Notes for the Logic and Metaphysics course

October 27, 2018

1 Propositional modal logic

1.1 Classical Propositional Logic: a Brief Remainder

Language In these notes V will denote a fixed infinite set, whose all el-
ements can be arranged in an infinite sequence whose positions are given
by natural numbers (such sets are called countable; there are sets that do not
have this property, e.g. the set of real numbers. They are called uncountable).
Elements of V' are called propositional variables and are denoted p, p1, p2, . . .,

q,91,---3T,T1y....

Definition 1 (Formulae of CPL). The set of formulae F,,,, of CPL is the
least set P such that

1.V C Fprop

2. if ¢, ¢ are any elements of F},,, then so are (¢ A9), (¢ V 1), (—¢) and
(¢ —).

The clause "F),qp is the least set P such that conditions 1. and 2. hold"
means that F},,, satisfies 1 and 2 and it is a subset of every set which satisfies
1. and 2.

Semantics Now we proceed to the semantics of C PL. Definition is sur-
prisingly simple and we will explain its meaning in a moment.

Definition 2 (Models for CPL). A model M for CPL is a subset of V.

Interpretation: Definition becomes more intuitive if we think of elements
of V' as atomic facts that can hold independently of each other. A model is
then a specification which atomic facts hold (i.e. elements of M) and which
do not (i.e. those left outside M).

Let us note that to define a subset of V' is essentially the same as to define
a function f mapping each element of V' either to 0 or 1 (the choice of 0
and 1 is purely conventional - any two distinct object will do). Indeed, if
a subset M of V is given then function f can be defined as sending the
elements of M to 1 and the elements not belonging to M to 0. In the other
direction, if f is given, then a subset of V' can be defined as the set of all
those elements which are sent by f to 1. Sometimes we will make use of
this double characterization, treating a model M as a function, which we
will call a valuation.

Definition 3 (Satisfaction relation). Let M be a model for C PL and ¢ be a
formula of C'PL. We shall say that M |= ¢ iff

1. ¢ =pforsomep € Vandp € M, or

2. ¢ =11 ANpgand M = 1y and M |= 1), or

3. ¢ =11 Vipgand M = 1 or M = 4o, or

4. ¢ =11 — Y9 and if M |= 1)y, then M = 1)9, or
5. ¢ =) and it is not the case that M = 1.

Example 4. Let M = {p, ¢} then
MppA((p—7)—=q)

since:

1. MEp
2. MEr
3. M ¥ p — r (because of the two above observations)

4. M E ((p — r) — q) (because the antecedent is false)

Proof System

Definition 5 (Hilbert-Style Proof System). Axiom is any sentence of the form
L =6 = (¢ =)
2.0 % —9)

3. (=) = (=g =) =)
4 (p—= W —=0) = (¢ =) = (¢ —0))

more precisely: any formula resulting from substituting elements of F'p,.,
for ¢, 1, 0 in one of the above is our axiom. For example

(=(p—p)—((p—p)— (PAQ)

is an axiom because it results from the substitution ¢ — (p — p), ¥ — (pAq).
We adopt also a single rule of reasoning - Modus Ponens

b0 —
(G

A proof of ¢ is any sequence
¢1a¢27~--7¢n

of elements of F'p,,, such that

1. each of 91, ...,1, is either an axiom or can be obtained via Modus
Ponens rule from previous elements in our sequence;

2. ¢hp = 9.

Sentence ¢ is provable if and only if there exists a proof of ¢. We shall denote
the symbol

F¢
to denote that ¢ is provable.

It can be checked that Hilbert-Style Proof System as defined above matches
the natural semantics that we gave earlier. More precisely it holds that:

Theorem 6 (Completeness theorem for Hilbert-Style Calculus). For every ¢
from Fppop
- ¢ if and only if for every model M, M = ¢

The left-to-right part of the above theorem states that the proof system we
defined is sound - whatever can be deduced in it is true in every "possible
world" (i.e. every model for our language). The right-to-left direction states
that it is complete: whatever is true in every possible world can be justified
by reasoning formalized in this calculus.

Example 7. The calculus we defined is not very convenient to work in. For
example the following sequence of formulae is a proof of p — p:

. p—=((p—=p) —p)—(p— (p—0p)— (p— p) (instantiation of
axiom 4 with ¢ — p, ¥ — (p = p), 0 — p)

2. (p— ((p — p) — p)) (instantiation of axiom 2 with ¢ — p,) — (= p))

3. ((p = (p = p)) = (p — p)) (application of Modus Ponens to the two
formulae above)

4. (p — (p — p)) (insantiation of axiom 2 with ¢ — p, ¥ — p)
5. (p — p) (application of Modus Ponens to the two above formulae.)

However it is often used because of the very short definition and some ad-
ditional theoretical features. We will give a more convenient decision pro-
cedure (algorithm) for deciding whether a formula is valid.

Let us observe that if we have two models M C V, N C V that agree on
set of variables {po,...,pn}, i.e. for each i, p; belongs to M if and only if
pi belongs to N, then for every formula ¢ which uses only {po,...,p,} as
propositional variables

M E ¢ifandonly if N = ¢

For example if M = {po,p1,p2}, N = {po,p1,qo} then these models satisfy
the same formulae with propositional variables py, p1, p3. For example

M = (po — —p1) A —ps if and only if N = (pg — —p1) A —p3

It follows that to check whether a formula ¢ is satisfied in a model M we
need only finitely many informations about M: for each propositional vari-
able which occurs in ¢ (there are finitely many of them!) we have to know
whether it belongs to M or not. Hence it is enough to check each of finitely
many possible cases. For example let ¢ = (p A ¢) — 7. Then it is sufficient
to check what happens if

1. all three p, ¢, belong to our model.
2. from p, ¢, r only p belongs to our model. (similarly for ¢,)
3. from p, ¢, only p, g belong to our model (similarly for (g,), (p, 7))

4. none of p, ¢, r belongs to our model.

4

Let us note that this corresponds to considering all possible assignmets of
0,1 (0 for "does not hold", 1 for "holds") to {p, ¢,}. This gives rise to the
method of "truth tables": to check whether formula is valid (provable in our
Proof System) it is enough to check whether every valuation of its proposi-
tional variables satisfies it.

Example 8. Let us check that one of axioms of the Hilbert-Style Proof Sys-
tem is valid by checking all valuations. Let us consider

¢=p—(a—p)
¢ contains only two propositional variables p, g. There are four valuations
that we have to consider

{
1.
q

(this corresponds to the situation in which model contains both p and
q)

p—1
z{qHO

(this corresponds to the situation in which our model contains p but
not q)

3 {p»—>0
q—1

(this corresponds to the situation in which a model contains ¢ but not
p)

p—=0
4{qu

(this corresponds to the situation in which our model contains neither
P NOT q)

It is easy to verify that each valuation which sends p to 1 makes ¢ true,
since it makes true the implication in the succedent of ¢. Moreover each
valuation which sends p to 0 makes ¢ true since it makes the antecedent of
¢ false. Hence every valuation makes ¢ true, hence ¢ is valid.

The following formula

v=(pVaqg —pAq

is not valid since the following valuation
pr—1
g—0

5

makes 1) false.

In the next exercise p «+» g abbreviates (p — q) A (¢ — p).

Exercise 1. Check whether the following formulae are valid. In case they
are not valid (i.e. there exists a falsifying valuation) check whether there
exists a valuation which makes them true.

1.

—_
e

1.2

Y ® N e » DN

po — po) — ((—po) — po)
Po — ~Po) = Qo
poV p1)Vp2) V(psV (paV —ps))
poV p2) A —p2) = p3
—q) = ((pAr) = q)

V(ger)Viperr)

)-
—7r)=((p—=r)A(g—r))
—7r)=((p—=r)Vig—r)
=) = (

(p—=>r)vig—r))

The syntax of the propositional modal logic

Propositional modal logic is an extension of the classical propositional logic
in which to the connectives —, A, V, = add two unary (i.e. syntactically be-
having like a negation) operators [, {) with the intended reading ”it is nec-
essary that...” and ”it is possible that...” respectively.

Formally, the set of propositional modal formulae over the set of propo-
sitional variables V' is defined as the smallest set ' with the following prop-
erties:

1.
2.

Any element of V belongs to F.
If p € F,then —¢ € F.

3. Ifboth¢ € Fandy € F,thenp A € F,¢ Vi € Fand ¢ — 1 € F.

4.

Ifp € F,then¢ € F, ¢ € F.

Slightly unwinding the formal definition, we see that propositional modal
formulae look like the usual propositional formulae, but we allow to write
additional symbols OJ, { in front of formulae, like negations. We will write
the elements of V' with the letters p, ¢, r, s, ... or sometimes with subscripts
P1,D2,---, 41,92, - - .. S0 as an example of the modal formula we have:

O(Op — —O-g)

or
O(q v OOr) V (p1 — GO0ps).

1.3 Kripke models
We will now describe the semantics of the propositional modal logic.
Definition 9. By a Kripke model we mean a tuple (K, R, f), where
1. K is an arbitrary nonempty set.
2. R C K?is an arbitrary relation.

3. fis an arbitrary function with the domain V/, which assigns to every
letter p € V a subset of K.

The above definition is probably somewhat unenlightening, so let’s try
to elaborate on it. Typically, when we define something as a tuple, we think
of such an object as a set with some additional structures: relations, func-
tions etc. defined on this set. In our case, we usually call the elements of
K the possible worlds, R is called the accessibility relation and f is called
the valuation function.

We should think of Kripke models as of sets of worlds for which the
relation between w and v holds if and only if v is possible from the point of
view of w. For each of these worlds w, we explicitly indicate which atomic
facts hold in these worlds — this is what the valuation function does. If a
world w belongs to f(p) this intuitively means that the atomic fact p holds
in the world w.

We capture this intuition, when relating Kripke models to propositional
modal formulae.

Definition 10. Let K = (K, R, f) be an a arbitrary Kripke model and w a
world in this model. We define what does it mean for a modal formula ¢
to be satisfied in the model K in the world w (which we write IC, w |= ¢) by
induction on complexity of ¢.

1. If p is a propositional variable, then K, w = piff w € f(p).

K, w = —¢ iff it is not the case that I, w = ¢.

K,wkE oA iff C,w = ¢and K, w E 4.
K,wEoVyiff C,w = ¢or K,w = 1.

K,w = ¢ — v iff it is not the case that K, w = ¢ or K, w |= 1.
K,w = 0O¢iff K, v = ¢ for all v such that R(w, v).

N o ke » N

K,w k= $¢iff K, v = ¢ for some v such that R(w, v).

Thus for example in a model K = (W, R, f) with two worlds w, v such
that the relation R holds only between pairs (w, w), (w, v), (v, v) and the val-
uation function f which assigns {w, v} to pand {v} to ¢ we have for example:
K, w = -Oq A Op A O$q. This model can be depicted

p
L

Let us verify that IC, w = O<¢g, the rest of cases being rather easy. Un-
folding the definition we get that X', w = O¢¢q if and only if for every world
w’ which is in relation R with w there exists a possible world w” in relation
R with w' such that w” satisfy ¢. This is true in the model given above since
only w and v are in the relation with w and each of them sees world v which
satisfies q.

Exercise 2. Check whether given formulae hold in the given model at world

w:
1.
p.q p~ Ny
W —> v U
~__
formulae: Op, OOp, OOOp, OOV q).
2.
NP

(w, k,1,vareworlds and p, ¢, r are propositional variables). Formulae:

(@) OOp,

(b) GOp,

(©) ¢ — (O—p— OOp),
(d) &r — g

r q
TfHk
q/m
w

0
Formulae:

(a) Or
(b) Ooq
(c) &g — Or
(d) ¢g— OOq

Exercise 3. Check whether given formulae hold in the given model at world
w:

q
vV —1U
/ \ P
w h
\ p /
m—-sn
formulae:

(a) OOp — Op
(b) OOp = OOq

(@) OOOOq = OOOq
(b) &GO — OOG0q

Exercise 4. Give an example of Kripke structures M; and worlds w; such
that:

My, wi EO(p V) A~(0Op Vv Og).

