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Abstract
We introduce a tool for analysing models of CT−, the composi-

tional truth theory over Peano Arithmetic. We present a new proof
of Lachlan’s theorem that arithmetical part of models of PA are recur-
sively saturated. We use this tool to provide a new proof of theorem
from [Łełyk and Wcisło(2017)] that all models of CT− carry a partial
inductive truth predicate. Finally, we construct a partial truth pred-
icate defined for formulae from a nonstandard cut which cannot be
extended to a full truth predicate satisfying CT−.

1 Introduction

In 1979, Alistair Lachlan visited Warsaw. There, together with Henryk Kot-
larski and StanisławKrajewski, heworked onnonstandard satisfaction classes
in models of arithmetic, and, in particular, he proved that a model that ad-
mits a full satisfaction class must be recursively saturated [Lachlan(1981)].
The result is an easy observation if one assumes in addition that the satis-
faction class is inductive, but it was quite surprising that the result holds
without that assumption, and the proof was highly original. Since then, the
proof has been simplified somewhat, but still its standardpresentation, such
as the one in [Kaye(1991)], involves some seemingly necessary technicali-
ties. In this paper, we give a proof of Lachlan’s theorem that is essentially
the standard one, but before giving the proof, we isolate the part of the ar-
gument, that can be dubbed Lachlan’s trick, and present it as a specific tool
that is later used to prove other results. That tool—disjunctions with stop-
ping condition—is presented in Section 3, after an example that motivates
the definition, followed by Section 4, in which we give a proof of Lachlan’s
theorem.

The original proof of Lachlan had a reputation for lacking any initial
motivation and for being very difficult to grasp on the intuitive level. One
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of our prime aims in this paper is to present Lachlan’s argument not as an
isolated and ad hoc trick, but as a clearly motivated and reusable technique.

Lachlan’s proof and some of its consequences were analyzed by Stuart
Smith in this Ph. D. thesis [Smith(1984)]. In particular, Smith showed that
if S is a full satisfaction class on a model M of PA, then there is an unde-
finable class X ofM that is definable in (M,S) [Smith(1989)]. That result
shows that rather classless, recursively saturated models of PA do not ad-
mit full satisfaction classes. In Section 5, we use disjunctions with stopping
condition to prove a strengthening of Smith’s theorem. We show that one
can always find anX as above that is an inductive partial satisfaction class.
This result has been already published in [Łełyk and Wcisło(2017)], but the
techniques discussed in this paper allowed us to obtain a significantly sim-
pler and cleaner proof which allows us to avoid many technicalities and
makes clear the analogy to the original proof of Lachlan’s theorem.

The results of sections 3, 4 and 5 are due to the second author. They are
a part of his Ph.D. thesis [Wcisło(2018)].

In Section 6, we consider a model theoretic question concerning extend-
ability of nonstandard satisfaction classes. Kotlarski, Krajewski, and Lach-
lan proved that every countable recursively saturated model admits a full
satisfaction class. A new, model theoretic proof of this result was given
by Ali Enayat and Albert Visser in [Enayat and Visser(2015)]. This new
proof renewed interest in a more detailed study of the variety of nonstan-
dard satisfaction classes on countable, recursively saturated models of PA.
In particular, if S is a satisfaction class on a modelM , andN is a recursively
saturated elementary end extension of M , one is interested in conditions
that imply that S can be extended to a satisfaction class of N . In Section
6, we construct a slightly pathological example showing an obstruction to
proving a desired general theorem about existence of such extensions. This
part of the paper is our joint work.

2 Preliminaries

In this section, we list basic technical definitions and facts which we use in
our paper.

This work concerns extensions of Peano Arithmetic (PA). All basic facts
concerning PA (including coding) and its models may be found, e.g. in
[Kaye(1991)]. We assume that Peano Arithmetic is formulated in a lan-
guage LPA with one unary function symbol S(x) (the successor function)
and two binary function symbols + and ×. We assume that the reader is
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acquainted with arithmetisation of syntax. We will use the following nota-
tion:

• Var(x) is a formulawhich defines the set of (Gödel codes of) first order
variables.

• TermPA(x) is a formula which defines the set of arithmetical terms.
ClTerm(x) defines the set of closed arithmetical terms. TermSeqPA
defines sequences of arithmetical terms. ClTermSeqPA(x) defines se-
quences of closed arithmetical terms.

• FormPA(x) is a formula which defines the set of arithmetical formulae
Form≤1PA (x) represents the set of arithmetical formulae with at most
one free variable.

• SentPA(x) is a formula which defines the set of arithmetical sentences.

• For φ ∈ FormPA, FV(φ) is a formula defining the set of free variables
of φ and Val(φ) is a formula defining the set of valuations, i.e. finite
functions, whose domain contains free variables of φ.

• y = x is a binary formula which defines the relation ”y is the numeral
denoting x,” i.e., the numeral S . . . S0, where S occurs x times. We
will actually use x as if it were a term and write expressions such as
∀xTφ(x) to denote: ”for all x, T holds of the effect of substituting x
for the only free variable in the formula φ.”

• xy = z is a ternary formulawhich defines the relation ”y-th element of
the sequence x is z.” We will actually use this relation in a functional
way. For instance, we will use an expression ac for a sequence a, as if
ac were a term.

• x◦ = y is a binary formula representing the relation: ”y is the value of
the term x.” E.g., PA ` (x+ S0)◦ = S(x). We will use x◦ as if it were a
term. If s̄ ∈ ClTermSeqPA, then by s̄◦ we mean the sequence of values
of terms in s.

• If φ ∈ FormPA, then sd(φ) denotes the syntactic depth of φ, that is,
the maximal number of quantifiers and connectives on a path in the
syntactic tree of φ.

In the paper, we discuss models of a theory CT− and related theories.
CT− is an axiomatisation of compositional truth predicate for arithmetical

3



sentences. Its language is LPA together with a unary predicate T (x) with
the intended reading ”x is a (Gödel code of a) true sentence.” Its axioms
are axioms of PA together with the following ones:

1. ∀s, t ∈ ClTermPA T (s = t) ≡ (s◦ = t◦).

2. ∀φ ∈ SentPA T¬φ ≡ ¬Tφ.

3. ∀φ, ψ ∈ SentPA Tφ ∨ ψ ≡ Tφ ∨ Tψ.

4. ∀v ∈ Var∀φ ∈ Form≤1PA T∃vφ ≡ ∃xTφ[x/v].

5. ∀s̄, t̄ ∈ ClTermSeqPA∀φ ∈ FormPA s̄◦ = t̄◦ → Tφ(t̄) ≡ Tφ(s̄).

