nonstandard ones!) behave well in
models of compositional truth theories without induction for the language with
the truth predicate. These nice properties are encapsulated in the following
lemma:

7More exactly, we assume here that α and β are elements of M such that for some c ∈M ,
the formal analogue of the statement ‘α and β are sequences of length c containing arithmetical
formulae’ is true in M .
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Lemma 6. Let M be an arbitrary nonstandard model of PT−. Let α, β ∈M be
sequences of nonstandard length c, containing as elements arithmetical formulae
αi(x), βi(y) with the free variables indicated.8 Suppose that for all i ∈ ω the
formulae αi(x) are standard. Let a ∈ M be such that j0 ∈ ω is the smallest
natural number satisfying the condition M |= T

(
αj0(a)

)
. Then for every k ≤ j0

and for every b ∈M the following holds:

(a) M |= T
( c,α∨
i=k

βi(a, b)
)
≡ T

(
βj0(b)

)
.

(b) M |= T
(
¬
c,α∨
i=k

βi(a, b)
)
≡ T

(
¬βj0(b)

)
.

In the proof we will use the well-known fact that for every standard formula
ϕ(x1 . . . xn):

PT− ` ∀x1 . . . xn
(
T
(
ϕ(x1 . . . xn)

)
≡ ϕ(x1 . . . xn)

)
.

It immediately follows that for every standard formula ϕ(x1 . . . xn):

PT− ` ∀x1 . . . xn
(
T
(
¬ϕ(x1 . . . xn)

)
≡ ¬T

(
ϕ(x1 . . . xn)

))
.9

Proof. We prove the lemma by backward metainduction on k. Starting with
k = j0, note that there exists γ such that the disjunction of βi with stopping
condition α from j0 to c may be written as:

c,α∨
i=j0

βi(a, b) = ¬(αj0(a) ∧ ¬βj0(b))︸ ︷︷ ︸
A

∧
(

(αj0(a) ∧ βj0(b)) ∨ γ︸ ︷︷ ︸
B

)
.

For the implication from right to left in part (a) of the lemma, assume
that M |= T (βj0(b)). Therefore by the axiom of PT− for double negation, we
obtain M |= T (¬¬βj0(b)), which in turn (by compositional axiom for negated
conjunction) permits us to conclude that M |= T (A). Since by assumption
M |= T (αj0(a)), we obtain also M |= T

(
αj0(a) ∧ βj0(b)

)
. Applying again

compositional axioms of PT− we get M |= T (A ∧B), as required.

For the implication from right to left in (b) it is enough to observe thatM |=
T (¬βj0(b)) together with M |= T (αj0(a)) gives us immediately M |= T (¬A),
and so M |= T (¬(A ∧B)).

Proving the opposite implication in (a), assume that M |= T (A ∧B). From
M |= T (A) by compositional axioms of PT− we obtain: M |= T (¬αj0(a)) or

8Again, this is taken to mean that all elements of α and β are formulae in the sense of M .
9In effect, we easily obtain the information that for every standard formula ϕ(x), truth

is provably total and consistent in PT−. In other words, if ϕ(x) is standard, then PT− `
tot(ϕ(x)) ∧ ¬∃x

(
T
(
ϕ(x)

)
∧ T

(
¬ϕ(x)

))
.

7



M |= T (¬¬βj0(b)). But M |= T (αj0(a)), and since αj0 is standard, this gives
us M |= ¬T (¬αj0(a)), and so by the compositional axiom for double negation,
M |= T (βj0(b)).

Proving the opposite implication in (b), assume that M |= T (¬(A ∧B)), so
M |= T (¬A) ∨ T (¬B). If M |= T (¬A), then by compositional axioms M |=
T (¬βj0(b)). If M |= T (¬B), then by compositional axioms M |= T (¬αj0(a)) ∨
T (¬βj0(b)). But M |= T (αj0(a)), so (since αj0 is standard) M |= ¬T (¬αj0(a))

and therefore M |= T (¬βj0(b)).

Suppose now that our claim is true for a given k + 1 ≤ j0. In other words,
we have:

(i) M |= T
( c,α∨
i=k+1

βi(a, b)
)
≡ T

(
βj0(b)

)
.