Ma,wa ¥ p — $p.

Ms, ws = Op A =0O0p.

My, wy = Op A =OG6p.

Ms,ws =0(p — q) — (Op — Ug)

Mg, we = GOOOP A (0P A (=OOP A =OO0D))
M7, w7 I GG00(p A —p)

8. Mg, ws ¥ OOp — Op

Exercise 5. Check whether the following formulae are tautologies of Modal
Logic, i.e. whether they hold in all Kripke models.

- HOp = OOp

(@OCp A Og) — OO
(OOp A OOq) — OOp
O(pAg) —Op

O(p Ag) — (Op A Ug)

Olp Vv a) = OpVOg
(OpA G = G Aq)
(Op=0qg) = (Cr=<9)
Op — Uop

. O00p —p)—Op
O(Op v O-p).

- O((CpAOp — q) = ¢q)
OO ADp = q) = ©q)
- O(leA(p—q) = 0q)

N o ke N =

—_

© ® N o Gk » DN

Sy
>J>UJI\J!—\O

10

1.4 Proof system and the most important theories

The next definition introduces a Hilbert-style proof system for modal logic.
It is a proper extension of the proof system defined for Classical Proposi-
tional Calculus.

Definition 11 (Hilbert-style proof system for ML). Hilbert-style proof sys-
tem for ML contains as axioms

1. allinstantiations of tautologies of Classical Propositional Calculus with
formulae of modal logic.

2. all instantiations of the following scheme
O(¢ = ¢) = (0¢ = D)
with formulae of modal logic.
We have two rules of reasoning;:
1. Modus Ponens (the same as for Classical Propositional Calculus)

2. Godels Rule, or Necessitation

0
Do
Definition of a proof and provability is the same as previously.

Example 12. If ¢ is an instantiation of a tautology of Classical Propositional
Calculus, then O¢ (and O0O¢, O0¢...) is provable. For example a proof of
O(p — p) is the following sequence of length two

p— p,0(p — p).

The above proof system "matches" the semantics for modal logic we in-
troduced earlier - more precisely we have the following theorem. Before
stating it it will be convenient to introduce one more definition:

Definition 13. Let £ = (K, R, f) be a Kripke model and ¢ a formla of modal
logic. We shall say that ¢ is true in /C and write

Ko

if for every world w € K we have

Kow bk ¢

11

Theorem 14 (Completeness Theorem for modal logic). For every formula ¢
of modal logic

¢ is provable if and only if for every Kripke model I, K = ¢

This theorem can be strengthened. Let us introduce one natural gener-
alization of the standard provability relation.

Definition 15. Let Th be a set of modal formulae and ¢ a modal formula.
We shall say that ¢ is a consequence of Th (or that Th proves ¢) and write
Th = ¢ if and only if there is a proof of ¢ in which formulae from Th can
occur as axioms.

We say that a Kripke model K satisfies a set of formulae Th (and write
it K |= Th) if it satisfies every formula from Th.

Theorem 16 (Completeness Theorem for modal logic, 2). For every formula
¢ of modal logic and every set of modal formulae Th,

Th ¢ if and only if for every Kripke model K, if K |= Th, then K = ¢

Moreover we have the following very useful theorem (analogous to the
one known from the First Order Logic)

Theorem 17 (Deduction Theorem). Let ¢, 1) be modal formulae and Th a set of
modal formulae. We have that

Tht ¢ — ¢ if and only if ThU {¢} - ¢

Modal logic introduced so far is a very general tool and can be adapted
to model different notions. Proof calculus gives us an easy way to adapt the
current formalism to new situations - we might simply add new axioms and
investigate into so formed systems. Let us give some examples of systems
of modal logic which can be found in the literature:

Definition 18. 1. System K contains all the sentences provable in the
Hilbert-style proof calculus for ML.

2. System T contains all the sentences provable in the Hilbert-style proof
calculus for ML in which all instantiations of the scheme

O¢ — ¢ (T)

can be taken as axioms.

12

3. System S4 contains all the sentences provable in the Hilbert-style proof
calculus for ML in which all instantiations of the schemes

Lo — ¢ (T)
o — g 4)
can be taken as axioms.

4. System S5 contains all the sentences provable in the Hilbert-style proof
calculus for ML in which all instantiations of the schemes

O¢ — ¢ (T)
O¢ — O0¢ (4)
0o — 009)

can be taken as axioms.

5. System D contains all the sentences provable in the Hilbert-style proof
calculus for ML in which all instantiations of the scheme

Op — $o (D)
can be taken as axioms.

Example 19. Every sentence of the form

¢ — 00e (B)
is in S5 (i.e. it is provable from axiom schemata (T),[) and (). Indeed, let
us fix any ¢. We shall show that S5 U {¢} - O0¢ which clearly suffices by
Deduction Theorem (Theorem . We have ¢ — ¢ by the contraposition
of (I) axiom for —¢. Hence by Modus Ponens we have {¢. Using the instan-
tiation of (5) axiom schema for ¢ we get that (¢ — OO ¢. Hence by Modus
Ponens again we get [J{¢, as wanted.

Exercise 6. Show that for arbitrary Kripke model K = (K, R, f) such that R
is symmetricﬂ and arbitrary formula ¢ = ¢ — [0 ¢ we have
KEY

Exercise 7. Show that for arbitrary Kripke model K = (K, R, f) such that
R satisfies: for every w € K there exists w’ such that wRw' and arbitrary
formula ¢ = O¢ — ¢ we have

K=

li.e. if a world w sees a world w’ then w’ sees w too. Formally: for every w, w’, if wRw’,
then w’' Rw.

13

1.5 Kripke Frames and connections with basic systems of Modal
Logic

In the previous section we have seen that for some classes of formulae it is
possible to determine whether they hold in a given Kripke model basing on
appropriate properties of the accessibility relation only. In this paragraph
we shall demonstrate a converse to this phenomenon: we will prove that if
certain formulae holds in a Kripke model regardless of the chosen valuation,
then the accessibility relation has appropriate property. The following def-
inition is a translation of the sentence "formula ¢ holds in a Kripke model
regardless of the chosen valuation" to a formal language.

Definition 20. A Kripke Frame is a nonempty set K (the universe) and a
relation R C KZ2. In other words: it is a Kripke model with no valuation
function. A formula ¢ is satisfied in a Kripke frame (K, R) if and only if
for every valuation f : V' — P(K) (recall that V' is a set of propositional
variables) we have

(KR, f) = ¢

Abusing the notation a little bit we will use symbol = for satisfiability in a
frame.

Example 21. Let K = {a,b} and R = {(a,a), (a,b), (b,a)(b,b)} (hence R =
K?; such a graph is also called a clique). Then the formula Op — OOp
is satisfied in (K, R), because we have already showed that it is satisfied in
every Kripke model in which the relation is transitive. The formula {>p is not
satisfied in (K, R) because for a valuation f(¢q) =) for every propositional
letter we have

(KR, f),a ¥ O

(to give a counterexample for a satisfiability on a frame it is sufficient to find
one valuation and one world such that the resulting Kripke model falsify the
formula at a chosen world).

Example 22. The formula Op is satisfied in a Kripke Frame K = {a,b, ¢, d}
and R = () because for every valuation f, (K, R, f) is a Kripke model in
which every world satisfies ¢ for every formula ¢.
Let K be as previously and R = {(a,b), (a,a), (c,d)}. Then the formula
Op — pis not satisfied in (K, R) since for f such that
f(p) ={d}

and f(p) = 0 for the rest of propositional variables we have

(K,R, f),cEOp—p

14

Generalising the (second part of the) above example we might show the
following

Proposition 23. A frame (K, R) satisfies Up — p if and only if R is reflexive, i.e.
for every k € K it holds that kRk.

Proof. To be added. O

It turns out that we can find similar properties of the accessibility rela-
tion for the rest of additional modal properties we introduced in Definition
We will summarize them in the following proposition. By saying that
the principle X holds in ' we mean that every instantiation of the respective
scheme holds at F'.

Proposition 24. Let F' = (V, R) be a Kripke frame

1. The principle (1)) holds in F iff R is reflexive, i.e. for any w € W we have
R(w,w).

2. The principle @) holds in F iff R is transitive, i.e. for any wy, we, w3 € W
ZfR(wl, U]Q) and R(U)Q, wg), then R(wl, ’wg).

3. The principle (B) holds in F iff R is symmetric, i.e. for any w,w' € W if
R(w,w"), then R(w', w) as well.

4. The principle (B) holds in F iff R is Euclidean, i.e. for any wi,ws,ws if
R(wl, ’u}g) and R(wl, ’wg), then R(U)Q, wg).

5. The principles (T),@),(B) hold jointly in F iff R is an equivalence relation,
i.e. it is symmetric, reflexive and transitive.

Exercise 8. Prove the above proposition.

Putting the above proposition with the second version of Completeness
Theorem (Theorem [16) we get the following Completeness Theorem for the
modal systems introduced above.

Theorem 25. Let ¢ be a modal formula.

1. T proves ¢ if and only if for every Kripke model K = (K, R, f) such that R
is reflexive we have K = ¢.

2. B proves ¢ if and only if for every Kripke model K = (K, R, f) such that R
is symmetric we have K |= ¢.

15

3. S4 proves ¢ if and only if for every Kripke model K = (K, R, f) such that R
is reflexive and transitive we have K = ¢.

4. S5 proves ¢ if and only if for every Kripke model I = (K, R, f) such that R
is an equivalence relation we have IC |= ¢.

1.6 Tableaux for propositional modal logic

In the previous subsection we have defined semantics for the propositional
modal logic. We can also introduce this logic via a proof system, i.e. by
syntactically defining what constitutes a correct proof of a formula. In our
case, the proof system to be defined will have one more feature: for any
provable formula we will be able to algorithmically find its proof, not only
check whether something is a proof. Let us first introduce a few (very stan-
dard) preparatory notions:

Definition 26. By a (directed) graph we mean a pair (V, E), where V is any
nonempty set and E is any binary relation on V. A tree is a graph in which
there is no element v such that for some two elements v1, v2 both E(vy,v)
and E(v2,v) holds and there is exactly one element v such that for no v’
E(v,v). A chain is a subset {v1,...,v,} C V such that F(v1,v2), E(ve, v3),
E(v3,v4),..., E(vy—1,vy). A chain in a tree is called a branch if no element
can be added to it so that it remains a chain (so it is a maximal chain). By a
labelled graph with labels from the set A we mean a pair (V, E, f), where
(V,E) is a graph and f is a function whose domain is V' and whose values
are elements of A.

Let us elaborate a bit on the above definitions. When talking about pairs
(V, E) we really simply think of a set V' with some additional structure: in
our case ' means that we join some elements of V' with arrows. So: we have
a set with a couple of arrows from one element to the other. We often call
elements of graphs vertices and pairs in £ edges. When graph is labelled
we simply put another layer of structure on a graph: on some vertices we
write some notes containing extra information.

Intuitively a tree is simply a graph, where from one vertex more than
one arrow can go, but no two arrows meet together again in one element.
On top of that we require, that there is only one vertex which is not pointed
at by any arrow. We call it the root of the tree.

Let us define first de Morgan form ¢ of a propositional modal formula
¢ by induction on the shape of ¢:

)M

1. pM = p and (—p)™ = —p for all propositional variables p.

16

2. (pAPYM = oM A M.

3. (p V)M =M vyt

4. (Op)M =DM,

5. (0p)M = QoM.

6. (¢ =)M = (=p)M v .

7. (=(p AN = ()M Vv (=)™
8. (=(o VYN = ()M A (=)
9. ()M = oM.

10. (=0¢)M = &(=)M

1. (=¢¢)M = DO(=p)M

The definition may seem quite awkward, but in fact it is extremely natu-
ral: we simply rewrite a give formula so that all negations occur only in front
of the propositional variables using de Morgan laws. We also eliminate all
occurring implication symbols.