The last item is called the regularity axiom. Although it is not essen-
tial to the present paper (all theorems still hold if we drop the axiom), we
include it nevertheless, since truth theories without induction can display
certain pathologies which add a layer of technical complexity to the con-
siderations. For instance, in the absence of the regularity axiom, we cannot
deduce that T∃vφ(v) holds from the fact that Tφ(0 + 0) holds for a nonstan-
dard φ, since in the axiom for the existential quantifier we explicitly require
that φ is witnessed by a numeral.

We will also consider some variants of CT−. Let I(x) be a unary predi-
cate which will play a role of a definition of a cut. By CT− � I wemean CT−
in which the compositional axioms are only assumed to hold for formulae
in this cut, but with no restriction on the size of terms, i.e.:

1. I(x) defines a cut.

2. ∀s, t ∈ ClTermPA T (s = t) ≡ (s◦ = t◦).

3. ∀φ ∈ SentPA
(
sd(φ) ∈ I → T¬φ ≡ ¬Tφ

)
.

4. ∀φ, ψ ∈ SentPA
(
sd(φ ∨ ψ) ∈ I → Tφ ∨ ψ ≡ Tφ ∨ Tψ

)
.

5. ∀v ∈ Var∀φ ∈ Form≤1PA

(
sd(∃vφ) ∈ I → T∃vφ ≡ ∃xTφ[x/v]

)
.

6. ∀s̄, t̄ ∈ ClTermSeqPA∀φ ∈ FormPA s̄◦ = t̄◦ → Tφ(t̄) ≡ Tφ(s̄).

If c ∈ M , we define CT− � c in an analogous way with a constant c
instead of I(x) and with formulae and sentences restricted to [0, c] instead
of the cut I .
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Notice that in CT− there are no induction axioms for the formulae con-
taining the truth predicate (induction for arithmetical formulae is assumed,
as CT− and its variations are extensions of PA). If we extend our theories
with full induction, we denote them with CT or CT � c.

3 Introducing disjunctions with stopping conditions

In this section, we describe the main tool of our paper. The technique of
disjunctions with stopping conditions involves a propositional construction
which essentially allows us to express infinite definitions by cases under the
truth predicate. They have beenfirst explicitly defined in [Cieśliński et al.(2017)Cieśliński, Łełyk, and Wcisło],
but in fact theywere usedmuch earlier by Smith in [Smith(1989)]. The idea
on which they are based can be traced back to [Lachlan(1981)]. Since the
construction of disjunctions with stopping condition is rather intricate, let
us begin with an intuitive description of how they work.

Let (M,T ) be a model of CT− and let p = (φi)i∈ω be a computable type
in one variable and with finitely many parameters in the arithmetical lan-
guage that is finitely realisable in M . We will try to show that this type is
realised in M . One obvious strategy would be as follows. Let (φi)i<c be a
nonstandardly long coded sequence inM which prolongs p. For a < c, let

βa(x) :=
∧
i≤a

φi(x).

Notice that for any standard j, we have:

(M,T ) |= ∃x Tβj(x).

The goal is to show that for some nonstandard b ∈M ,

(M,T ) |= ∃x Tβb(x).

Then, using compositional axioms, we could show that any such b realises
p. Unfortunately, it is not really clear, how to ensure the existence of such
b in total absence of induction for the truth predicate (otherwise, we could
use an easy overspill).

In essence, we would like to define the set of elements satisfying a given
type using a nonstandard formula. Now, an extremely clever observation
by Lachlan which is one of the central ingredients of his proof is that we
do not have to use induction to obtain a formula which defines the set of
elements realising a certain type. Let us describe this in more detail.
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For a fixed type p, we introduce a notion of rank. The rank r of a for-
mula ψ ∈ Form(M) measures how close the elements x satisfying (M,T ) |=
Tψ(x) come to satisfying the type p. This can be defines as follows: if ψ is
not satisfied by any element or (M,T ) |= ∃x ψ(x) ∧ ¬φ0(x), this is very bad
andwe set r(ψ) = −∞. If there are elements such that (M,T ) |= Tψ(x) and
any such x happens also to satisfy φ0(x), . . . , φn(x), but not φn+1(x), we set
rank r(ψ) = n. If any element defined by ψ realises the whole type, then
we set r(ψ) = ∞. Notice that the formulae βn(x) defined above have rank
at least n.

Now our task may be reformulated as follows: find a formula whose
rank is∞. It turns out that this may be obtained without using induction
thanks to the following lemma that is implicit in the work of Lachlan.

Lemma 1. Let W be a well order with a maximal element, let M |= PA be a
nonstandard model and let f : M →W be a function such that for any x ∈M :

• either f(x) is the maximal element ofW ;

• or f(x+ 1) > f(x).

Then there exists x ∈M such that f(x) is the maximal element ofW .

Proof. Let W,M, f satisfy the assumptions of the theorem. Suppose that
there is no x ∈ M such that f(x) is maximal in W . Pick any nonstandard
a ∈M . Then

f(a) > f(a− 1) > f(a− 2) > . . .

is an infinite descending ω-chain inW . Contradiction.

Now we will describe a naïve attempt to use Lemma 1, applied to the
order {−∞} ∪ ω ∪ {∞}, to find an element realising p. To this end, for
a given formula ψ, we will define in a uniform way another formula of a
higher rank.

It is easy to see that for any formulaψ(x), there is a sentence αn[ψ]which
expresses that ψ has rank less than n (the details are in the proof of Lemma
2 in the next section).

Let γ0 be x = x. Then, given γa we define γa+1 as follows:

γa+1 :=
(
α0[γa] ∧ β0(x)

)
∨
(
α1[γa] ∧ β1(x)

)
∨ . . . ∨

(
αc[γa] ∨ βc(x)

)
with parentheses grouped to the left.

Read γa as a definition by cases: either γa has rank −∞ and β0(x) or γa
has rank 0 and β1(x), or γa has rank 1 and β2(x) etc. Unfortunately, this
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definition doesn’t work correctly. This is because infinite conjunctions and
disjunctions may behave badly in general models of CT−. Even if γa indeed
has rank n, γa+1 may even define the whole of M . Consequently, its rank
can be even −∞ if φ0 defines any nontrivial subset of the model. Take x
such that ¬φ0(x) holds. Then still we might have:

(M,T ) |= T
(
α0[γa] ∧ β0(x)

)
∨
(
α1[γa] ∧ β1(x)

)
∨ . . . ∨

(
αc[γa] ∨ βc(x)

)
Of course, our truth predicate will be able to recognise:

(M,T ) |= ¬Tα0[γa]

and consequently it will yield the first disjunct false. In a similar fashion, it
can yield the second disjunct false, the third disjunct false etc. However, it
will not be able to conclude that the whole disjunctions is false.