(ii) M |= T
(
¬

c,α∨
i=k+1

βi(a, b)
)
≡ T

(
¬βj0(b)

)
.

Our task is to prove the claim for k. Observe that by Definition 5:
c,α∨
i=k

βi = ¬(αk(a) ∧ ¬βk(b))︸ ︷︷ ︸
C

∧
(

(αk(a) ∧ βk(b)) ∨
c,α∨

i=k+1

βi(a, b)︸ ︷︷ ︸
D

)
.

For the implication from right to left in part (a) of the lemma, assume

that M |= T (βj0(b)). Therefore by (i) we have: M |= T
( c,α∨
i=k+1

βi(a, b)
)
, so

M |= T (D). Since k < j0, by the choice of j0 we haveM |= ¬T (αk(a)); therefore
M |= T (¬αk(a)) because αk is standard. In effect, the compositional axiom of
PT− for negated conjunction permit us to conclude also that M |= T (C) and
thus M |= T (C ∧D).

For the implication from right to left in (b), assume that M |= T (¬βj0(b)).

Then by (ii)M |= T
(
¬

c,α∨
i=k+1

βi(a, b)
)
. SinceM |= ¬T (αk(a)), the compositional

axioms of PT− give us M |= T
(
¬(αk(a) ∧ βk(b))

)
, so M |= T (¬D) and finally

M |= T
(
¬(C ∧D)

)
as required.

For the implication from left to right in (a), assume that M |= T (C ∧D), so
in particular M |= T

(
αk(a) ∧ βk(b)

)
∨ T

(∨c,α
i=k+1 βi(b)

)
. But M |= ¬T

(
αk(a)

)
and therefore the second disjunct must be true, which by (i) permits us to
conclude that M |= T

(
βj0(b)

)
.

For the implication from left to right in (b), assume thatM |= T
(
¬(C∧D)

)
,

so M |= T (¬C) ∨ T (¬D). However, by compositional axioms M |= T (¬C) ≡(
T (αk(a)) ∧ T (¬βk(b))

)
and since M |= ¬T (αk(a)), we obtain M |= T (¬D).

Then by the compositional axiom of PT− for negated disjunction it follows that

M |= T
(
¬

c,α∨
i=k+1

βi(a, b)
)
and therefore by (ii) M |= T

(
¬βj0(b)

)
.
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Corollary 7. Let M , α, β, a and j0 satisfy the assumptions of Lemma 6. If

in addition the formula βj0(y) is standard, then M |= ∀k ≤ j0 tot
( c,α∨
i=k

βi(a, y)
)
.

Proof. It is enough to observe that if βj0(y) is standard, thenM |= ∀b T
((
βj0(b)

)
∨ T

(
¬βj0(b)

))
. Then by Lemma 6 the corollary follows immediately.

Now we are ready to prove our theorem. The argument will consist in
showing that no nonstandard prime model of Peano arithmetic is expandable
to a model of PTtot.

10

Proof of Theorem 4. Let K be an arbitrary nonstandard prime model of Peano
arithmetic. From now on we take for granted that all elements ofK are definable
in K by arithmetical formulae without parameters. The claim will be that K is
not expandable to a model of PTtot. Suppose for contradiction that (K,T ) |=
PTtot. We will argue that in such a case there is an element e of K which
codes Th(K) (that is, e codes the set of all arithmetical sentences true in K).
However, such an element e cannot exist in a prime model, because then e

would be definable in K, generating a contradiction with Tarski’s undefinability
theorem.

For starters, fix any nonstandard c ∈ K and let α be a recursive enumeration
of formal definitions up to c. That is, given a fixed recursive enumeration
φ0(x), φ1(x) . . . of arithmetical formulae with exactly one free variable x, each
αi(x) has the form:

φi(x) ∧ ∀y < x ¬φi(y).

For a ∈ K, we say that αi(x) defines a in K iff i is the smallest natural
number such that K |= αi(a). Observe that since K is prime, such a number
exists for every a ∈ K and a corresponding formula αi(x) is standard.