If ¢ = ¢M, then we say that ¢ is already in de Morgan form.

Now, instead of giving a proper definition of what we mean by tableaux
for the propositional modal logic we will present a procedure of creating
tableaux in a somewhat informal way. We have written above that tableaux
are used to prove some propositional modal formulae. Actually we use this
method to refute them. As a by-product of doing so, we construct a model
in which the formula in question fails to hold.

So suppose we are given a formula ¢ in de Morgan form we would like
to refute. We draw a box around the formula (some more formulae will be
written inside the same box, so it is good to actually draw the box gradually).

At each point of the construction we will have a tree labelled with for-
mulae, some of which will be grouped in boxes. Now, at every step we may
enlarge the tree in the following way:

1. Whenever you see both p and —p for some propositional variable p on
the same branch and in the same world, you may write L at the bottom
of that branch in the same box as the last element of the branch. We
say that this branch is closed.

17

2. Whenever at some vertex you see a formula ¢ A ¢ write ¢ and ¢ sub-
sequently at the end of each branch in the same box in which ¢ A ¥
is placed (i.e. at each vertex v in the same box as the node labelled
with ¢ A ¢ that points to no element in the same box you draw two
new nodes v' and v” with arrows from v to v' and from v’ to v”. If
additionally v pointed at some nodes vy, ... v, in another boxes you
erase these old arrows going from v and draw new arrows from v” to
v1, ... 0y). Cross out the instantiation of the formula ¢ A) you used.

3. Whenever you see a node labelled with a formula ¢V 1) you may draw
at the same world at the end of each branch passing through the node
with this occurrence of ¢ V1) two new vertices v’, v” labelled with ¢ and
1 respectively and draw new arrows going from the last node v of the
respective branch to v’ and v” (so that v has now two new children).
If there were some arrows going from v to nodes vy, ..., v, in other
boxes, you erase these arrows draw a duplicate of each labelled tree
starting at v; and you draw arrows from v’ to vy, ..., v, and from v”
to the respective vertices in the duplicate (in practice you may simply
draw arrows both from v and v” to v1, ..., v,). Cross out the instan-
tiation of the formula ¢ V 1 you used.

4. Whenever you see a vertex v labelled (¢, then for any node v" which
lies in the same branch, but in another box joined by an arrow with
the box in which the vertex v was located and which points at no ver-
tex within the same box, you may draw a node v” pointed at by v’
and labelled with ¢. If additionally v" was pointing at some vertices
v1,..., Uy in other boxes, then you may erase these arrows and draw
the new arrows from v” to v1, ..., v,.

5. Whenever you see a vertex v labelled with ¢, then for any vertex v’
in the same branch which points to no other vertex in the same branch
you may draw a new box and a new vertex v” pointed at by an arrow
going from v’ and labelled with ¢. This is the only way in which new
boxes are introduced.

You call a formula ¢ Tableaux-refutable iff there exists a tree formed ac-
cording to the above rules, whose root is labelled with (—¢)™ and in which
there is a branch which does not close. This means that there exists a Kripke
structure in which the formula does not hold.

Now the following fact holds:

Fact 27. A formula is provable iff it is not Tableaux-refutable.

18

Exercise 9. Find Tableaux for the following formulae:
L. O(pVvq) — (OpVvUq)

p—DO¢p

O(Cp — p) = Op

O0p — ¢0p

O(p = ¢(p A Dp)) = (Op — $p)

06 Aq)

Olp A —p) = Dy

OOp = Op

(OOp A Op) — Op

- OlpAD(p = ¢)) = (Bp — 00g)

© *® N G bk » N

—_
e}

2 First-Order Modal Logic

2.1 First-Order Logic

Syntax A (relational) signature (with constants) o is a pair of nonempty
sets R, C called the sets of relations and constants respectively and a function
p : R — N which assigns arities to symbols of R. Intuitively p says how
many objects can stand in the relation from R.

We define relational formulae of the first-order logic by induction on
complexity of formulae. Namely, we assume that we have fixed some set
of first-order variables V which we will denote x, y, z and occasionally also
T1,%2y - Y1, Y2,---,21,22,--.. Lhen we define relational formulae of the
fist-order logic over the language £ as the smallest set F* satisfying the fol-
lowing conditions:

1. R(v1,...,v,) € F, where v; are either variables from V or constants
from C and R is some relation symbol such that p(R) = n

2. v1 = v9 where v1, vo are either variables from V or constants from C.
3. Ny € F,when ¢ € Fand ¢ € F.
4. oV € F,when ¢ € Fand ¢y € F.

19

5. =¢ € I/, when ¢ € F.
6. Vv ¢, whengp € FoeV.
7. v ¢, whenop € F,oeV.

Example 28. Suppose R = {P, R}, C = {c}, p(P) =1, p(R) = 2. Then
R(z1,c¢)

and
P(x2)

are well built formulae. If so, then so are
R(:L’l, C) AN P(CIZQ)

and
Ju1 Voo (R(z1, ¢) A P(x2)).

Semantics Let us recall how semantics for first-order logic is defined. Then
we will try to use these ideas to define semantics for some first-order version
of the modal logic.

Definition 29. Let 0 = (R,C, p) be a signature. By a relational model M
we mean any tuple (M, 1), where M is a nonempty set called the domain
or the universe of M and 7 is a function with domain R U C such that

1. for every R € R, if p(R) = n, then 7(R) C M"
2. foreveryce C, 7(c) € M.

A model can be thought of as a description of how many basic individ-
uals exist (which objects form the universe) and how are the basic relations
from our signature to be interpreted.

Example 30. Let 0 = (R,C,p) be such that R = {R} U{P;, | i € N},
p(R) = 2, p(P;) = 1forevery i and C = (. Let M = {w;, w2, w3} and
7(R) = {(w1,w2), (w1, w1), (ws,ws), (wi,ws)} and 7(Fy) = a, 7(P;) = 0 for
i > 0. Then M can be depicted as a Kripke model

20

with P thought of as a propositional variable.
Let us define something more complex: working over the same signa-
ture put:

M = N
T(R) = {(m,n) | m<n}
7(P;) = {neN | idividesn}

Try drawing the above model.

When reading the following definition it is good to keep in mind that
what we try to capture is our informal notion of a sentence true of some
given structure. This is to be understood in a very straightforward manner
in which Vz3y = < y is true in the set of natural numbers with its natural
order but Vz3y y < z is not (why?).

Definition 31. By a valuation « on a first-order model (M, 7) we mean any
function whose domain is the set of all first-order variables V' and which
takes values in the domain of M. It will be convenient to assume that « is
defined also on constants from our signature and that for every ¢ € C we
have a(c) = 7(¢). We define what does it mean for a formula ¢ to hold in
a model M under valuation «, in symbols M, «a |= ¢, by induction on the
complexity of formulae:

1. M,a = R(vy,...,vp) iff (a(vy),...,a(v,)) € T7(R) or, in other words,
the elements assigned to vy, . . . , v, by a satisfy the relation R as inter-
preted in the model M.

2. M, = vy = v iff a(v1) = a(vy).
3. M,alE (o NY)iff M,a = ¢pand M, o =).
4 M,al=(oVy)iff Mo |=dor M, o = 1.

21

5. M, a = —¢ iff it is not the case that M, o = ¢.

6. M,« = Ju ¢ iff there exists a valuation o which may differ from « at
most in what it ascribes to the variable v such that M, o/ = ¢.

7. M,a |=Yv ¢iff M, o' |= ¢ for all valuations o/ which may differ from
o at most in what it ascribes to the variable v.

The above inductive definition may seem scary, but it really captures
the most intuitive notion of a sentence being true in some structures. We
consider the more general case: namely formulae like R(z,y) A 3z P(z). In
order to say, whether this formula is satisfied or not in a given model, we
have to specify what do we mean by = and y — and this is precisely what
the valuations do: they are specification of what variables “mean”. It might
be confusing that we require valuations to be defined for all variables, not
only the ones that actually occur in the formula, but this is a purely technical
detail to simplify our considerations.

Additionally, we say that a formulae is true in a given model iff it is
satisfied under all valuations. We denote it M = ¢ (i.e. similarly to the
above definition, but omitting the reference to a valuation). It is valid iff
it is true in all models. Observe that if ¢(z) is a formula in which z is not
within the scope of any quantifier (we say that z is a free variable in ¢) then
it is true in a model M if and only if Vz¢(z) is true in a model M.

Sometimes we will use the following convention: if ¢ contains exactly
one free variable, then we instead of writing a model and a valuation on the
lefthandside of the satisfiability relation we will be writing simply a model
and an individual from the universe, meaning that ¢ is satisfied in a model by
the valuation which assigns the chosen individual to the only free variable

of ¢.

Example 32. Let (M, 7) be the first model from Example[30} Then (M, 7) =
Jz(R(z,z) A Py(x)). Indeed, let a be an arbitrary valuation and o’ be such
that

o) = wp
od(y) = a(y)fory#a

Then (M, 7),¢' = R(z,x) A Py(x). Indeed, the latter holds if and only if
(o/(z),d(z)) € T7(R) and &/ (z) € 7(Fy) which is true since o/ (z) = w;.

Let now (M, 7) be the second model from the same example. We shall
show that (M, 7) |= Va3y(R(z,y) A Ps(y)). Let o be an arbitrary valuation.

22

Let o' be an valuation which differs from « at most on the value assigned
to . We shall show

(M,7),d | Jy(R(z,y) A Ps(y))

So we have to find a way of assigning the value to variable y such that for
the resulting valuation /" we have

(M,7),d" = (R(x, y) A Pg(y))

The above is true if and only (by the definition of our model!) o (z) < o (y)
and 3| (y). So for example we can put o’ (y) = 3(a(z) + 1).

It is easy to see that the sentence 3z R(x,x) is not true in the above
model. However this sentence is true in the first model from Example
since for example (wq,w1) € T(R).

Exercise 10. Let 0 = (R,C,p), where R = {R} and p(R) = 2. Check
whether given sentences are true in given models

3. M =Nand (m,n) € 7(R) if and only if m divides n.

(@) JzVyR(z,y)
(b) Fx3y(—(z = y) AVz(=R(z,2) A R(z,y))

4. Let (M, 7) be the first model from Example

(@) VazIy(R(z,y) A Po(y))
(b) 3z3y(~(z =y) A R(z,2) A R(y,y))
(¢) JaVyR(x,y).

23

2.1.1 The standard translation

We will show that the propositional modal logic (pml) is a part of the clas-
sical first order logic (cfol). Obviously this is not literally true, since both
logic use different symbols. However we can define a translation * of for-
mulae of pml to formulae of cfol. To do this it will be convenient to assume
that the only propositional variables we use in formula of modal logic are of
the form p;, where 7 is a natural number. This translation will be truth pre-
serving in the following sense: if ¢ is a formula of pml, then its translation,
denoted ¢* will be a formula of cfol over a signature

({R'},{P; | iisanatural number }), p(R) = 2,p(P;) =1

(R will represent the accessibility relation, while P/s- propositional vari-
ables) with precisely one free variable x such that for arbitrary Kripke model
K= (K,R, f)and a world w € K we will have

K,w = ¢ if and only if £*, w = ¢™.

Where K* denotes the natural counterpart of K in cfol, i.e. the model (X, 7)
such that

r(R) = R

T(P) = {weK | K,wEpi}
Let us unravel this definition: K* results from K by taking possible worlds
(i.e. elements of K) to be individuals (i.e. the universe of Kripke model form
now the universe of first order model) and interpreting R’ as the accessibil-

ity relation. Moreover each P; is interpreted as the set of those worlds w
which are labelled with p; in K.

Example 33. Let K = (K, R, f) be the following model

w/

/]l

W <~ w/l

P1,P0
then £* = (K, 7) and
7(R) {(w, w), (', w"), (w”, w)},
T(R) = {ww'}
T(P) = {w},
T(P) = 0, fori>1.