Of course, the obstacle outlined above does not prove that our attempt
will fail, but one canprove that it does using a recent result from [Enayat and Pakhomov(2018)].
It is shown there that CT− enriched with the principle: ”a finite disjunction
is true iff one of the disjuncts is true” is not conservative over PA and in fact
has the same arithmetical strength asCT0, a compositional truth theoryCT−
with ∆0 induction for the formulae in the extended language.

Now, a disjunction with stopping condition is a propositional construc-
tion which allows us to do exactly what we have failed to do in our naïve
attempt above. In other words, we can define a nonstandard arithmetical
formula γa+1(x) such that if k ∈ ω is the least number for which (M,T ) |=
αk[γa] (that is, γa has rank less than k), then

(M,T ) |= ∀x
(
Tγa+1(x) ≡ βk(x)

)
.

The definition of such γa+1(x) which will be given in the proof of Lach-
lan’s theorem in the next section uses a particular instance of a disjunc-
tion with with a stopping condition as defined below. Roughly, to check
if γa+1(x) holds, we ask if the rank of γa(x) is 0, if yes, we check if β0(x)
holds. If yes, our job is done, if not we ask if the rank of γa(x) is 1, and if
yes, we check if β1(x) holds. If yes, we stop, otherwise we continue. If we
get to βc(x) without stopping, we declare that γa+1(x) does not hold.

Definition 1. Let c ∈M , and let (αi)i≤c, (βi)i≤c be coded sequences of sen-
tences ofM . Then we define a disjunction with stopping condition α

c,α∨
i=a

βi

by backwards induction on k.
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•
∨c,α
i=c βi = (αc ∧ βc).

•
∨c,α
i=a βi = (αa → βa) ∧ [(αa ∧ βa) ∨ (¬αa ∧

∨c,α
i=a+1 βi)].

Now, we can spell out the main property of disjunctions with stopping
conditions.

Theorem 1. Let (M,T ) |= CT− and let (αi)i≤c, (βi)i≤c be any coded sequences
of sentences ofM . Suppose that the least k0 such that (M,T ) |= Tαk0 , is standard.
Then

(M,T ) |= T

c,α∨
i=0

βi ≡ Tβk0 .

Proof. We first show that

(M,T ) |= T

c,α∨
i=k0

βi ≡ Tβk0 .

Suppose that (M,T ) |= Tαk0 . Then by elementary propositional logic for
any γ:

(M,T ) |= (Tαk0 → Tβk0) ∧
(

(Tαk0 ∧ Tβk0) ∨ (¬Tαk0 ∧ Tγ)
)

is equivalent to
(M,T ) |= Tβk0 .

Then we prove by backwards (external) induction on k that for any k ≤
k0 ,

(M,T ) |= T

c,α∨
i=k

Tβi ≡ Tβk0 .

Suppose that this equivalence has already been proved for k+1. Then, since
k < k0 and we assumed that k0 is minimal such that (M,T ) |= αk0 , we have
for an arbitrary γ:

(M,T ) |=
[
(Tαk → Tβk) ∧

(
(Tαk ∧ Tβk) ∨ (¬Tαk ∧ Tγ)

)]
≡ Tγ.

So, by induction hypothesis:

(M,T ) |= T

c,α∨
i=k

βi ≡ T
c,α∨

i=k+1

βi ≡ Tβk0 .

Which concludes the proof of the induction step.
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4 Lachlan’s Theorem

In this section, we present a proof of Lachlan’s theorem. We hope that our
proof, although very similar to the original one, will be seen as less myste-
rious.

Theorem 2 (Lachlan’s Theorem). Let (M,T ) |= CT−. ThenM is recursively
saturated.

Let us describe the strategy of the proof. For a given coded and finitely
satisfiable sequence of formulae p = (φi)i∈ω, we will find a (nonstandard)
formula γ ∈M such that

• (M,T ) |= ∃xTγ(x);

• for all i ∈ ω, (M,T ) |= ∀x
(
Tγ(x)→ Tφi(x)

)
.

In other words, we will try to find a set of elements satisfying our type
p that is defined by a nonstandard formula γ. In order to find γ, we will
introduce a suitable notion of rank.

Definition 2. Let (M,T ) |= CT− and let p = (φi)i∈ω be any coded sequence
of (possibly nonstandard) formulae. We define a p-rank of formulae φ ∈
Form≤1M , rp(φ) as follows:

rp(φ) =


−∞, if (M,T ) |= ¬∃xTφ(x)
n, if (M,T ) |= ∃x Tφ(x) and n ∈ ω is the greatest such that

(M,T ) |= ∀x
(
Tφ(x)→ Tφi(x)

)
, for i < n.

∞, if (M,T ) |= ∃xTφ(x) and
for all i ∈ ω, (M,T ) |= ∀x

(
Tφ(x)→ Tφi(x)

)
.

We can say that p-rank of a formula measures how close that formula
gets to defining a set of elements satisfying the type p. Now, in order to
prove Lachlan’s theorem we will find a sequence (γi)i<c of formulae with
c - nonstandard such that whenever rp(γa) 6= ∞, then rp(γa+1) > rp(γa).
Then the theorem follows by a straightforward application of Lemma 1 for
f(x) = rp(γx).

Lemma 2 (Rank Lemma). Let (M,T ) |= CT−. Then there exists a coded se-
quence of formulae (γi)i<c of nonstandard length such that for all a < c either
rp(γa) =∞ or

rp(γa+1) > rp(γa).
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Proof. Fix (M,T ) |= CT− and p = (φi)i<c, a coded sequence of arithmetical
formulae such that for any k ∈ ω

(M,T ) |= ∃xT
∧
i≤k

φi(x).

Without loss of generalitywe can additionally assume that for any i < j ∈ ω,

(M,T ) |= T
(
∀x φj(x)→ φi(x)

)
.

We will define the sequence (γi) using disjunctions with a stopping condi-
tion. First, notice that for a given formula ψ, we can express that it has rank
at most n. Let:

α0[ψ] := ¬∃xψ(x)

αn[ψ] := ∃x[ψ(x) ∧ ¬φn(x)],

and (to keep our notation consistent)

βn(x) := φn(x).

Then, for all n ∈ ω, we have rp(βn) ≥ n+ 1 and

(M,T ) |= Tαn[ψ] implies rp(ψ) ≤ n,

Now, we are in position to define a coded sequence (γi)i<d of formulae
of nonstandard length which satisfies the conditions of the lemma.