We define now the second sequence β, containing formulae βi(y) with one
free variable, characterised as:

∀φ < i [SentLPA
(φ)→

(
φ ∈ y ≡ Ti(φ)

)
].

The expression ‘Ti’ stands for an arithmetical truth predicate for sentences
below i. The exact shape of this predicate is not of crucial importance; what

10Given a model M of Peano arithmetic, the universe of a prime model K can be defined as
the set of all those elements of M which are definable in M by arithmetical formulae without
parameters. In turn, the operations of K are defined as those of M restricted to the universe
of K. For further information about prime models we refer the reader to [13], p. 91ff.
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will really matter is that for i ∈ ω, Ti(x) - and therefore also βi(y) - is a standard
arithmetical formula.11

We define:

• ψ(x, y) :=
c,α∨
i=0

βi(x, y),

• ξ(z) := ∃y∀x < z ψ(x, y).

We emphasise that ψ(x, y) and ξ(z) are defined in a model K and not exter-
nally. With c being nonstandard, both ψ(x, y) and ξ(z) should be thought of as
nonstandard arithmetical formulae - elements of K which are perceived by K as
formulae, not to be confused with the ‘real world’ arithmetical expressions.12

We are going to show that:

(i) (K,T ) |= tot
(
ξ(z)

)
,

(ii) (K,T ) |= T
(
ξ(0)

)
∧ ∀x

(
T
(
ξ(x)

)
→ T

(
ξ(x+ 1)

))
.

For (i), first observe that (K,T ) |= ∀a tot(ψ(a, y)). In order to see this, fix
a ∈ K and let αj0(x) define a. Fixing b, it is enough to observe that the assump-

tions of Corollary 7 are satisfied; therefore (K,T ) |= ∀k ≤ j0 tot
( c,α∨
i=k

βi(a, y)
)
.

For k = 0, this gives (K,T ) |= ∀a tot(ψ(a, y)).

It easily follows that ∀a ∈ K (K,T ) |= tot
(
∀x < aψ(x, y)

)
.13 Finally, we

argue for the totality of ξ(z). Given an arbitrary a ∈ K, if (K,T ) |= ∃yT (∀x <
a ψ(x, y)), then (K,T ) |= T (ξ(a)). Otherwise (K,T ) |= ∀y¬T (∀x < a ψ(x, y)),
which (by totality of ‘∀x < a ψ(x, y)’) entails (K,T ) |= T (¬ξ(a)).

For (ii), obviously (K,T ) |= T
(
ξ(0)

)
,14 so we move to the second conjunct.

Fix b such that (K,T ) |= T
(
ξ(b)

)
; in other words: (K,T ) |= T

(
∃y∀x < b ψ(x, y)

)
.

Choose e ∈ K such that (K,T ) |= T
(
∀x < b ψ(x, e)

)
. Our task is to obtain

e′ ∈ K such that (K,T ) |= T
(
∀x < b+ 1 ψ(x, e′)

)
.

Let αi(x) be the least definition of b. We put:
11For example, predicates Ti(x) could be defined as ‘(x = pψ0q∧ψ0)∨. . .∨(x = pψmq∧ψm)’,

where ψ0 . . . ψm are all arithmetical sentences with gödel numbers smaller than i. Note that
this construction of Ti(x) can be carried out in an arbitrary model M of PA. In effect, we will
have formulae (in the sense of M) Tc(x) for an arbitrary element c of M , even a nonstandard
one. However, it is important to emphasise that in each formula Ti(x) the letter ‘i’ is not
a variable. The index gives rather the information that in the corresponding formula all
sentences with gödel numbers smaller than (fixed) i are taken into account.

12Accordingly, it would make no sense to say, for example, that ψ(x, y) is satisfied in K by
some objects a and b. Nevertheless, nonstandard formulae can be employed in the scope of
the truth predicate and we are allowed to say, for example, that (K,T ) |= T (ψ(a, b)).