24

To define the translation it will be convenient to assume that the individ-
ual variables we use are numbered with natural numbers: we will denote
them by zo,x1,z2.... Let us finally define *. The translation will be com-
positional, i.e. the translation of a formula will be fully determined by its
main connective (or modal operator) and the translations of its immediate
subformulae. We will define it by induction on the structure of a formula:
we start with the simplest formulae possible, i.e. propositional variables,
and then show how to compute the translations of more complex formulae
once the translations of their immediate subformulae have been fixed.

Definition 34 (The standard translation). For every p;,
(pi)" = Pi(zo).
If the translation of ¢ has already been defined, then
(=9)" = =(¢)*.
If the translations of 1, § have already been defined, then
@A) = (0 AW

@vy)y =) V@)
O =) =) =)

Suppose now the translation of 1) has been defined and let n be the number
of modal operators used in 7). Then

(O)* = Fzng1 (R(xo, Tag1) A () [#ng1/T0])
(O0)* = Vani1 (R(zo, Zns1) = (¥)*[Tnt1/70])

where ¢[z,,+1/x0] denotes the result of replacing in ¢ every occurrence of
variable x(with variable x,, ;1.

*

It would be best to see how this definition works on a concrete example:

Example 35. We will compute the translation of O0py — $UOpg. The main
connective in this formula is the implication, so

(OGpo — ¢Opo)* = (OOpo)* — (GOpo)*

Let us compute (<Opg)* first. The main connective is (J and $py contains
exactly one modal operator. So

(O0po)* = Vaa (R(zo, z2) = (Opo)*[x2/z0]).

25

So let us compute ({p)*: p contains no modal operators, so

(Opo)* = Fw1(R(xo,x1) A (po)*[a1 /o))
= Fa1(R(zo, 1) A (Po(z0))[z1/20])
= Elxl(R(xo,m) /\P0<371))

Now we have to plug in the last formula changing ¢ to z2. We get:
(OOpo)* = Vao (R(zo, z2) — Fz1 (R(x2, 21) A Po(z1))).
Similarly
(O0po)* = Jxa(R(wo, x2) A Va1 (R(w2,21) = Po(z1)))

So the translation of O{py — $Upo is the following formula:

<Vﬂc2 (R(xo, 22) — a1 (R(xg, 1) A P0($1)))> -
N <E|x2(R(JJ0,$2) AVz1 (R(3327331) - PO(“J“))))

Exercise 11. Compute translations of the following formulae:
1. Ops

O(p1 A pi7)

O(po V ~Op13)

U=p2 vV Up2

Opo — GUpo

O(Cpo — po) — Opo

O(ps A p2) — (~OOPs).

O(pa V ==$p3).

® N o ok » D

26

3 Quantified modal logic

3.1 Models for the quantified modal logic

We extend the definition of first-order formulae in a natural way, so that our
formulae may contain some modal operators. Let o be a relational signature
and V an infinite set of variables. The set of relational first-order modal formulae
is the smallest set F satisfying the following conditions:

1. Ri(v1,...,v,) € F, where v; are variables and R; is some relation sym-
bol from o of arity n.

oNY e F,when¢ € Fandy € F.
oV e F,when¢ € Fandy € F.
-¢ € F,when ¢ € F.

Yv ¢ € F,wheno¢ € F,v € V.

Jv ¢ € F,wheno¢ € F,v e V.
O¢ € F, when ¢ € F.

¢ € F,when ¢ € F.

® N o kLW N

As before, unwinding this definition, we see that quantified modal for-
mulae look like the regular first-order formulae, but we allow some extra
operators [J and <.

Now we are ready to introduce the models for the first order modal logic.

Definition 36. By a Kripke model W for first-order modal logic over the
signature o we mean the structure (W, R, D, V') such that:

1. W is a nonempty set whose elements we call possible worlds like in
the propositional modal case.

2. Ris a binary relation on W, which we call the accessibility relation
as in the propositional case.

3. D is a function with domain W such that for every w € W, D(w)
is a nonempty set. We think of D(w) as of the domain of the possible
world associated with w. The set theoretical sum of the set of values of
D will be called the set of individuals of W. L.e. the set of individuals

of Wis
J D(w)
weWw

27

4. V is a function which takes a world w and a symbol & from the signa-
ture and returns the interpretation of /4 in D(w).

Remark 37. If (W, R, D, V') is a Kripke model for FOML, then for every w €
W (D(w),V(w,-)) isa model for first order logic, as in Definition29] (V (w, -)
denotes the function resulting from V by fixing one of its arguments)

Again, we intuitively think of the elements w € W as of the possible
worlds. Asbefore, the relation R holds between w and v if, intuitively, world
v is possible from the point of view of world w.

Definition 38. Let W = (W, R, D, V') be a FOML model. A valuation « is
any function from the chosen set of first order variables to the set of indi-
viduals of W. For every w € W and every FOML formula ¢ we call « a
w-valuation with respect to ¢ if for every free variable v in ¢, a(v) belongs
to D(w).

Now, we define what is a satisfaction of a formula in a given model for
FOML.

Definition 39. Let W = (W, R, D, V') be any Kripke model over a signature
o. We define what does it mean for a formula ¢ to be satisfied in a world
w € W in the model W under a valuation « by induction on complexity of
formulae.

1. If ¢ = R(z1,...,zp), then W, w, a = ¢iff (a(z1),...,a(zy)) € V(w, R)
Wow,a = (9 AY) if W w, o |= ¢ and W, w, o = 1.

W,w,a = (¢ V) iff W w,a = ¢ or W, w, a = 1.

W, w, a |= —¢ iff it is not the case that W, w, o |= ¢.

AT A

W, w, a |= Ju ¢ iff there exists a w-valuation with respect to ¢ o/ which
may differ from « at most in what it ascribes to variable v such that
W, w,d E .

6. W,w,a |=Yo ¢ iff W, w,d |= ¢ for all w-valuations with respect to ¢
o' which differ from « at most in what they ascribe to variable v.

7. W,w,a = O¢ iff W, v, a0 = ¢ for all worlds v such that R(w,w’) and
« is a w’ valuation with respect to ¢.

8. W,w,a = O iff W, v, a = ¢ for some world v such that R(w, w’) and
a is a v valuation with respect to ¢.

28

Similarly to the first-order case, we say that a formula over a signature
o is true in a Kripke model, at a given world w iff it is satisfied there under
all valuations. We say that it is true in a model W, if it is true at all worlds
in W, we say that it is valid, if it is true in all models over the signature o at
all worlds.

Exercise 12. Check whether the following formulae hold in every Kripke
model.

— dx
— (FzOP(2)).
— (O z)).

(V2O P(x)).

P(x).
(

(\/

(-
(OVzOP(z)) — (OOVaP(z)).
(-

(

(

xP(
P
J20P(z)) — (O3zP(z)).

OVrIy(Q(x,y))) = (Ved3yQ(x,y))
OF2VyQ(z,y)) — (320VyQ(z,y))

® N o O o WD

9. | FzdP(2)) A (OVa(P(z) — F(ac)))) — (F2QF ()

10. (OVz(P(z) — F(z)) AOVz(F(z) = G(z))) = Vz(OP(z) — OG(z))
11. 323y(Q(z,y) ADQ(y, x))

Exercise 13. Check whether the following formulae hold in the given mod-
els:

1. Let W and R be as presented:
VR

w——v u
\/

(a) Define the Domain and the interpretation functions as
D(w) ={a,b,c}, D(v) = {a,b}, D(u) = {b, c}
V(P,w) = {a,b,c},V(P,v) = {a,b},V(P,u) = {b}.
Verity whether the following formulae are satisfied

in(W,R,D,V),w

29

i. OVxP(x)
ii. V2OP(z)
iii. V2OOP(xz)
iv. Jz(P(z) A O—P(x))
v. dz(P(z) A OO-P(x))
(b) Define the domain and the interpretation functions as
D(w) ={a,b}, D(v) ={a,b,c}, D(u) = {b, c}
V(P,w) = {a,b},V(P,v) = {a,b}, V(P,u) = {b}.

Verify whether the following formulae are satisfied in
(W,R,D,V),w

i. Oz d—-P(x)
ii. V2OP(z) — OVzOP ()
(c) Define the Domain and the interpretation functions as
D(w) = {CL}, D(U) = {av b}7 D(u) = {a7 b, C}
V(P,w) = {CL, b, C}a V(P,’U) = va(P> u) = {b}

Verify whether the following formulae are satisfied in
(W, R, D, V), u (mind that we switched the world from which we
start)

i. 32z0P(z) — O3xP(x).
2. Let the domain D and the relation R be now as follows:

m——-k

e

w=<——2

Define the interpretation function D and the interpretation function
V as follows:

(a)
D(w) = {a,b}, D(m) = {a}, D(k) = {b}, D(v) = {a, b, c}

V(Qa w) = {(aa b)v (b’ a)}v V(Qa m) = {(av a)}’
V(Qa k) = {(b’ b)}7 V(Qa U) = {(a7 b)v (av C)’ (bv C)}
Verify whether the following formulae holds in (W, R, D, V'), w

30

i. V2OQ(z, x) — VaQ(z, x)
ii. V2O0Q(z,z) — OOVrIyQ(z, y)

(b)
D(w) = {a7 b}vD(m> = {a}vD(k) = {b7 C},D('U) = {a7 b, C}

V(Q7w) = {(a’7 b)? (b7 a)},V(Q,m) = {(a,a)},
V(Q,k) = {(b7 C)}7V(vi) = {(CL, b)7 (avc)7 (bv C)}

Verify whether the following formulae holds in (W, R, D, V), w

i. 320Q(z, x)

ii. V2OQ(z, x)
iii. (VaVy(Q(z,y) = Qy,x))) = O (Vavy(Q(x,y) = Qy,)))
iv. (Vavy(Q(z,y) = Qy, x))) — O(VaVy(Q(z,y) = Q(y,x)))

Exercise 14. Solve the following puzzle of Quine:

Cyclists are necessarily two-legged, but not necessarily ratio-
nal. Mathematicians are necessarily rational, but not necessar-
ily two-legged. Consider a cycling mathematician. Is he both
necessarily rational and not necessarily rational, with the same
contradiction in his legs?

Quotation after "Modal Logic for Open Minds".

4 Intuitionistic logic

Intuitionistic logic aims to capture patterns of constructive reasoning. In a
way, we assume that nothing is either true or false, until proven to be so. In
particular we do not assume that the law of excluded middle holds.

4.1 Propositional intuitionistic logic

The syntax of propositional intuitionistic logic is almost the same as the syn-
tax of the classical propositional logic. We take v, A, — and L as primitive
symbols, where this last one is a propositional constant. For example

(p—=L)A(gA(rVv 1))

31

is a well-built formula. The semantics for Intuitionistic Logic is completely
different. We will translate intuitionistic formulae into some specific class of
modal formulae and then define satisfaction of the intuitionistic formulae
in Kripke models via this translation.

Definition 40. We define a translation of a propositional intuitionistic for-
mula ¢ to a modal formula ¢ by induction on complexity in the following
way:

1. ¢T = ¢ for ¢ propositional variables.
2. (pAY)T =9t AYT.
3. (V)T =oT vyl
4 (¢ —=)T =0(¢" = ¢T).
5 (L) =(A-p)
Definition 41 (Negation). We treat — as defined symbol. We put
“¢:=¢—L

Note that the formula —¢ translates into a modal formula (—¢)? asO(¢? —
(pA—p)) for some propositional variable p. In other words, —¢ is interpreted
in intuitionistic logic as necessarily not ¢.

Now we define the class of models for the intuitionistic propositional
logic. It will consist of Kripke models of particular kind.

Definition 42. Let £ = (K, R, V) be a Kripke model for the propositional
modal logic. We call M a model for the propositional intuitionistic logic iff
the following additional conditions are satisfied:

1. Ris a partial order, i.e. it is antisymmetric, reflexive and transitive.

2. V is monotonous, i.e. for every w, v such that wRwv, if ,w |= p, then
KC,v [= p for every propositional variable p.

Now we define, what does it mean for an intuitionistic propositional
formula to be defined in a Kripke model.