Fix any nonstard d and let

γ0(x) := (x = x)

γj+1(x) :=

d,α[γj ]∨
i=0

βi(x).

Let us check that γi indeed satisfies the conditions of the lemma. Sup-
pose that

rp(γa) 6=∞.

If rp(γa) = −∞, then (M,T ) |= Tα0[γa]. If rp(γa) = n for some n ∈ ω, then

(M,T ) |= Tαn[γa].

Let k be the least number such that

(M,T ) |= Tαk[γa].
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(In effect, k = 0 or k = n.) Then by Theorem 1, we see that

(M,T ) |= ∀x
(
Tγa+1(x) ≡ T

d,α[γa]∨
i=0

βi(x) ≡ Tβk(x)
)
.

As we have already observed, rp(βk) ≥ k + 1 > rp(γa), so the sequence
(γi)i<d satisfies the claim of the lemma.

Now, Lachlan’s Theorem follows immediately fromLemma1 andLemma
2.

Remark 1. Notice thatwe can obtain a number of stronger results by inspec-
tion of the above proof. The modifications go in different directions and are
sometimes mutually exclusive. Let us now list them.

1. Actually, the proof shows that any type coded in a model (M,T ) |=
CT− is satisfied in that model.

2. Even stronger, the proof shows that if (φi) is a coded sequence of (pos-
sibly nonstandard) formulae such that for any n, there exists x ∈ M
for which Tφi(x) holds for i ≤ n, then there exists x ∈ M such that
Tφn(x) holds for all n ∈ ω. This result has been first formulated
[Smith(1989)], where it is attributed to an anonymous referee.

3. In the proof, we do not use the full strength of PA. Actually, I∆0 + exp
is enough. We only need to apply syntactic operations to arbitrary for-
mulae and tomake iterations of these operations of some nonstandard
length.

4. The proof actually works for CT− � I for a nonstandard cut I . Indeed,
under such assumptions, we only need to additionally ensure that we
take disjunctions with stopping conditions small enough so that they
belong to the cut I .

5. Actually, we can combine some of the above modifications: if M |=
I∆0 + exp expands to a model of CT− � I for nonstandard I , thenM
realises all coded types.

6. The proof works with the binary satisfaction predicate (operating on
formulae and valuations) in place of the truth predicate.
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7. We could define a natural analogue of CT− � I for a satisfaction pred-
icate, a predicate which satisfies compositional conditions for arbi-
trary valuations and formulae from a nonstandard cut. If a model
of I∆0 + exp expands to a model of such a theory, then it realises all
coded arithmetical types.

5 Definability of partial inductive truth predicates

In this section, we will present a refinement of Lachlan’s Theorem which is
also a strengthening of Smith’s Theorem that in every model (M,T ) |= CT−
there is an undefinable class ([Smith(1989)], Theorem 2.10).

Theorem 3. Let (M,T ) |= CT−. Then there exists T ′ ⊂ M that is definable in
(M,T ), such that

(M,T ′) |= CT � c

for a nonstandard c ∈M .

The proof will closely follow our argument from the previous section:
we will define a suitable notion of rank and demonstrate that there is a
coded sequence of formulae whose rank is increasing.

We will try to find a (nostandard) formula γ such that T ′ is defined as
γ(M) := {x ∈ M | (M,T ) |= Tγ(x)}. Our rank will measure how close a
given formula γ gets to defining a truth predicate satisfying CT � c. Such a
rank can be found thanks to the following Proposition which can be proved
with an easy application of overspill.

Proposition 1. LetM |= PA. Suppose that (M,T ′) satisfies full induction in the
extended language and the following scheme of uniform Tarski’s biconditionals:

∀s̄ ∈ ClTermSeqPA
(

(T ′(φ(s̄))) ≡ φ(s̄◦)
)

for all (standard) arithmetical formulae φ. Then there exists a nonstandard c ∈M
and T ′′ ⊂ T ′ such that

(M,T ′′) |= CT � c.

Let (indi(P )) be a primitive recursive enumeration of all instances of the
induction scheme with one extra second-order variable P . Then, slightly
abusing the notation, we write for a (possibly nonstandard) formula ψ:

indi(ψ)
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meaning the i-th instance of the induction scheme with the formula ψ sub-
stituted for the variable P .

Let (φi) be a primitive recursive enumeration of arithmetical formulae.
Now, we are ready to define a suitable notion of rank:

Definition 3. Let (M,T ) |= CT− and let γ ∈ Form≤1(x). We define a rank
of the formula γ, r(γ) as follows:

r(γ) =



−∞, if (M,T ) |= ¬∃xTγ(x)
n, if (M,T ) |= ∃x Tγ(x) and n ∈ ω is the greatest such that

(M,T ) |= T
∧
i≤n

[
indi(γ) ∧ ∀s̄ ∈ ClTermSeqPA

(
(γ(φi(s̄))) ≡ φi(s̄◦)

)]
∞, if (M,T ) |= ∃xTφ(x) and

for all i ∈ ω, (M,T ) |= T
[
indi(γ) ∧ ∀s̄ ∈ ClTermSeqPA

(
(γ(φi(s̄))) ≡ φi(s̄◦)

)]
.

To find the required γ, we will use Lemma 2.
As in the previous section, notice that we can express that ψ has rank

smaller than n. Let

αn[ψ] := ¬indn(ψ) ∨ ∃s̄ ∈ ClTermSeqPA¬
(
ψ(φn(s̄)) ≡ φn(s̄◦)

)
.

We can also readily find formulae, whose rank equals at least n. Let

βn(x) =
n∨
i=0

[∃s̄ x = φi(s̄) ∧ φi(s̄◦)].

As in the previous section, we define a coded sequence of formulae γi:

γ0(x) := (x = x)

γj+1(x) :=

d,α[γj ]∨
i=0

βi(x).

Now, we are in position to formulate and prove an analogue of Lemma
2.

Lemma 3. Let (M,T ) |= CT−. Then for any a ∈M either r(γa) =∞ or

r(γa+1) > r(γa).

Proof. Suppose that r(γa) 6= ∞. This means that r(γa) = −∞ or r(γa) =
n ∈ ω. Then we have

(M,T ) |= Tαk[γa]
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for k = 0 or k = n+1, respectively, and k is the least such number. Therefore
by Theorem 1, we have:

(M,T ) |= ∀x
(
Tγa+1(x) ≡ T

d,α∨
i=0

βi(x) ≡ Tβk(x)
)
.

But, by our construction, r(βk) ≥ n+ 1 > r(γa).

Theorem 3 follows immediately by Proposition 1 and Lemmata 1 for
f(x) = f(γx) and 3.