13Fix a and b; assume that (K,T ) |= ¬T
(
∀x < a ψ(x, b)

)
. Then (K,T ) |= ∃x <

a¬T
(
ψ(x, b)

)
. Choosing such an x ∈ K, we obtain (K,T ) |= ¬T

(
ψ(x, b)

)
and by totality of

ψ(a, y) for every a, we obtain (K,T ) |= T
(
¬ψ(x, b)

)
and thus (K,T ) |= T

(
¬∀x < a ψ(x, b)

)
.

14It is enough to observe that there is no x < 0 in K, so an arbitrary y is a witness for
‘∃y∀x < 0 ψ(x, y)’.
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e′ = e− {0 . . . i− 1} ∪ {ψ ∈ SentLPA
| ψ < i ∧K |= ψ}.

All that remains for the completion of the proof of (ii) is to show that for
every d < b + 1, (K,T ) |= T

(
ψ(d, e′)

)
. Fix such a d and let αj(x) be the least

definition of d. By Lemma 6, it is enough to obtain (K,T ) |= T
(
βj(e

′)
)
; in

other words, we want to have:

(*) (K,T ) |= T
(
∀φ < j[SentLPA

(φ)→
(
φ ∈ e′ ≡ Tj(φ)

)
]
)
.

Since d < b + 1, we consider two cases. If d = b, then j = i and (*)
follows trivially from the definition of e′. On the other hand, if d < b, then
(K,T ) |= T

(
ψ(d, e)

)
, and so by Lemma 6 (K,T ) |= T

(
βj(e)

)
. In other words,

we have:

(**) (K,T ) |= T
(
∀φ < j[SentLPA

(φ)→
(
φ ∈ e ≡ Tj(φ)

)
]
)
.

It is easy now to show that (*) must hold. Fixing φ < j, we observe that
if φ < i, then (K,T ) |= T

(
φ ∈ e′ ≡ Tj(φ)

)
because by definition, e′ codes only

true sentences below i. Otherwise φ ≥ i, but then φ ∈ e and φ ∈ e′, so by (**)
we also conclude that (K,T ) |= T

(
φ ∈ e′ ≡ Tj(φ)

)
.

This finishes the proofs of (i) and (ii). At this point we know that ξ(z) is
total and inductive in (K,T ), so by the axiom of internal induction we conclude
that (K,T ) |= ∀z T (ξ(z)). Let a be a nonstandard element ofK. Since (K,T ) |=
T (ξ(a)), we can choose e such that (K,T ) |= ∀x < a T

(
ψ(x, e)

)
.

We will show that e codes Th(K) in K; in other words, we show that:

(***) ∀n ∈ ω K |= ∀φ < n [SentLPA
(φ)→

(
φ ∈ e ≡ Tn(φ)

)
].

Fix n ∈ ω. Let k and i be elements of ω such that αi(x) defines k in K

and i > n. Since k < a,15 we have: (K,T ) |= T
(
ψ(k, e)

)
, which by Lemma 6 is

equivalent to (K,T ) |= T
(
βi(e)

)
. In other words:

(K,T ) |= T
(
∀φ < i [SentLPA

(φ)→
(
φ ∈ e ≡ Ti(φ)

)
]
)
.

Applying disquotation (valid in PT− for standard formulae with parameters),
we obtain:

K |= ∀φ < i [SentLPA
(φ)→

(
φ ∈ e ≡ Ti(φ)

)
].

Since i > n, (***) follows trivially. In effect, e codes Th(K) in K. But this is
impossible in prime models, thus a contradiction is obtained and the proof is
finished.

15We remind that k is standard and a is a nonstandard element of K.
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***

In this section we further approximate the class of those models of PA that
admit an expansion to models of PTtot. In general such a class is a handy tool
for comparing properties of axiomatic theories of truth. Let us introduce the
precise definition and a piece of notation:

Definition 8. Let Th be any extension of PA (possibly in extended language).
By Th we denote the class of models of PA that can be expanded to a model of
Th.

For example, it is known that for every nonstandard modelM,M∈ TB if and
only ifM codes its own theory, i.e.

{pφq | φ ∈ SentLPA
∧M |= φ}

is coded inM.16

Results on such classes can be used to obtain some information about relative
truth definability17 between axiomatic theories of truth. The connection between
these two notions is established via the following fact:

Fact 9. Let Th1, Th2 be two axiomatic truth theories. If Th1 is relatively truth
definable in Th2, then Th2 ⊆ Th1.