Definition 43. Let ¢ be an intuitionistic propositional formula, let X be a
Kripke model for the propositional intuitionistic logic and let w be a world
in K. We say that ¢ is satisfied in the model K at the world w, denoted K, w =;
¢ iff

K,w k= o'

where = is a satisfaction relation for Propositional Modal Logic.

32

Remark 44 (Satisfaction conditions for Propositional Intuitionistic Logic).
Let us note that |=; satisfies:

1. K,wlEipiff C,bwlE=p
K,awisi ¢ Viff K,w k= ¢or K,w =
IC,w):Zd)/\v,/;lff/C,w):zd)andlC,w)zzw

K,w =i ¢ — 1 iff for every v such that wRv, if K,v |=; ¢, then K, v |=;
(0

5. itis never true that IC, w |=; L

Ll

From the last two it holds that
K, w [=; —¢ iff for every v such that wRv, IC,v ¥; ¢

Definition 45. We say that a formula ¢ holds in a model K = (K, R,V),
K i ¢, if for every w € K it holds that IC, w |=; ¢. We say that a formula ¢
is intuitionistically valid if for every IC ¢ holds in IC. We use |=; ¢ to denote
that ¢ is valid.

Convention 46. When drawing models, to avoid drawing many arrows, we
implicitly assume that the relation is reflexive and transitive. Hence every
time we have

wW—">0—>2T

we mean that also the following pairs are in the accessibility relation:

L {w,w)
2. (v,v)
3. (z,7)
4. (w,z)

Exercise 15. Verify whether given models satisfy given formulae of intu-
itionistic propositional logic:

1. Model (p, ¢ denote propositional variables and w, v, z denote worlds)

wWw—>v —> T
p p,q p,q

Check whether

33

(@ K,wkip—q
(b) K,w ki —p
(©) K,w i ~q
(d) K,w i =g

2. Model: (p, g, r, k denote propositional variables and w, v, x, y, z denote

worlds)
v —> T
/p,q P,q
w
p \
Yy — 2
p,r Pf":k
Formulae:

(@ K,wlrVv-r

(b) K,wlig—p

(c) K,w i ~q

d) K,y =i ~q

(e) K,vEip—q

) Kwki(p—4q)—4q

Exercise 16. Check whether the following formulae of propositional intu-
itionistic logic are intuitionistically valid:

1.p—p

(p—q) —p
. p— (=)
(—w) = p

(pANq)—p

o Wk N

(pA-p)—=q

34

4.1.1 Hilbert-style proof system for IPL and the Disjunction Property

Let us define the Hilbert-style proof system for Intuitionistic Propositional
Logic. The notion of proof and provability is the same as in the classical case,
see Definitionand we take Modus Ponens as our unique rule of reasoning.
In contrast to classical case we take the following axiom schemes (i.e. every
formula of one of the following shapes is our axiom):

L o= (¥—9)

(0= W —=x) = (¢ —=v) = (= x))
¢ oVY

Y=oV

(¢ —=x) = (¥ —=x) = (9VY—X))
GNP =1

PNy = ¢

¢— (Y= oNY)

1=

L 0 N ok WD

The above system is taken from Proof Theory lecture notes by Benno
van den Berg (available here). Let us use ; ¢ to denote the fact that ¢ is
provable in the above defined system. Then we have

Theorem 47 (Completeness for IPL). For every formula ¢, \=; ¢ if and only if
=i ¢.

On of the distinctive virtues of intuitionistic logic, which witness its con-
structive character, is the following Disjunction Property:

Theorem 48 (Disjunction Property). For every formulae ¢, 1) we have
i ¢ Vo if and only if F; ¢ or ;¢

We shall prove the above using the following monotonicity condition
for intuitionistic Kripke models: it generalizes condition 2 in Definition
to arbitrary formulae:

Lemma 49. Let ¢ be an intuitionistic formula, K = (K, R, V') an intuitionistic
Kripke model. Then we have: for all w,v € K such that wRv

K,w = ¢ implies K,v = ¢ (MON)

Proof. We use induction on the complexity of formulae.

35

https://staff.fnwi.uva.nl/b.vandenberg3/Onderwijs/Proof_Theory_2015/

Base step If pisa propositional variable, then for every w, v € K such that
wRv,[MON]holds by the definition of Intuitionistic Kripke Model.

Induction step Suppose ¢ is a compound formula and let us distinguish
cases.

Case 1 Suppose ¢ = 1)y V 1 and holds for vy and v; and ar-
bitrary w,v € K such that wRv. Let us fix w,v € K such that wRv and

suppose
K:a w): @ZJO V ¢1

then by definition either I, w = ¢y or K, w = 11. Without loss of generality
suppose the former holds (if the latter holds, then the proof is the same). By
induction assumption for 1y we get

IC7U ‘: ¢0

Hence K, v = 1o V 91 and this step is finished.

Case 2 Suppose ¢ = 19 A ¢1. The proof is as above and we leave it as
an exercise.

Case3 Suppose ¢ = ¢y — 11 and holds for v, ¢ and arbitrary
w, v such that wRv. Let us fix w, v € K such that wRv. Assume that

Kaw’:w()%wl-

We have to check whether KC,v = 19 — ;. This amounts to checking
whether for arbitrary u such that vRu

if IC,u = 9o then IC, u |= 1)y (%)

So let us fix arbitrary u such that vRu. We have wRv and vRu, hence, by
transitivity wRu. Hence |+ follows by our assumption that ,w = ¢¥g —

(e O

Now we may proceed to the proof of Theorem (48

Proof of Theorem Let us assume that ¥; ¢ and ¥;). By Theorem [47|there
exists K = (K, R, V), w € K such that

K, wie

36

and K' = (K’, R', V) and v’ € K’ such that
K/, w’j;éz/).

Without loss of generality assume that KNK’ = () and take any w” ¢ KUK".
Let us define K" = (K", R", V") by

K" = {#W"}JUKUK'
R" = {{(W" w),(w")} URUR
v = vuVv’

(K" results from "glueing" together models K and K’ using the world w”).
Let us observe that for every formula ¢ we have

K''wkEl < KwkE0 (*)

and
K'wE0 — K v k0. (x%)

We claim that X", w” };éqS V 1, which would end our proof. Indeed, for sup-

pose the contrary. Without loss of generality assume that £, w” |= ¢. Then
by Lemma 49 we have that K", w = ¢, and by |4

K,wi=¢

which contradicts our assumption. O

4.2 Intuitionistic First-Order Logic

The syntax of Intuitionistic First-Order Logic is the same as the syntax of
Classical First Order Logic, except for we take all of A, V, =, 1,V and J as
primitive symbols. Let us define the semantics for this logic: we start with
the definition of a submodel.

Definition 50 (Submodel). Let M = (M, 757) and N' = (N, 7n) be two first
order models over constant-relational signature ¢ in the sense of Definition

We say that M is a submodel of N if and only if
1. for every relation R € o, Ty (R) C 7v(R),
2. for every constant ¢ € o, Tar(c) = Tn(c).

If M is a submodel of N then we shall denote it by M C N.

37

Example 51. Let o consists of a unary predicate P and a constant c. Let

M={z,y}, N={z,y,2}
TM(P):{x}v TN(P):{J},y,Z}

v(c) =z, n(c) =

Then M = (M, 7p) is a submodel of N' = (N, 7).
If we altered this definition putting 7},(P) = {z,y} and 7, (P) = {z, 2},
then (M, 7},) would not be a submodel of (N, 7}).

As in the case of propositional logic, we shall define models for Intu-
itionistic First-Order Logic as particular Kripke models for First-Order Modal
Logic. It will be convenient to use one convention

Convention 52. In Definition 42l we defined models for First-Order Modal
Logic as quadruples (W, R, D, V') such that D is the domain function and V'
is the interpretation function, such that for each w € W,

(D(w), V(w,-))

is a model for First-Order Logic (V (w, -) denotes the function of one argu-
ment resulting from V' by fixing one particular world w). Equivalently we
can say that we have a family {A, },ecw of models for First-Order Logic
parametrized by elements of W and define First Order Kripke models as

<W7 R, {Aw}UJEW>

where,as previously, W is a non-empty set, R is a binary relation ("acces-
sibility" relation) and {.Ay, } ,ew is a family of models for First-Order Logic
parametrized by elements of W. We will use this definition.

Definition 53. An Kripke models for Intuitionistic First Order Logic is a
triple (W, R, {A}wew) where

1. W is a non-empty set.
2. R C W?is a partial order.

3. (W, R, {A}wew) is a family of models for First Order Logic over the
same constant-relational signature o such that for every w,v € W such
that wRv we have

Ay C A,y

38

Remark 54. Let W = (W, R, { Ay, }wew) be a Kripke model for First-Order
Intuitionistic Logic, w € W and let ¢ be a formula (of First-Order Logic).
Recall the notion of w-valuation with respect to ¢ introduced in Definition
Observe that for every v such that wRv, if v is a w-valuation with respect
to ¢, then it is also v-valuation with respect to ¢.

Convention 55. Let a be any valuation and x - a variable. For every b, by
afxz — b] we denote the unique valuation 5 defined

Bly) = aly)fory#z
Blz) = b

Le. afz — b] differs from « at most on the value assigned to z, and a[z — b
assigns b to x.

Definition 56 (Satisfaction Relation). LetW = (W, R, { Ay, }wew) be a Kripke
model for First-Order Intuitionistic Logic. For every v € W, let A, =
(Ay, Tp). By induction on the complexity of first order formula ¢ we define
the relation

W w,a = ¢

where w € W and « is a w valuation with respect to ¢.

1. if ¢ = P(xy,,. .., x;,), where x;, are either free variables or constants
and P is an n-ary relational symbol from the signature, then

W w,a =i P(xigy ..., %i,)
iff (aiy, ..., ai,) € Tw(P) where for each k <n,

@ = Tw (s,), if @, is a constant,
" a(zi,), if z;, is a variable

2. similarly if ¢ is of the form z;, = x;, then
W,w,a):’L Tiy = Tn

iff ap = a1 where q; (for I < 1) equals 7, (z;,) iff z;, is a constant and
a(x;,) iff x4, is a variable.

3. if ¢ = 1y A 1)1, then
W, w, o =i o A

iff W,QU,O():7, 7/)0 and Wawaa ’:2 ¢1-

39

4. if ¢ =g V 11, then
W, w,a =i o Vi
iff W, w, o =i 1o or W, w, a |=; 1.

5. if ¢ = Y9 — 11, then
W, w, a =i Yo — 1
iff for every v such that wRv, if W, w, a |=; ¥o, then W, w, o |=; 1.
6. if ¢ = Jx1), for some variable z, then
W, w, « =i Jap
iff there exists a € Ay, such that W, w, a[z — a] |5, 1.

7. if ¢ = V1), for some variable z, then
W, w, a = Vi
iff for all v such that wRv and all a € A,, W, w,alzx — a] |=; ¢

As usual, if ¢ is a sentence, then we define

W,w =i ¢

iff for every valuation «
Wa w, o):Z qb

Convention 57. If W = (W, R, { Ay }wew) is a Kripke model for First-Order
Intuitionistic Logic, then for every w € W the universe of A,, will be de-
noted with A,, and the interpretation function with 74, .