6 Non-extendable partial truth predicates

In this section, we apply disjunctions with stopping condition to study ex-
tensions of models of CT−. We are dealing with the following question.
Suppose thatM |= PA, I ⊂M is a nonstandard cut, and (M,T ) |= CT− � I .
In other words, it satisfies compositional axioms for all formulae in I and
all substitutions of terms (possibly not in I) in these formulae. Is there a
T ′ ⊃ T such that (M,T ′) |= CT−?

The above question asks about possible obstructions to the existence of a
fully compositional truth predicate. The most classical result in this vein is
Lachlan’s Theoremwhich amounts to saying that in somemodelsM |= PA,
the natural truth predicate defined on formulae from the standard cut (a
predicate satisfying CT− � ω) cannot be extended to a full truth predicate.

Actually, by inspection of the proof of Lachlan’s Theorem, we see that if
M |= PA is not a recursively saturated model, then one cannot find a truth
predicate T compositional for formulae on any nonstandard cut. The same
proof applies with a little additional care paid to the choice of parametres
so that all relevant formulae are in the cut I . Now, our question in this sec-
tion asks whether once a truth predicate is already defined on a nonstandard
cut of formulae, there can be any further obstructions to extending it to the
whole model.

This question may be also viewed from a slightly different angle. Smith
has proved in ([Smith(1989)], Theorem4.3) that there exists amodel (M,T ) |=
CT− such that it cannot be end-extended to another model of CT−. In the
proof of Smith’s theorem one shows that such an extension cannot be found
if a nonstandard formula φ defines a surjection from a cut J to the whole
model (i.e., the formula Tφ(x, y) is functional in x and defines that surjec-
tion).

14



Now, we can ask the question, whether this is essentially the only possi-
ble obstruction. We asked this question trying to show that if (M,T ) |= CT−
and T believes all the instances of induction to be true, then it has an end ex-
tension. Notice that indeed such a truth predicate cannot display a pathol-
ogy used by Smith. This leads us to the following question about extensions
of CT−: let (M,T ) |= CT−. Suppose thatM �e N is an elementary end ex-
tension. Let T ⊂ T ′ ⊂ N be a truth predicate satisfying CT− � M . In
particular, we know that (M,T ) is free of pathologies employed by Smith.
Does there exist T ′′ ⊃ T ′ such that (N,T ′′) |= CT−?

We answer both questions in the negative. We will give a proof for a
general cut satisfying some additional conditions. It is however known that
such cuts may be even required to be elementary initial segments which are
recursively saturated models of PA.

Theorem 4. For any countable recursively saturated model M |= PA and a cut
I ⊂M such that for some coded sequence a ∈M , I = {x ∈M | ∃n ∈ ω x < an}
there exists T ⊂ M such that (M,T ) |= CT− � I , but there is no T ′ ⊃ T such
that (M,T ′) |= CT−.

A slight modification of the proof yields the following result:

Theorem 5. Let M �e N be countable recursively saturated models of PA such
that M = {x ∈ N | ∃n ∈ ω x < an} for some coded sequence a ∈ N . Then
there exists T ⊂ N such that (N,T ) |= CT− � M and (M,T ∩M) |= CT−, but
there is no T ′ ⊃ T such that (N,T ′) |= CT−.

The difference between this theorem and the previous one is that now
we explicitly require that (M,T ∩M) |= CT−. This means in particular that
any existential formula fromM which is rendered true by the predicate T
must have a witness already inM . Note that considering the special case of
standard formulae with nonstandard numerals denoting elements fromM ,
we can conclude thatM is an elementary submodel ofN . Since the proof of
Theorem 5 is a modification of the proof of Theorem 4, we will only briefly
comment on what needs to be changed.

Incidentally, Theorem 4 holds for an arbitrary cut I (M , but for rather
uninteresting reasons. The way we defined it, if I ⊂ J are two cuts and
(M,T ) |= CT− � J , then also (M,T ) |= CT− � I . Therefore, we could take
an arbitrary cut I , find a bigger cut J with a coded cofinal ω-sequence, and
apply Theorem 4 in its current version.1

1We are grateful to Jim Schmerl for this remark.
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Regarding Theorem 5, notice that if N |= PA is recursively saturated,
then arbitrarily high we can find cuts satisfying the assumptions of the the-
orem, i.e. cuts M such that M �e N and M has a cofinal sequence of
length ω coded in N . Indeed, take any a ∈ N and construct a series of
elements (an)n∈ω such that a0 = a and for any n, the element an+1 dom-
inates all functions arithmetically definable with parametres less or equal
to an. That such an element exists follows from recursive saturation. Then,
M = {x ∈ N | ∃n ∈ ω x < an} is an elementary submodel of N . With
some extra care, we can arrange M to be recursively saturated itself (we
then require that an+1 not only dominate all definable functions but that for
any recursive type with parametres below an, there be an element realising
that type below an+1).

The proof of Theorem 4 relies on the following lemma. In the lemmawe
will use certain formulas ηb. For b ∈M , let ηb be

∃x1 . . . ∃xbv = v ∧
b∧
i=0

xi = xi.

Notice that sd(ηb) = 2b+ 2, which will be handy in the proof of the lemma.

Lemma 4. Let (M,T, J) |= CT− � J be countable and recursively saturated as a
model in the expanded language. Let A ⊂ M be any set such that (M,T,A, J) is
recursively saturated. Then, for any b /∈ J , there existsT ′ ⊃ T such that (M,T ′) |=
CT− and the formula T ′ηb(v) defines A.

Since the proof of the lemma is a modification of the Enayat–Visser con-
servativity proof for CT−, we move it to the appendix.

Proof of Theorem 4. LetM be a countable recursively saturated model of PA.
Let a ∈ M , let I = {x ∈ M | ∃n ∈ ω x < an}, and let (bn)n<ω be a
decreasing sequence such that

{x ∈M | ∀n x < bn} = ω.

We construct the predicate T by recursion. Let T ′0 be any truth predicate
such that (M,T ′0) |= CT− is recursively saturated and

(M,T ′0) |= ∀x
(
T ′0ηa0(x) ≡ x = b0

)
Let T0 be T ′0 restricted to formulae in J0 where a0 ∈ J0, a1 /∈ J0, and such
that (M,T0, J0) is recursively saturated.
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Suppose that Tn is a truth predicate such that (M,Tn, Jn) |= CT− � Jn
where an ∈ Jn, an+1 /∈ Jn, (M,Tn, Jn) is recursively saturated, and for all
i ≤ n

(M,Tn) |= ∀x
(
T ′0ηai(x) ≡ x = bi

)
.