For the (immediate) proof, see [9].

In the previous section we showed that the class of prime models of PA is
disjoint from PTtot. In the next theorem we approximate this class from below
(byRS we denote the class of recursively saturated models of PA). For technical
simplicity, we will prove the theorem for the stronger theory PTtot + (EXT) +
(NORM), which from now on we will denote by RPTtot (regular PTtot).

Theorem 10. RS ⊆ RPTtot.18

Note that since PTtot is a subtheory of RPTtot, the above result clearly
implies that every recursively saturated model of PA can be expanded to a
model of PTtot.

16For the details, see [2]. However, it should be noted that our ability to provide a purely
arithmetical characterisation of TB makes TB rather exceptional. For most axiomatic truth
theories we are only able to restrict the class of possible candidates. For example, it is known
that the class of recursively saturated models of PA properly contains CT− and UTB.

17For the definition of this notion and the discussion of its philosophical relevance, see [9].
18Cf. [1], where it is argued that every recursively saturated model is expandable to a

model of an untyped truth theory KFt. Cantini’s KFt is formulated in the language with
two predicates ‘T ’ and ‘F ’ (for truth and falsity respectively); it contains also the axiom of
internal induction for total formulae.
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The proof follows immediately from two lemmata, which we consider inter-
esting also for their own sake. Before stating them let us introduce two more
notions (the expressions SentM, Tmc

M, Form
1
M denote the set of arithmetical

sentences, closed terms and arithmetical formulae with at most one free variable
in the sense of modelM):

Definition 11. By the term formulation of PT−, denoted by tPT−, we mean
PT− with the quantifier axioms:

(6) ∀v ∈ V ar∀ϕ ∈ LPA
(
T (∀vϕ) ≡ ∀xT (ϕ(x/v))

)
(7) ∀v ∈ V ar∀ϕ ∈ LPA

(
T (¬∀vϕ) ≡ ∃xT (¬ϕ(x/v))

)
replaced with the following ones:

(6’) ∀v ∈ V ar∀ϕ ∈ LPA
(
T (∀vϕ) ≡ ∀t ∈ TmcT (ϕ(t/v))

)
(7’) ∀v ∈ V ar∀ϕ ∈ LPA

(
T (¬∀vϕ) ≡ ∃t ∈ TmcT (¬ϕ(t/v))

)
.

We define the term formulation of PTtot as the term formulation of PT− ex-
tended with the internal induction axiom (Indtot). We note that there is no need
to define the term formulations of RPT or RPTtot, since over any extension of
PT− containing (EXT) the conditions 6 (7) and 6′ (7′) are equivalent.

Definition 12. Let M |= PA, let A ⊆ M and let φ be a LPA sentence in the
sense ofM. We define:

ΘM(φ,A) := M |= ∃s, t ∈ Tmc[φ = (s = t) ∧ val(s) = val(t)]

∨ M |= ∃s, t ∈ Tmc[φ = ¬(s = t) ∧ val(s) 6= val(t)]

∨ ∃ψ ∈ SentM[M |= φ = ¬¬ψ] ∧ ψ ∈ A

∨ ∃ψ1, ψ2 ∈ SentM[M |= φ = (ψ1 ∧ ψ2)] ∧
(
ψ1 ∈ A ∧ ψ2 ∈ A)

)
∨ ∃ψ1, ψ2 ∈ SentM[M |= φ = ¬(ψ1 ∧ ψ2)] ∧

(
¬ψ1 ∈ A) ∨ (¬ψ2 ∈ A)

)
∨ ∃ψ1, ψ2 ∈ SentM[M |= φ = (ψ1 ∨ ψ2)] ∧

(
ψ1 ∈ A) ∨ (ψ2 ∈ A)

)
∨ ∃ψ1, ψ2 ∈ SentM[M |= φ = ¬(ψ1 ∨ ψ2)] ∧

(
¬ψ1 ∈ A) ∧ (¬ψ2 ∈ A)