Remark 58. Let us observe that, for every Kripke model W = (W, R, { Ay }wew)
and every valuation «

W, walx — a] = P(x)

iff a € 7, (P), where Ay, = (Ay, Tw)-

40

Example 59. LetW = {’u}(), w1, wg} and R = {<w0, w1>, <w0, UJ2>, <w0, w0>, <w1, w1>, <w2, w2>}.
Hence W and R might be depicted

w1

/

Wo

N

w2

Let us work over signature with one unary predicate P. Define A,,, = {a, b},
Awl = {CL, ba C}/ Aw2 == {CL, b, d} and

Two (P) = {a’ b}
Tw (P) = {a,b,c}
Tw, (P) = {a,b} 1)
Finally let Ay, = (Awg, Two)r Awr = (Awys Tun)r Aws = (Awss Twsy), and
W= <I/V7 R, {Aw}w€W>'

Then W, wo ¥; Vo P(z). Indeed let « be any valuation. Then, unravelling
the definition we have:
W, wo, o =i Vo P(x)

iff
for all v such that woRv and all a € A, W, v, o[z — a] =; P(x)

The above condition holds if and only if each of the three conditions below
is fulfilled

1. Ay = Two (P)
2. Ay, = Tu, (P)
3. Ay, = Tu,(P)
The last condition however does not hold, since d € Ay, \ 7y, (P).

Exercise 17. Let M be the following Kripke model for intuitionistic logic.
M has infinitely many worlds w,, for n € N (here 0 € N). For each n, the
domain of w,, is N. A model w; is accessible from w; if and only if i > j. The
signature consists of one unary predicate P(x) such that in the world w,,,
P(k) holds iff k& < n. Check whether the following sentences are satisfied
in M:

41

o Jz P(z).

o Vz-P(x).

o ~Jz-P(z).

e Vady (P(x) — ~P(y)).
o J2(P(z) — Yy P(y)).

Exercise 18. Let M be the following Kripke model for the intuitionistic logic.
M has infinitely many worlds w,, for n € N. For each n, the domain of w,,
is {0,1,...,n}. A model w; is accessible from w; if and only if i > j. The
signature consists of one unary predicate P(x) such that in the world w,,
P(k) holds iff £ < n (note that in each world there is exactly one element
x which does not satisfy P(z)). Check whether the following sentences are
satisfied in M:

o —VzP(x).

o Jz-P(x).

o Vzdy —P(y).

o 3z(yP(y) — P(z))).

Exercise 19. Find a sentence which is true in exactly one of the models de-
scribed in the above problems.

Exercise 20. For each of the following formulae, find a model in which they
are not satisfied.

o ——VzP(z) — JxP(x).
o Vady(P(x)V -P(y)).
o JxVy(P(xz) — P(y)).
Observe that all the above sentences are classically valid.

Exercise 21. Find a model in which only one of the following sentences
holds:

° —\P(a) V Q(a)
e Pla) = Q(a).

42

Exercise 22. Find a model in which only one of the following sentences
holds:

o Vz(IyQ(y) V P(z)).
e Jy Q(y) VVz P(x)

5 Incompleteness

5.1 Peano Arithmetic

Peano Arithmetic is theory canonical formal theory of natural numbers. As
we will see, it can be also viewed as a theory of finite sets. We will first
investigate it as a theory of numbers, i.e. try to understand its basic proper-
ties.

Definition 60. Peano Arithmetic (PA) is a theory over the language with
symbols (S, +, x,0), called LPA, given by the following axioms:

1. Va(S(z) #0).
2. Vz(S(z) = S(y) » z=vy).

3. Va(x +0 =z).
4. Vz,y(z+ S(y) = S(z +y)).
5. Va(z x 0 = 0).
6. Vz,y(z x S(y) =z x y + z).

Ind vyla"'7yn[¢(07y17"'7yn)/\v,fﬂ<¢(xay1a"'ayn) — ¢(S($)ay17"'7yn)) —
V$¢($ay17"'7yn)]/

where ¢(z,y1,...,yn) € Lpa is ans arbitrary formula.

Let us comment upon the above definition. PA comprises six axioms
which are intended to define the basic operations and an infinite family of
axioms—an axiom scheme—called the Induction Scheme (Ind). Thus PA
actually has infinitely many axioms. Basically, the induction scheme is a
poor’s man version of saying that any object can be obtained via applying
the successor function S to the number 0. This cannot be spelled out in a

43

proper manner in first-order logic and the induction axioms are intended
to at least partially capture this intuition.

It might seem that axioms of PA as they stand are way too weak to cap-
ture any interesting facts of natural numbers. However, induction scheme
gives us an incredible boost in strength.

Now we will state and proof a couple of facts about the arithmetic of
natural numbers in PA. When writing "PA” next to the head of a theorem
of proposition, we mean that it is provable within PA.

Proposition 61 (PA). For every x, either x = 0 or there exists y such that v =
S(y)-

Proof. We prove by induction on z that either = 0 or there exists y such
that z = S(y).

If z = 0, then it clearly holds. So suppose that the claim holds for a given
x. Then it trivially holds for S(z). Therefore, for all = either = 0 or there
exists y such that z = S(y). O

Proposition 62 (PA). Addition is associative, i.e. for all z,y, z,
r+ (y+2)=(z+y)+z

Proof. Fix arbitrary z¢ and yo. We prove by induction on z that for all z,
o + (Yo + 2) = (o + yo) + 2.

If z=0,thenyy+2=0,s020+ (Yo + 2) = 20 + %0 = (vo +y0) +0 =
(zo + ¥o) + 2.

Suppose that the claim holds for z, we shall prove it for S(z). We have
the following equations:

zo+ (Yo +5(2)) = w0+ S(yo+2)

S(xo + (yo + 2))
S((zo + y0) + 2)
= (xo0+yo)+ S(0).

The third equality follows by induction hypothesis, the rest follow by the
axioms for addition.
By induction we can conclude that for all »

w0 + (Yo + 2) = (w0 + yo) + 2.

Since xq, yo were arbitrary, we conclude that addition is associative. O

44

Proposition 63 (PA). Addition is commutative, i.e., for any .,y
(z+y) = (y+2)
In order to prove the proposition, we shall need one lemma.
Lemma 64 (PA). Forall x, 0 + x = z.

Proof. Let us prove the claim by induction on z. The claim is clear for z = 0,
since then 0 + 2 = 040 = 0, by addition axioms. So suppose that the claim
holds for x and let us prove it for S(x). We have as follows:

0+S(x) = S(0+z)

= S(z).
The first equality holds by axioms for addition and the second by induction
hypothesis. The claim follows by induction. O

Lemma 65 (PA). Forall z, S(0) + =z =z + S(0).
Proof. This time, we shall not prove the claim by induction. Take arbitrary
x. Then the following holds:
S0)+z = S0O0+x)

= S(x)

= S(x+0)

= x4 5(0).
The second equality follows by Lemma O
of Proposition Fix any yo. We will prove by induction on z that for all x

T+ Yo = Yo+ .

For x = 0, the claim has been proved as Lemma So suppose that the
claim holds for a fixed = and let us prove it for S(z). We have the following:
S@)+yo = Sx+0)+wo
= (z+5(0) +wo
= =+ (5(0) + o)
= =+ (yo+5(0)
= (z+ y) +5(0)
= (y+z)+5(0)
= y+(z+5(0)
y+ S(x).

45

Above, we used associativity of addition and Lemma By induction, we
conclude that for all z, x + yo = yo + . Since yo was arbitrary, we conclude
that + is commutative. O

Now, we will introduce one of the very basic notions of arithmetic.

Definition 66. By z < y wemean 3z (z # 0 Ay = 2 + 2). By 2 < y we mean
r=yVz<y.

Proposition 67 (PA). For all z,y exactly one of the following holds:
1. z=uy.
2. x <uy.
3.y <.
Proposition 68 (PA). < is a partial order, i.e.
1. < s transitive.
2. <is reflexive.
3. < is weakly-antisymmetric.

Proposition 69 (PA). 0 is the least element in the order <. For any element x,
S(x) is the least element which is greater than x.

It is clear by definition of order and associativity and commutativity of
addition that for all a, b, ¢, d if a < band ¢ < d, then

atc<b+d.
We can also prove the following proposition:
Proposition 70 (PA). Forall a,b,c,dif a < band ¢ < d, then
a-c<b-d.
Exercise 23. Prove in PA that multiplication is associative.
Exercise 24. Prove in PA that multiplication is commutative.
Exercise 25. Prove in PA that for all z, y, either z = y or x < y, or y < .

Exercise 26. Prove in PA that for all z,y, z,if t <y and y < z, then z < z.

46

5.2 Arithmetic as set theory

The previous subsection was devoted to developing basic properties of arith-
metic as number theory. It turned out that PA handles such properties as
commutativity or associativity of addition. Now, we will show that PA is
capable of formalising a good part of set theory. First, we will state one fact
which is the key to formalising set theory in PA.

Theorem 71. There exists a formula exp(x,y) in the language Lp 4 such that PA
proves the following:

1. exp(0,1).
2. exp(S(z),y) = 3= (exp(a:,z) Ny = (550) a:)

Intuitively, exp(z, y) holds if and only if 2* = y. One can observe that the
theorem gives the value of 2° and explains how the value of 221! depends
on the value of 2*. Therefore, it follows the same pattern as the axioms for
addition and multiplication. Once we know how a given function behaves
at 0 and how it values changes at successor steps, we intuitively should be
able to recover the whole possible information on the behaviour of the given
function by induction. Note that we can use induction with respect to for-
mulae containing exp(z, y), since it is given an arithmetical formula. Let us
state some arithmetical features of the exponentiation.

Now, we can give the central definition of this subsection.

Definition 72. We define = € y as the abbreviation of the following formula:
by
Ela,r(y:a~25x+2x+r/\r < 21’).

First, let us note that the definition of 2 € y should be stated more accu-
rately as:

Ela,r,u,w(y:a~u+-w+7“/\r < w/\exp(x,w)/\exp(S(a:),u)).

Le., we should eliminate the expression 2%, since there is no such term in
the language. However, any formula containing it can be actually rewritten
as above, so that the problematic expression is no more used.

Let us comment what is the motivation behind the definition of x € y.
Our intention is that the elements about which PA speaks are numbers. Ac-
tual natural numbers have binary expansions. This means that any number

47

can be viewed as a unique sequence of zeroes and ones. x € y means that
the z-th bit of the number y in the binary expansion is 1.

In order to work with this notion, we shall need a bunch of basic facts
about the arithmetic of exponentiation and, consequently, about the relation
x €Y.

Proposition 73 (PA). Forall z, x < 2”.
Proposition 74 (PA). Forall z,y,

27 . 2V = 271V,
Proposition 75 (PA). Forall z,y, if x <y, then
27 < 29,

Now we will show how to recover the basic features of set-theoreticz € y
in PA.

Proposition 76 (PA). There exists x such that for all y, y ¢ x.

Proof. We claim that 0 has no elements. Suppose thaty € 0. Theny < 0
which cannot hold by Proposition O

Following the usual language of set theory, we shall use symbol) to
denote 0, whenever we will think of 0 as a set.

Proposition 77 (PA). Let x,y be any two elements. Then there exists z such that
forallu,u € ziffu=xzoru=y.

Proof. Take any =,y and let z = 2* + 2Y if # y and z = 27 if x = y. Then
x € zand y € z by Propositions[74)and [75] O

Proposition 78 (PA). Take any x,y. If forall z, z € x = z € y, then x = y.

Proof. We prove the following claim by induction on b: for all z,y < b if for
all z, z € ziff z € y, then x = y. If the claim holds for all b, then clearly the
proposition holds as well.

For b = 0, the claim holds by Proposition So suppose that the claim
holds for b, and let us show that it holds for S(b).

Take any z,y < S(b) such thatforall z, z € ziff z € y. If 2,y < S(b),
then the claim holds by induction hypothesis. So assume that exactly one of
x,y is strictly smaller than S(b). Without loss of generality we can assume
thatx < S(b) = v.

48

Now, either y is even or odd. Note that there exists 3y’ such that y = 2¢/
exactly if 0 ¢ y.

If y is odd, i.e. 0 € y, then we also have 0 € x. Then x — 1,y — 1 are
both < S(b) and have exactly the same elements. Therefore x,y also have
the same elements, since all their elements are either elements z’ or 0.