Using Lemma 4, we find Tn ⊂ T ′n+1 ⊂M such that (M,T ′n+1) |= CT− is
a recursively saturated model such that

(M,T ′n+1) |= ∀x
(
T ′n+1ηan+1(x) ≡ x = bn+1

)
.

WesetTn+1 = T ′n+1 � Jn+1, where an+1 ∈ Jn, an+2 /∈ Jn+1 and (M,Tn+1, Jn+1)
is recursively saturated. One readily checks that Tn+1 satisfies our inductive
conditions.

Finally, we set T =
⋃
i∈ω Ti. Then

(M,T ) |= CT− � I

and the formulae Tηan(x) define the elements bn.
Nowwe can use themachinery of disjunctionswith stopping conditions

to show that T cannot be extended to T ′ such that (M,T ′) |= CT−. Suppose
towards contradiction that such a T ′ can be found. Again, we introduce a
suitable notion of rank. For φ ∈ Form≤1(M), let

r(φ) =



−∞, if (M,T ) |= ¬∃x Tφ(x)
n, if (M,T ) |= ∃x Tφ(x) and n ∈ ω is the greatest such that

(M,T ) |= ∀x
(
Tφ(x)→ x > n ∧ x ≤ bn

)
∞, if (M,T ) |= ∃x Tφ(x) and

for all n ∈ ω(M,T ) |=
(
∀xTφ(x)→ x > n ∧ x ≤ bn

)
Since (bn) is downwards cofinal inM \ ω, one can readily see that there

are no formulae of rank∞ because an element defined with such a formula
necessarily would have to be between ω and all elements bn. Notice that for
any formula φ, we can in fact find a coded sequence of sentences αi[φ] such
that

(M,T ) |= Tαi[φ] iff r(φ) ≥ n.

Namely, we set:

αn[φ] := ∃xφ(x) ∧ [∀x, y(φ(x) ∧ ηan(y)) → (x > n ∧ x ≤ y
)
].

Using Lemma 1, it is enough to find a coded sequence of sentences grow-
ing in the rank. Fix any c smaller than the length of a as a sequence (where
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a is the coded sequence we have fixed in the construction of our predicate
T ) and let

γ0(x) := (x = x)

γj+1(x) :=

c,α[γj ]∨
i=0

ηai+1(x).

We claim that for all d < a either r(γd) =∞ or r(γd+1) > r(γd).
Fix any d and suppose that (γd) = −∞ or r(γd) = n ∈ ω. Then by

Theorem 1
(M,T ′) |= ∀x

(
Tγd+1(x) ≡ Tηak(x)

)
where k = 0 if r(γd) = −∞ or k = n + 1 if r(γc) = n ∈ ω. The rank of the
formula ηak is greater than r(γd), since ηak defines the element bk and the
sequence (bn) is decreasing. Now, as in proofs of Theorems 2 and 3, Lemma
1 for f(x) = r(γx) would imply that there exists a formula γ with rank equal
to∞, and, as we have already noticed, such a formula cannot exist.

Now let us comment on the modifications to the above construction
needed in order to prove Theorem 5. The crucial problem is that the con-
structed truth predicate restricted to I now needs to be a model of CT−
itself. In order to achieve this, we can take every Jn to be an elementary
submodel ofM such that (M,Jn) is recursively saturated. We additionally
require that each Tn has the additional property that (Jn, Tn ∩ Jn) |= CT−.
This can be proved similarly to Lemma 4, but we skip the unenlightening
details.

7 Appendix

In this section, we prove Lemma 4. Let us restate it, for the convenience of
the reader:

Lemma. Let (M,T, J) |= CT− � J be countable and recursively saturated as a
model in the expanded language. Let A ⊂ M be any set such that (M,T,A, J) is
recursively saturated. Then, for any b /∈ J , there existsT ′ ⊃ T such that (M,T ′) |=
CT− and the formula T ′ηb(v) defines A.

Its proof is a modification of the construction by Enayat and Visser from
[Enayat and Visser(2015)].
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The lemma is a strengthening of a result by Smith ([Smith(1989)], The-
orem 3.3) who showed that any A ⊆M such that (M,A) is recursively sat-
urated may be defined with a nonstandard formula. In the above Lemma,
we additionally require that we may arbitrarily fix this truth predicate on
any given cut.

Proof of Lemma 4. Recall that ηb was defined as:

∃x1 . . . ∃xbv = v ∧
b∧
i=0

xi = xi.

Fix (M,T, J,A) as in the assumptions of the lemma. We first show that
there exist an extension

(M,T, J,A) � (M ′, T ′, J ′, A′)

and T ′′ such that

• (M ′, T ′′) |= CT−.

• (M ′, T ′′, A′) |= ∀x x ∈ A′ ≡ T ′′ηb(x).

• T ′ ⊂ T ′′.

By resplendency of (M,T,A), this will conclude our proof.
In order to construct (M ′, T ′, J ′, A′, T ′′), we build an auxiliary chain of

models: (Mn, Tn, Jn, An, Sn) of length ω such that Tn and Sn are binary rela-
tions (we replace truth predicates with satisfaction predicates), Jn is a cut,
and An ⊆Mn.

We defineA0 asA,M0 asM , J0 as J . S0 is the empty set, and T0 is a par-
tial satisfaction predicate defined so thatT0(φ, α)holds forφ ∈ FormPA(M0),
α ∈ Val(φ) if T (φ[α]) holds, where φ[α] is obtained from φ by substituting
α(v) for every v ∈ FV(φ); i.e. we take a variable in φ, see what is its value
under α, we take the canonical numeral denoting this value, and we sub-
stitute it into φ. Similarly, if t ∈ TermPA, and α is a valuation defined on
free variables, by t[α] we mean the value of the term t with numerals α(v)
substituted for free variables v in the term t. If α, β are valuations and v is
a variable, we denote by α ∼v β that α and β are identical, possibly except
for the value on the variable v (which is in particular allowed to be in the
domain of one of the valuations but not the other one).

We inductively construct a chain of countablemodels (Mn, Tn, Jn, An, Sn)
of length ω. Suppose that we have already defined the n-th model in the
chain. Then we define (Mn+1, Tn+1, Jn+1, An+1, Sn+1) as any model of the
theory Θn with the following axioms:
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• The elementary diagramElDiag(Mn, Tn, Jn, An) (with symbolsAn, Tn, Jn
replaced with An+1, Tn+1, Jn+1, respectively).

• The compositionality scheme Compn(φ), for φ ∈ FormPA(Mn), to be
defined later.