)
∨ ∃ψ(x) ∈ Form1

M[M |= φ = ∃xψ] ∧ ∃s ∈ Tmc (ψ(s) ∈ A)

∨ ∃ψ(x) ∈ Form1
M[M |= φ = ¬∃xψ] ∧ ∀s ∈ Tmc (¬ψ(s) ∈ A)

∨ ∃ψ(x) ∈ Form1
M[M |= φ = ∀xψ] ∧ ∀s ∈ Tmc (ψ(s) ∈ A)

∨ ∃ψ(x) ∈ Form1
M[M |= φ = ¬∀xψ] ∧ ∃s ∈ Tmc (¬ψ(s) ∈ A)

Let ΓM : P(M)→ P(M) be the function defined in the following way:

ΓM (A) = {φ ∈M | ΘM(φ,A)} (Γ)

13



As usual, any set P ⊆ M satisfying ΓM (P ) = P will be called a fixpoint
of ΓM . Such functions generate the extension for the truth predicate of tPT−

in an arbitrary model of PA. More precisely, we have the following well-known
fact:

Fact 13. LetM |= PA. Then

(1) the operator ΓM is monotone with respect to inclusion, that is, for every
sets A ⊆ B ⊆M we have

ΓM (A) ⊆ ΓM (B),

(2) there exists a fixpoint of ΓM ,

(3) if P ⊆M is any fixpoint of ΓM , then (M, P ) |= tPT−.

Our proof of Theorem 10 will be based on the existence of particularly well-
behaved fixpoints of Γ in recursively saturated models.

Definition 14. LetM |= PA.

ΓM0 = ∅

ΓMn+1 = ΓM (ΓMn )

ΓMω =
⋃
n∈ω

ΓMn

Convention. Instead of ΓM (ΓMn , ΓMω ), we will write Γ (Γn, Γω) omitting the
upper index indicating the model.

The following proposition witnesses the first two nice properties of Γω - if it
is a fixpoint of Γ, then it is consistent and satisfies both the extensionality and
the normality principles.19

Proposition 15. Let M |= PA and suppose that Γω is a fixpoint of Γ in M .
Then

(M,Γω) |= RPT− + ∀φ ∈ SentLPA

(
¬(Tφ ∧ T¬φ)

)
Proof. FixM |= PA and suppose Γω is a fixpoint of Γ. Then by Fact 13

(M,Γω) |= tPT−

That (NORM) holds in (M,Γω) is straighforward from the definition of Γ. We
show consistency first, i.e. we show that for no φ ∈ SentM it holds that

(M,Γω) |= T (φ ∧ ¬φ).

19In fact this proposition is more general: one can show (by a trivial generalisation of our
proof) that any least fixpoint of Γ is consistent. Since we do not need it in full generality, we
prove the particular case only.

14



Let us observe that φ cannot be an atomic sentence, since PT− proves that
truth is consistent for atomic sentences. Suppose the above is false and take the
least n ∈ ω such that

(M,Γn) |= T (φ ∧ ¬φ)

for some non-atomic φ ∈ SentM. Then n 6= 0 since Γ0 is empty. By considering
all possible grammatical forms of φ we show that for some ψ ∈ SentM

(M,Γn−1) |= T (ψ ∧ ¬ψ)

which contradicts the choice of n.20

Let us now handle (EXT). Suppose for some t, s ∈ Tmc
M, φ(x) ∈ SentM

such thatM |= val(s) = val(t) we have:

(M,Γω) |= T (φ(s)) ∧ ¬T (φ(t)).

Let n be the least number such that for some formula ψ(x), ψ(s) ∈ Γn and
ψ(t) /∈ Γn. Once again observe that ψ cannot be atomic, since axiom (1) of
PT− guarantees extensionality for such sentences. Moreover n 6= 0, since we
assumed Γn to be nonempty. By considering all the grammatical forms of ψ we
show that there is a formula θ(x) such that

(M,Γn−1) |= T (θ(s)) ∧ ¬T (θ(t)).