If y = 2y/, then note that for all z, z € ¢ iff S(z) € y. Since 0 ¢ y, we
also have 0 ¢ z, and therefore x = 22’ for some 2’. Furthermore, for all z,
z € 2’ iff S(z) € z. Note that 2/, ¢’ have the same elements, so by induction
hypothesis, there are equal. So z, y are equal as well. O

Proposition 79. For every formula ¢(u, yi, ..., yn) PA proves the following: for

every ai, ..., an and every b there exists x such that for every u < b, u € x iff
d(u, a1, ..., ap).
Proof. We prove the claim for a fixed ¢ by induction on b. Fix any ay, .. ., ay.

If b equals 0, then the claim is obvious. Suppose that we have proved the
claim for a given b and let us prove it for S(b).

Let 2’ be such that for all u < b, u € 2" iff ¢(u,aq,...,a,). Such 2’ exists
by induction hypothesis. Now, if ¢(S(b), a1, ..., a,), then let

x=a +250)

and let x = 2’ otherwise. We claim that such an z satisfies our condition.
Take any u < S(b). Either u < boru = S(b). If u < b, thenu € ziff u € 2’ iff
¢(u,ai,...,an) by induction hypothesis and the definition of z. If u = S(b),

then u € x iff ¢(u, a1, ..., a,) directly by the definition of z. O

Proposition 80. For any arithmetical formula ¢(u, vy, ..., vy,), PA proves the fol-

lowing: for all a, ..., ay and for all x, there exists y such that for all u,
uey=o(u,ar,...,ap) Nu € x.

Note that the above proposition is the Comprehension scheme for the
arithmetical formula €.

Proof. Fix any formula ¢. We will prove that PA proves the instance of the
comprehension scheme for ¢. Fix arbitrary a4, ...,a, and an arbitrary x.
Let y be the set of u < x such that ¢(u, a1, ...,a,) and u € x.

Note that such a y exists by Proposition[79]applied to the formula ¢(u, ay, . . .

u € z (This might possibly be a subtle point). Then y is exactly the set of

u such that ¢(u,ai,...,a,) and u € z, since by definition of u € z and
Proposition[73} if u € z, then u < z. O

49

, an)\

Proposition 81 (PA). For all z, there exists y such that for all z, z € y, exactly if
z Cuy.

In the formulation of the above proposition, z C y is defined in the fa-
miliar fashion: z C y, if for any v, if u € z, then u € y. Thus, the proposition
states that for each z, there exists a powerset of 2, which we denote with the
familiar notation #(x).

Exercise 27. Write down all z such thatz € nforn =1, n = 17, n = 30,
n =64, n = 100, n = 215.

In the following exercises, you may freely use Theorem [71|and the re-
sults stated in these notes (provided that the claim of the exercise isn’t itself
proved in these notes, in which case, you can use all results which occurred
prior to it).

At this point, be somewhat careful about what you assume. Note that,
for example, we still do not know whether sets have any well defined number
of element (in fact, they do).

Exercise 28. Prove that for all x, x < 2%.

Exercise 29. Prove that for all x, 7, 2*TY = 272V,
Exercise 30. Prove that for all z,y, if y C z, then y < .
Exercise 31. Prove that for all z, there exists £ (z).

We have almost shown that PA proves all axioms of the set theory ZFC
for the arithmetical elementhood predicate € y. The only thing, we still
have to check is that it actually proves the separation scheme. We begin
with a related fact with a slightly more arithmetical flavour.

Theorem 82. For all arithmetical formulae ¢(x,y, 21, ..., zx), PA proves as fol-
lows:

Vzl,...,szCL(Vx <adyo(z,y,z1,...,2,) = IV < ady < bd)(z,y,zl,...,zk))

The scheme of the form given in the theorem is called Collection Scheme.
Let us comment upon it: the scheme expresses that if for each « from the
initial segment {0, 1, ..., a}, we can choose some y such that ¢(z, y) holds,
then actually there is some common bound b such that this y may be re-
quired to be smaller than b. The intuitive proof goes as follows: for each z
smaller than q, let y(z) be some chosen element y such that ¢(z,y). Then

50

there only a many elements y(0), y(1),...,y(a—1), so there is some element
greater than all of them. Thus, in a way, the Collection Scheme expresses
the same intuition as the Induction Scheme: every element may be reached
from 0 in finitely many steps. Now, let us prove the theorem.

Proof. Fix any formula ¢(z,y, 21, . .., z;). We shall prove in PA the instance
of the induction scheme for the formula ¢. Fix any z1, ..., z;. By induction
on a we prove that if for x < a there exists y such that ¢(z,y, 21,. .., 2k),
then there exists b such that for all + < a there exists y < b such that
¢(z,y,21,...,2). For a = 0, the claim is obvious (it holds vacuously). So
let us assume that the claim is true for a given a and let us prove it for a + 1.
So suppose that for all z < a + 1 there exists a y such that ¢(z, y). Fix any yo
such that ¢(a, 30). By induction hypothesis, we know that there exists b such
that for all x < a, there exists y < bsuch that ¢(z,y). Let b’ = max(b, yo+1).
Then for every z < a + 1 (i.e. every z such that either x < a or = a), there
exists y < b’ such that ¢(x,y), since we can take either y < bory = yo. [l

Using the collection scheme one can prove Separation Scheme.

Fact 83. For any formula ¢(x,y, 21, . .., zi), PA proves as follows:
Val,. .., VA (Func¢(A) — 3IBVre Ay e B ¢(x,y)),

where Funcy(A) is the abbreviation of the following formula:

Func,(A) = Vz € A3y ¢(z,y) AV, v, y" (cb(x, V)N oz, y") =y = y”).

Notice that Funcg(A) says that the formula ¢(z,y) defines a function
with the domain 4, i.e., for every x € A it ascribes exactly one y.

Now that we know that arithmetic may be treated as a set theory, we
can reconstruct a good part of set theory within PA. Let us introduce some
set-theoretic notions which will be of great use in the further development
of the theory of syntax within PA.

Definition 84. By the ordered pair of elements a, b we mean the set {a, {b}}.
We denote it by (a, b).

Fact 85. For arbitrary a,b,c,d, (a,b) = (¢, d) ifand only if a = cand b = d.

Definition 86. By a product of A, B, denoted A x B, we mean the set of
elements of the form (a,b) wherea € A,b € B.

51

Definition 87. We say that R is a relation with the domain A and the codomain
B, when it is a subset of A x B.

In the above definition, the intended reading of (a,b) € R is that the
relation R holds between elements a and b. So to represent a relation we
just list all the pairs of elements which are linked by this very relation.

Definition 88. We say that f is a function with the domain A and the codomain
B, denoted f: A — B,when f C A x Band forall a € A thereexistsb € B
such that (a,b) € f.

If (a,b) € f, we denote this factby " f(a) = b.”

When we write (a,b) € f, we really just mean that the value of the ele-
ment f at the argument a is b. Similarly to the case of relations, in order to
represent a function, we just list pairs of the form: (argument, values).

Note that all the above definitions are exactly the same as in the usual set
theory. We literally copy those definitions in PA, as we know how strongly
the properties of the elementhood relation in arithmetic resemble those of
elementhood relation in set theory.

Definition 89. We say that s is a sequence of length n if it is a function with
the domain {1, 2,...,n}. We denote the length of s with Ih(s).

Typically, one defines the domain of a sequence as {0,1,...,n}. We de-
cided that the above version would be more convenient to use. We denote
a sequence whose only elements are ay, as, . .., a, with

<a1,a2, e ,an>.

In particular, by (a), we mean a sequence of length one whose only terms is
a.

Definition 90. Let s,t be sequences. By a concatenation of sand ¢, s —~ ¢,
we mean the sequence of length Ih(s) + Ih(¢) such that for all i < lh(s —~ ?),

[s(i), ifi<Ilh(s)
s~ t(i) —{ t(j), ifi>1h(s)andj =i— Ih(s).

Note that the concatenation of sequences s and ¢ is just the sequence s
followed by the sequence ¢. E.g.,

(1,2,6,1) ~ (2017,1,3) = (1,2,6,1,2017, 1, 3).

Once we have the notion of sequence in PA, we can imitate recursive
definitions. Let us begin with a discussion of a concrete example.

52

Definition 91. We say that m is n factorial, denoted n!, if there exists a
sequence s of length n such that s(1) = 1 and foralli < n

s(i+1)=s()- (i +1),
and m = s(n).

Note that in the above definition, the sequence s keeps track of how we
define the factorial of the number n + 1 assuming we know the factorial of
n. Then the definition of n! states that it is the product of this process after
n steps. Let us see one more example in this spirit.

Definition 92. For arbitrary a, b, we say that m = a if there exists a se-
quence s of length b + 1 such that s(1) = 1 and for all i <,

s(i+1) =s(i) - a,
and s(b+ 1) = m.

Note that in the above definition s(i + 1) = a’. The shift in the definition
may be possibly confusing.

5.3 Arithmetisation of syntax

Now we get really close to Godel’s theorem. We shall show how PA can
handle syntactic notions such as terms, formulae or proofs. To begin with,
we have to say what do we mean by a primitive character. In order to do
this, we just pick some arbitrary elements which we will stipulate to be fixed
characters from the language of PA. The only thing we have to take care of,
is that those elements will not turn out to be any more complex structures,
like terms, formulae, etc. Since all the syntactic objects will be defined as
functions, it is enough to guarantee that primitive symbols will not be se-
quences at all.

Convention 93. We choose the following numbers as the name of the char-
acters from the language £p 4:

o 107 = {0}.

o 157 ={{0}}.

o "+71={{{0}}}.

o Mx :u@}}
4 times

53

o (M =1{...{0}..}.

;?/-’
o N ={...{0}...}.
o T ={...{0}...}.
S—~—
7 times
o AT=L A0
8t1mes
o V=L A0
9t1mes
e =g {0}
10t1mes

o i=E 4 {0}
11t1mes

e =LA
12t1mes

e =r=L A0
13t1mes

Additionally, we say that x is the code of I-th variable, denoted Var(z, [)
if z is of the form {...{ 0}...}.
~——

14421 times

Note that in the above convention e.g. by {{0} }, we mean the only num-
ber x such that there exists only one y with y € =, and moreover, this y also
only has one element which is the empty set. One can check that such an
x is actually equal to 92’ In order to define what we mean by iterating this
construction 2/ 4 14 times, we have to refer to sequences, as in the definition
of factorial or exponentiation.

Now we are ready to give the first definition of a syntactic object in PA.

Definition 94 (PA). We say that 7 is a term of . 4 if there exists a sequence s
of length [such that s(I) = 7 and for all i < [one of the following conditions
holds:

e s(1)="0"

54

There exist m, v such that s(i) = (v) and Var(v, m), i.e., s(i) is a se-
quence of length one whose only element is the code of the variable

U,

There exists j < i such that
(i) = (5,7(") ~ s(j) ~ ("))
e There exist j, k < ¢ such that

s(1) = ("(7) ~s() ~ (T+7) ~ (k) ~ (7))

There exist j, k < i such that
s(i) = ("(") ~ s(j) ~ ("xT) ~s(k) ~ (M)7).

Let us comment on the above definition: we want to define arithmeti-
cal terms so that they are sequences of some specified numbers which we
agreed to treat as primitive characters. We want this sequence to satisfy cer-
tain syntactic condition so that it is not equal to, e.g., ("V,"V7",707,7 (") or
some other meaningless expression.

The definition of correctly built term is inductive: 0 is a correctly built
terms and if s, ¢ are correctly built terms, then s + ¢ is a correctly built term
as well. The general way to handle inductive definitions in PA is to say that
there exists a sequence which keeps track of all the steps of building up some
given expression. This is precisely what the definition of the terms says. The
sequence s from the above definition is called the generating sequence of
the term 7.