• The regularity axiom I: ∀φ ∈ FormPA, α ∈ Val(φ) Sn+1(φ, α) ≡ Sn+1(φ[α], ∅).

• The regularity axiom II: ∀φ ∈ FormPA∀s̄, t̄ ∈ ClTermSeqPA s̄◦ = t̄◦ →
Sn+1(φ(s̄), ∅) ≡ Sn+1(φ(t̄), ∅).

• ∀φ ∈ FormPA∀α ∈ Val(φ) Tn+1(φ, α)→ Sn+1(φ, α).

• ∀x x ∈ An+1 ≡ Sn+1(ηb(x), ∅).

• An additional preservation condition for n > 0: Sn+1(φ, α) for all
φ ∈ FormPA(Mn−1), α ∈ Val(φ) ∈ Mn such that Sn(φ, α) holds. (By
convention, we setM−1 = M0.)

Finally, an instance of the compositionality scheme Compn(φ) is defined
as the conjunction of the following axioms:

• ∀s, t ∈ TermPA∀α ∈ Val(φ)
(
φ = (s = t)→ Sn+1(φ, α) ≡ s[α] = t[α]

)
.

• ∀ψ ∈ FormPA∀α ∈ Val(φ)
(
φ = ¬ψ → Sn+1(φ, α) ≡ ¬Sn+1(φ, α)

)
.

• ∀ψ, η ∈ FormPA∀α ∈ Val(φ)
(
φ = (ψ∨η)→ Sn+1(φ, α) ≡ Sn+1(ψ, α)∨

Sn+1(η, α)
)
.

• ∀v ∈ Var, ψ ∈ FormPA∀α ∈ Val(φ)
(
φ = (∃vψ) → Sn+1(φ, α) ≡

∃α′ ∼v α Sn+1(ψ, α
′)
)
.

Let us assume for this moment that Θn is consistent. We will return to
this matter later. Assuming that the construction works (i.e., all the models
(Mn, Tn, Jn, An, Sn) exist), we define:

• M ′ =
⋃
Mn.

• T ′ = {φ ∈ SentPA(M ′) | (φ, ∅) ∈
⋃
Tn}.

• J ′ =
⋃
Jn.

• A′ =
⋃
An.
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• T ′′ = {φ ∈ SentPA(M ′) | ∃n φ ∈ SentPA(Mn) ∧ (φ, ∅) ∈ Sn+1}.

We claim that (M ′, T ′, J ′, A′, T ′′) satisfies the conditions listed at the begin-
ning of our proof. Let us check it.

The elementarity of the extension (M,T, J,A) � (M ′, T ′, J ′, A′) follows
from the fact that every extension in the constructed chain was elementary
in this restricted language. The containment T ′ ⊆ T ′′ also follows from the
fact that the containment holds at every step of our construction.

Let us now observe that if φ ∈ Mn, α ∈ Mn+1, and (φ, α) /∈ Sn+1, then
(φ, α) /∈ Sl for l ≥ n + 1. Indeed, if (φ, α) /∈ Sn+1, then by compositional
conditions (¬φ, α) ∈ Sn+1 and, consequently (¬φ, α) ∈ Sl which, again by
compositional axioms, implies (φ, α) /∈ Sl. The equivalence

(M ′, T ′′, A′) |= ∀x A′(x) ≡ T ′′ηb(x)

also holds at every step of our construction and the predicates An extend
each other elementary. In particular, if x ∈ Mn, and ¬An(x), then ¬Ak(x)
holds for any k > n. This guarantees that ηb defines the set A′ in the model
(M ′, T ′′). Now it suffices to check that (M,T ′′) |= CT−.

Let us fix any φ ∈ M ′. We prove compositionality by cases considering
various possible syntactic forms of φ. Let us consider for example the case
when φ = ∃vψ(v). Fix the least n such that φ ∈ Mn. Suppose that φ ∈ T ′′.
By definition, thismeans that (∃vψ, ∅) ∈ Sn+1. By compositional conditions,
there is a valuation α defined on the variable v such that (ψ, α) ∈ Sn+1 and,
by the regularity axiom I, (ψ[α], ∅) ∈ Sn+1 as well. Fix any variable wwhich
does not occur in ψ which minimises k for which ψ′ := ψ[w/v] ∈ Mk. Let
β be a valuation defined only on w such that β(w) = α(v). Then, by the
regularity axiom I, (ψ′, β) ∈ Sn+1, which implies (∃wψ′, ∅) ∈ Sn+1. Finally,
by the remark in the previous paragraph, this gives us (∃wψ, ∅) ∈ Sk+1, and
consequently (ψ, γ) ∈ Sk+1 for some γ defined only onw. Then, again using
the regularity axiom I, we conclude that (ψ[γ], ∅) ∈ Sk+1 and (ψ[γ], ∅) ∈
Sk+2. Since ψ′[γ] = ψ[γ] = ψ(x) for some x fromMk orMk+1, we conclude
that ψ(x) ∈ T ′′.

Conversely, suppose that φ(x) ∈ T ′′ which means that φ(x) ∈ Sn+1 for
the least n such that φ(x) ∈ T ′′. By regularity and compositional axioms
this implies that we have (∃vφ, ∅) ∈ Sn+1. Then (∃vφ, ∅) ∈ Sk+1 where k is
the least such that ∃vφ ∈Mk which again implies that ∃vφ ∈ T ′′.

The regularity axiom of CT− follows from the regularity axiom II in the
above construction. This ends the proof modulo the consistency of the the-
ory Θn which we prove in a separate lemma.
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Lemma 5. The theories Θn defined above are consistent.

Sketch of the proof. We prove the claim by induction on n. Since the induc-
tion step and the initial step are essentially the same, we assume that n > 0.
There is only one thing which needs to be taken care of in the initial step.
We will point it out in the construction. Suppose that (Mn, Tn, Jn, Sn) sat-
isfies Θn−1. Notice that compositionality and preservation conditions are
given by schemes:

• Compn(φ), for φ ∈ FormPA(Mn).

• Sn+1(φ, α) for all φ ∈Mn−1, α ∈Mn such that Sn(φ, α) holds.