Let us do the step for ∨. If ψ(x) = θ1(x) ∨ θ2(x), then by the assumption
concerning ψ(t), for every k ≤ n:

θ1(t) /∈ Γk and θ2(t) /∈ Γk.

Since ψ(s) ∈ Γn, we have that either θ1(s) ∈ Γn−1 or θ2(s) ∈ Γn−1, which
contradicts the choice of n.

Let us state our two promised lemmata:

Lemma 16. IfM |= PA is recursively saturated, then Γω is a fixpoint of Γ.

Lemma 17. For every M |= PA, if Γω is a fixpoint of Γ, then (M,Γω) |=
RPTtot.

Proof of Lemma 16. LetM |= PA be recursively saturated. We have to check
that Γ(Γω) = Γω. Since Γ is monotone it is sufficient to show that

Γ(Γω) ⊆ Γω.

20For example, if φ = ∃xψ(x), then by the definition of Γn there must be a number s ∈M
such that (M,Γn−1) |= T

(
ψ(s) ∧ ¬ψ(s)

)
.
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Let φ ∈ Γ(Γω). This means that ΘM(φ,Γω). By considering all the disjuncts
constituting ΘM(φ,Γω), we show that φ ∈ Γω. The only non-trivial steps where
we use the recursive saturation ofM are hidden in the cases when φ = ∀xψ and
φ = ¬∃xψ. Let us do the former, the proof of the latter being fully analogous.
We have to check that

∀xψ ∈ Γω if and only if for every t ∈ Tmc
M ψ(t) ∈ Γω. (1)

From left to right this is immediate: if ∀xψ ∈ Γω, then there exists n ∈ ω such
that ∀xψ ∈ Γn. Then, by the definition of Γ it has to be the case that for every
t ∈ Tmc

M
ψ(t) ∈ Γn−1.

Since Γn−1 ⊆ Γω, then the same holds also for Γω (this is also the general
pattern of proving the steps for sentential connectives). This ends the proof of
the first implication. Suppose now that for every t ∈ Tmc

M

ψ(t) ∈ Γω. (∗)

We claim that there is a number n ∈ ω such that for every t ∈ Tmc
M

ψ(t) ∈ Γn. (∗∗)

Aiming at a contradiction, suppose the contrary. Observe that the condition
defining Γn can be written as an arithmetical formula Γn(x) such that for every
φ ∈ SentM

φ ∈ Γn if and only ifM |= Γn(φ).21

Let us consider the following set:

p(x) = {x ∈ Tmc ∧ ¬Γn(ψ(x)) | n ∈ ω}

From our assumption that (∗∗) does not hold, together with the fact that for
every k < l ∈ ω:

M |= ∀x
(
Γk(x)→ Γl(x)

)
,

we conclude that p(x) is finitely realisable in M, so it is a recursive type. By
recursive saturation there exists t ∈M realising p(x). It follows that t ∈ Tmc

M
and ψ(t) /∈ Γω, so we obtain a contradiction with (∗).

Now, let n ∈ ω be any number satisfying (∗∗). Then by definition of Γ we
have

∀xψ(x) ∈ Γn+1

and therefore
∀xψ(x) ∈ Γω,

21We define Γn(x) inductively: Γ0(x) := x 6= x and Γn+1(x) := Θ(x,Γn), where ‘Θ(x,Γn)’
is the arithmetical formula obtained from ‘ΘM(φ,Γn)’ by omitting the mention of the model.
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which ends the proof. �

Proof of Lemma 17. Since we know that Γω is a fixpoint of Γ, by Proposition
15 we conclude that

(M,Γω) |= RPT−

and Γω is consistent. In effect, it is sufficient to show that (M,Γω) satisfies the
internal induction for total formulae. Fix a formula φ(x) and suppose that

(M,Γω) |= ∀t ∈ Tmc
(
T (φ(t)) ∨ T (¬φ(t))

)
.22

Then by compositional axioms of PT− we have (M,Γω) |= T
(
∀x(φ(x)∨¬φ(x))

)
.

Hence there is a number n ∈ ω such that

∀x(φ(x) ∨ ¬φ(x)) ∈ Γn.

It follows that for every t ∈ Tmc
M φ(t) ∈ Γn∨¬φ(t) ∈ Γn. Since Γω is consistent,

we conclude that for every t ∈ Tmc
M

ψ(t) ∈ Γn if and only if ψ(t) ∈ Γω.

But Γn is arithmetically definable by formula Γn(x), so we have the induction ax-
iom for it already in PA. �

Theorem 10 follows easily from Lemma 16 and Lemma 17.

Remark. We have decided to isolate the two lemmata, because we believe that
they both give rise to interesting questions. The first one, based on Lemma
16, is: what can be said about a model M given that we know the number of
iterations of Γ needed to obtain the least fixpoint? What we do know is that the
converse to Lemma 16 holds, i.e. if Γω is a fixpoint of Γ, thenM is recursively
saturated (the proof of this observation is beyond the scope of this paper). The
second question, based on Lemma 17, is: what other fixpoints of Γ give rise to
interpretations of PTtot? Here we have no clear intuitions.

Let us note one immediate corollary to Theorem 10:

Corollary 18. CT− and UTB are not relatively truth definable in PTtot.

Proof. By theorems of Kaufmann-Schmerl (see [15]) and Smith ([17]), there is
a recursively saturated model of PA which does not admit an expansion to a
model of CT− or UTB (a rather classless model). By Theorem 10, this model
(being recursively saturated) can be expanded to a model of PTtot. Hence, there
is a model of PA which expands to a model of PTtot but does not expand to a
model of CT− or UTB. Our corollary follows now from Fact 9.

22Since (M,Γω) satisfies RPT−, it makes (EXT) true; therefore not only the compositional
axioms for quantifiers, but also the totality condition can be equivalently formulated in its
present version, employing the quantification over closed terms.
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***

By Theorem 4, we know that PTtot does not satisfy the semantic conserva-
tivity condition. On the other hand, by Theorem 10 we also know that, unlike
in the case of CT−, the interpretation of the truth predicate of PTtot can be
found in an arbitrary recursively saturated model of Peano arithmetic. Now,
where does it leave Fischer’s and Horsten’s project?

In view of the aforementioned results, there are two possible moves to con-
sider. One of them consists in rejecting PTtot and searching for another truth
theory, satisfying all the demands (a)-(c) from p. 3 of this paper. The sec-
ond option would involve modifying the demands, in particular, weakening the
semantic conservativity requirement.

It is our opinion that the adoption of the second strategy would have far-
reaching consequences; namely, that it would amount to nothing less than drop-
ping the original project of providing a characterisation of the use of the truth
predicate in model theory. As stressed by Fischer and Horsten, general model
theory does not discriminate between models and any description of the notion
of model-theoretic truth should take this fact into account. Why then should
expandability of all recursively saturated models - but not, say, of prime models
- matter for such an endeavour? What is it that permits us to treat model the-
ory as being specifically about recursively saturated models? We are not aware
of any convincing answer to this question.

Admittedly, expandability of recursively saturated models guarantees the
syntactic conservativity of a given theory of truth. Indeed, syntactic conserva-
tivity is crucial for a related but different philosophical project, proposed by
Fischer in [5] and [7], where the core idea is to present truth as an instrumental
device, on a par with ‘ideal elements in mathematics’ in Hilbert’s programme
(cf. [7], p. 294). In such a context there is still a place for theories like PTtot.
Nevertheless, we should emphasise that the present project - that of character-
ising the use of the truth predicate in model theory - is different and we just do
not see how it could proceed without the semantic conservativity condition.

In effect, from the philosophical point of view the first option definitely
seems more attractive. Moreover, some axiomatic truth theories in the vicinity
of PTtot merit further attention as very promising candidates for the role of a
theory realising Fischer’s and Horsten’s postulates.23

Acknowledgments. The research presented in this paper was supported by the
National Science Centre, Poland (NCN), grant number 2014/13/B/HS1/02892.

23One of these promising theories is WPTtot, which is obtained from PTtot by modifying the
compositional truth axioms in accordance with the principles of Weak Kleene logic. However,
the analysis of the properties of WPTtot and related theories goes beyond the scope of the
present paper.
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