To prove the consistency of Θn, take any finite Γ ⊂ Θn. Wewant to interpret
Sn+1 in the model (Mn, Tn, Jn, An) so that it satisfies the finitely many com-
positional and preservation conditions fromΓ. Wewill introduce the equiv-
alence relation∼defined as follows for arithmetical formulaeφ, ψ ∈Mn and
α ∈ Val(φ), β ∈ Val(ψ):

(φ, α) ∼ (ψ, β)

if φ[α] and ψ[β] differ only by substituting a sequence of terms with equal
values, i.e. there exists a formula ξ ∈Mn and sequences t̄, s̄ ∈Mn of closed
terms with s̄◦ = t̄◦ such that φ[α] = ξ(s̄) and ψ[β] = ξ(t̄). For instance:

(∃x x+ 1× 1 + 1 = y, α) ∼ (∃x x+ 2× z = u+ 1, β),

where α(y) = 4, β(z) = 1, β(u) = 3.
We also define a relation φ ∼ ψ on formulae which holds if they are

essentially, the same up to substitution of terms. More precisely, for any
formula φ, define its term trivialisation φ̂ as the formula with smallest code
such that

• No constant symbol occurs in φ̂.

• No compound terms containing free variables occur in φ̂.

• No free variable occurs in φ̂more than once.

• The formula φ can be obtained from φ̂ by substituting terms in such a
way that no term will be bounded.

For instance, if φ = ∃x(x + 2 = 2 × (y + S(0 + x)) + (u + z)), then φ̂ is
the following formula:

∃x(x+ v0 = (v1 + S(v2 + x)) + v3)
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where vi’s as chosen so as to avoid clashes and assure minimality of φ̂. Ob-
serve that φ̂ is universal in the sense that if φ = ξ(t̄) for some t̄ ∈ TermSeqPA,
then ξ = φ̂(s̄) for some s̄ ∈ TermSeqPA.

Finally, we say that φ ∼ ψ iff φ, ψ have the same trivialisation. The re-
lation ∼ is clearly an equivalence relation. Notice that for any φ, ψ, αβ if
(φ, α) ∼ (ψ, β), then by definition φ[α] and ψ[β] can be obtained by sub-
stituting terms in the same formula ξ. But then ξ = φ̂(s̄) = ψ̂(t̄) for some
s̄, t̄ ∈ TermSeqPA and consequently φ̂ = ψ̂.

Let ∆′ be the finite set of all formulae which occur under the predicate
Sn+1 either in an instance of the compositionality scheme or the preserva-
tion condition. Let ∆ be the set of equivalence classes of formulae from ∆′

under the relation ∼:

∆ = {[φ]∼ ∈ FormPA(Mn)/ ∼ | φ ∈ ∆′}.

Notice that we can order ∆ by the relation E such that [φ] E′ [ψ] if there
are φ′ ∈ [φ], ψ′ ∈ [ψ] such that φ′ is a direct subformula of ψ. Let E be the
transitive closure of E′. Now, we define the predicate Sn+1 in the following
steps:

1. In the first step, we include in Sn+1 all pairs (φ, α) from Tn+1.

2. For any [φ] ∈ ∆ which has an element from Mn−1 and is minimal in
the ordering E, we set (φ, α) ∈ Sn+1 iff (φ, α) ∈ Sn for φ ∈ Mn−1.
We extend the valuation to the whole [φ] by setting (φ, α) ∈ Sn iff
(ψ, β) ∈ Sn for (φ, α) ∼ (ψ, β).

3. For any [φ] ∈ ∆ which has no element inMn−1 and is minimal in the
orderingE, we do not add any (φ, α) to Sn+1. Effectively, φ defines an
empty set.

4. If n = 0, for all φ ∈ ∆′ which are subformulae of ηb located on a
(standard) finite depth in the syntactic tree of ηb (including ηb itself),
we set (φ, α) ∈ Sn if A(ηb(x)) holds where x = α(v). In effect, we
decide that the valuations on all variables other than v donot influence
the truth value of ηb. If n > 0, then Sn+1 is defined on ηb and its direct
subformulae by the preservation conditions.

5. We extend the valuation to other classes in∆ by induction on the finite
partial orderE using compositional conditions, e.g. if Sn+1 is already
defined on φ such that [φ] ∈ ∆, then we extend it to ¬φwith [¬φ] ∈ ∆
so that (¬φ, α) ∈ Sn iff (φ, α) /∈ Sn.
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It is clear that the constructed model satisfies the elementary diagram of
(Mn, Tn, Jn, An). Since the predicateSn+1 wasdefined by induction on com-
plexity of formulae according to compositional condition and since every
formula has an unambiguous tree of direct subformulae, the compositional
conditions are satisfied. The preservation conditions are satisfied since if
a formula φ is an element of Mn−1, then its direct subformula must be an
element of Mn−1 as well. Since compositional conditions uniquely deter-
mine the behaviour of Sn+1 on a given formula given its behaviour on direct
subformulae, Sn+1 agrees with Sn on every formula in Γ which belongs to
Mn−1. It is clear that Tn+1 ⊆ Sn+1 and that ηb defines exactly the set A.

Let us check that the regularity conditions are satisfied. They are clearly
satisfied for formulae φ such that [φ] /∈ ∆. We prove by induction on the
height in the orderE in ∆ that for all [φ] and all φ′ ∈ [φ], the regularity con-
ditions are satisfied. The claim clearly holds for all formulae in [φ], where [φ]
isminimal in the orderE in∆. Take any class [φ] ∈ ∆. Wewant to check that
regularity conditions are satisfied for formulae in [φ], provided that they are
satisfied for their direct subformulae. We prove by cases, considering vari-
ous possible syntactic shapes of φ. Let analyse one example. Suppose that
φ = ∃vψ such that regularity conditions are satisfied for formulae in [ψ].

We consider the first axiom of regularity. Take any α ∈ Val(φ). By defi-
nition (φ, α) ∈ Sn+1 iff there exists α′ ∼v α such that (ψ, α′) ∈ Sn+1. Notice
that (ψ, α′) ∼ (ψ[α], β), where β is any valuation with β(v) = α′(v), as ψ[α]
is a formula with at most the variable v free and all other variables ’filled
in’ with α. By induction hypothesis, the pair (ψ, α′) ∈ Sn+1 if and only if
(ψ[α], β) is in Sn+1. This in turn holds if and only if (φ[α], ∅) ∈ Sn+1, again
by compositional conditions.

Now consider the second axiomof regularity. Let φ = ∃vψ, let s̄, t̄ be two
coded sequences of closed terms with s̄◦ = t̄◦ and suppose that (φ(s̄), ∅) ∈
Sn+1. Then there exists α ∼v ∅ such that (ψ(s̄), α) ∈ Sn+1. By definition
(ψ(s̄), α) ∼ (ψ(t̄), α), so by induction hypothesis (ψ(t̄), α) ∈ Sn+1, and by
compositional conditions (φ(t̄), ∅) ∈ Sn+1 as well.

Similarly, the regularity conditions hold for all formulae from the classes
in ∆. This shows that the defined model satisfies the finite fragment Γ of
Θn. The consistency of Θn follows.
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