Definition 95 (PA). We say that ¢ is a formula of .Zp 4 if there exists a se-
quence s of length [such that s(I) = ¢ and for all i < [one of the following
conditions holds:

e There exist terms o, 7 such that s(i) = 0 ~ ("=")7.
e There exists j < i such that s(i) = ("=, (") ~ s(j) —~ (7).

e There exist j,k < isuch that s(i) = ("(7) —~ s(j) —~ ("A7) —~ s(k) ~
"))

e There exist j, k < i such that s(i) = ("(7) —~ s(j) —~ ("V7) —~ s(k) ~
"))

55

e There exist j, k < i such that s(i) = ("(7) —~ s(j) ~ ("=7) —~ s(k) ~
)7

e There exists j < i such that s(i) = ("3, 0,7 (") —~ s(j) —~ (")) and v
is a code of the k-th variable for some k < ¢.

e There exists j < i such that s(i) = ("V, 0,7 (") —~ s(j) —~ (")) and v
is a code of the k-th variable for some k < ¢.

Again, we call s the generating sequence of ¢. Note that this sequence
is in fact highly non-unique, since it may comprise some formulae which
are not even subformulae of ¢.

Now, we will define some syntactic notions whose definition is mildly
more complicated. In definitions of terms and formulae we basically had to
track the build-up of these object in order to ensure that there are generated
using only some constructions from a restricted list. Now, we will have to
deal in construction in which we make some additional bookkeeping along
the way as we construct our objects.

Definition 96. Let 7 be a term of Zp 4. We call x the set of free variables of 7
if there exist sequences s, s’ of the same length [such that s is the generating
sequence of 7, s'(I) = z, and the following conditions are satisfied for all
1<

e If 5(i) = v is a variable, then s'(i) = {v}.

o If sz

Let ¢ be a formula from .Zp 4. We call = the set of free variables of ¢ if
there exist sequences s, s’ of the same length I such that s is the generating
sequence of ¢, s'(I) = z, and the following conditions are satisfied for all
1<

o If s(i) = 0 —~ ("=")7 for some terms o, 7, then s'(i) = a U b, where a
is the set of free variables of o and b is the set of free variables of 7.

56

o If s(i) = ("=7,7(7) —~ s(j) ~ (7)) for some j < i, then s'(i) = §'(j).

o Ifs(i) = ("(7) —~ s(j) ~ (V1) —~ s(k) ~ ()N ors(i) = (7(7) ~
~ "V ~ s(k) —~ (7)) for some j, k < i, then §'(i) = s'(j) U

—~

))
s(j) ~ ("= —~ s(k) —~ (7)) for some j, k < i, then s'(i) = s'(j) U

o Ifs(i) = ("3 0,7(7) ~ s(j) ~ ()N ors(i) = (V,0,7(7) ~s(j) ~
(7)) for some j < i, then s'(i) = s'(j) \ {v}.
We denote the set of free variables of a term 7 or a formula ¢ by FV(7), FV(¢),
respectively.

The idea behind a definition of the set of free variables is again very
simple: we know how to define inductively what a correctly built term or
a formula is. We may then define its set of free variables by going through
this construction and taking side notes on the set of free variables of the
currently examined subformula or subterm of the given formula or term.
In a similar manner, we may construct the substitution function.

Definition 97. Let 7, ¢ be terms of £p 4 and let v be any variable. We say that
7' is the effect of substitution of the term ¢ in the term 7 for the variable v if
there exist sequences s, s’ of the same length [such that s is the generating
sequence of 7 and for all ¢ < [the following conditions are satisfied:

o If s(4) = ("07), then /(i) = ("07).

e If s() = ("w™) for some variable w, then s'(i) = ¢, if w = v and
s'(i) = (Tw?), if w # v.

o If there exists j < i such that s(i) = (S,"(7) —~ s(j) —~ (7)), then
$'(i) = (8,7 () ~ s'(j) ~ ().

e If there exist j, k < i such that s(i) = ("(7) ~ s(j) ~ ("+7) —~ s(k) ~
(")), then

$(@) = (") ~5'(G) ~ T+ ~s'(k) ~ (7))

e If there exist j, k < i such that s(i) = ("(7) —~ s(j) —~ ("x7) ~ s(k) ~
(")), then

Suppose that ¢ is a formula from the language £p4. We say that ¢/
is the effect of substitution of a term ¢ in a formula ¢ for the variable v if
there exist sequences s, s’ of the same length [such that s is the generating
sequence of ¢ and for all 7 < [the following conditions hold:

If there exist terms o, 7 such that s(i) = ¢ —~ ("=")7, then §'(i) = ¢/ —~
("=")7" where o', 7’ result via substituting the term ¢ for the variable
vin o, 7, respectively.

If there exists j < i such that s(i) = ("=,7(7) —~ s(j) —~ (7)7), then
s'() = (=07 () ~ $'(G) ~ (7))

If there exist j, k < i such that s(i) = ("(7) ~ s(j) ~ ("AT) —~ s(k) ~
(")), then

(i) = (") ~ () ~ (TAT) ~ s'(k) ~ (7))

If there exist j, k < i such that s(i) = ("(7) ~ s(j) ~ ("V") —~ s(k) ~
(7)), then

$'(i) = (T() ~ 8'(j) ~ (V) ~ s'(k) ~ (7))

If there exist j, k < isuchthats(i) = ("(7) —~ s(j) —~ ("=7) —~ s(k) ~
(")), then

$(@) = (") ~ () ~ (T=7) ~s'(k) ~(N)7).

If there exists j < ¢ such that s(i) = (37, w," (") ~ s(j) —~ (")) and
w is a code of the k-th variable for some k < ¢, then

s'(i) = (T3 w," (") ~5'(5) ~ (7))
if v = w or else
s'(i) = s(i).

If there exists j < i such that s(i) = "V, w,"(7) ~ s(j) —~ (")) and
w is a code of the k-th variable for some k < ¢, then

$'(i) = (V7 w," () ~ () ~ ()7

if v = w or else

If ¢/ is the effect of substitution of a term ¢ in the formula ¢ for the variable
v, we denote ¢’ with Subst(¢,t,v) or ¢[t/v].

Note that we again define the effect of substitution of a term ¢ in a for-
mula ¢ for a variable v by modifying the generating sequence of ¢: we re-
place the occurrences of v with ¢t. However, note that if the variable v hap-
pens to be bounded by a quantifier we forget the corresponding formula
resulting by substitution and replace it with the currently examined subfor-
mula of ¢.

6 Self-reference and Godel’s Theorem

In this section, we will finally present a proof of the celebrated Gédel’s In-
completeness Theorem. We will first state it in a very specialised version
which does not yet give the right impression of how general phenomenon
it describes.

Theorem 98 (Godel’s Incompleteness Theorem). There exists a sentence vy in
the language Lp 4 such that PA ¥ v and PA ¥ —.

Let us first give a sketch of the proof. It will be neither formal, nor par-
ticularly accurate (to put it mildly), but should give some understanding of
the motivating ideas.

So let v be a sentence saying I am not provable in PA.” Suppose - has a
proof in PA. Then the sentence + is not provable in PA. So PA is inconsistent.
On the other hand, if the negation of v is provable in PA, this implies that
v has a proof in PA. This again would yield PA inconsistent. So if PA is
consistent than it cannot either prove or refute ~.

As we have said, the above sketch is not really an accurate description
of the proof. What is more, it is not at all clear how to translate this sketch
to the actual proof.

To begin with, let us show in what sense can a sentence speak anything
of itself. This relies on a very clever trick.

Theorem 99 (Godel’s Diagonal Lemma). Let ¢(x) be any formula from £p s
with one free variable. Then there exists a sentence y such that

QEvy=o("y).
If a sentence 7 is a string of characters sy, ..., s,, then by "7 we mean
the number
<,_81—|> RS I—Sn—l>'

59

This notation will be used also in the case of other syntactic objects. So: if
x is a string of symbols, then by "z we mean the number defined as the
sequence of codes of these symbols.

Recall that @ is Robinson Arithmetic, the theory whose axioms are that
of PA minus the induction scheme. Before we proceed to the proof let us
introduce a bit of notation.

Definition 100 (PA). We say that y is the numeral for the number z, N (z,y),
if there exists a sequence s of length x4+ 1 such that N(1) =0, N(z+1) =y,
and forany i <z +1,

N@i+1) = (50~ N@) ~ ()

In other words, the numeral for z is the code of the canonical term de-
noting the number z. We will use N (z) to denote y as if it were a term. This
abbreviation may be clearly eliminated from any formula.

Definition 101 (PA). Let) be a formula with only one free variable v (i.e.
FV(¢) = {v} for some v € Var. Then by

Subst(¢, t),

we mean
Subst(¢, t,v).

We denote it also simply with ¢(t).

Now we are ready to prove the Diagonal Lemma.

Proof of the Diagonal Lemma. Fix any formula ¢(z) from .Zp4 with one free
variable. Let §(z, y) be the formula

y = Subst(x, N(x)).

Let
Y(x) = Jy(0(z, y) A o).

Let

a="y.
Let

v = (a)
where a denotes

S...50.

N—_——

atimes

60

Then the following equalities and equivalences hold:

v = (day) Ao(y))
= Ely(y = Subst(a, N(a)) A qﬁ(y))
= Jy(y = Subst(y, N(a)) A d(y))
= Jy(y="v(a) Ad(y))
= o(").
All the equalities are obtained simply by expanding definitions. The

last equivalence is by pure logic and the definition of +, the previous one is
obtained by executing the substitution in the definition of y. O

The proof of the Diagonal Lemma may leave a false impression that it
is based on some intricacies of coding. However, we really use only basic
properties of substitution. The sentence rewritten in the natural language,
reads roughly as follows:

The effect of substitution for the only free variable in the formula

The effect of substitution for the only free variable in the formula x the
numeral denoting the formula x satisfies ¢.

the numeral denoting the formula

The effect of substitution for the only free variable in the formula x the
numeral denoting the formula x satisfies ¢.

satisfies ¢.

The reader is encouraged to check what happens if one actually com-
putes the effect of the substitution in question.

We are almost ready to prove Godel’s Incompleteness Theorem. We al-
most know how to produce a sentence which says of itself that it is unprov-
able. We only have to make sure that we can say that something is provable.

Definition 102 (PA). Let ¢ be a formula. We say that it is an axiom of PA
(Axpa (@) or ¢ € Axpa) if one of the following conditions hold:

1. ¢ ="Vz(S(z) #£0)".

2. ¢="va(S(x) = S(y) = = =y)".
3. p="Va(z+0=2x)".

4. ¢ ="Va,y(z+Sy) =S +y))"

61

5 ¢ = '—Vx(ac x 0= 0)—'.
6. p="Va,y(zx S(y) =axy+az)"

7. There exist formulae 1, £ and a variable v such that

é‘ — <I—(—I> —~ 1/}[0/,0] — <r/\—|7rv—|,r$—|,r(—|> —~ '(/}[w/v] —~ <I—_>_|> —~ w[S(x)/U] —~ <|—)—|7r)—\’
I—_>_|’I—v_\7l—x—l7l—(_\> —~ w[x/’l)] — <I—)—I>.

and there exists a sequence s of length [such that s(1) = &, s(l) = ¢,
and for every i < [there exists a variable y; such that

s(i4+1) = (V74,7 () ~ s(i) ~ (7))

Note that the above condition simply formalises what shape a formula
must have to count as an axiom of PA: in particular, the last clause says what
does it mean to be an induction axiom. For clarity, we actually have omitted
several parentheses in definition of &.

Let us separate a useful notion from the above definition:

Definition 103 (PA). Let ¢ be a sentence and) a formula. We say that ¢
is a universal closure of 1 if there exists a sequence s of length [such that
s(1) =1, s(I) = ¢, and for every i < [there exists a variable y such that

s(i+1) = ("Vhy,"() ~s(i) ~ ()7,

Now we will define the notion of proof in PA. A slightly awkward thing
is that we actually have not defined what a proof in first-order logic is in
the first place. We hope that the reader will believe us that we can define
some axiom schemes which together with the modus ponens rule suffice to
axiomatise entailment in first-order logic. We will now write down these
axioms already in their formalised version.

In order to facilitate reading, from now on we will say, e.g., that a for-
mula has the shape

YAY
rather than
Y~ W)~ ~ (),

since it shouldn’t lead to any confusion.

Definition 104 (PA). We say that d is a proof of a formula ¢ in PA (Prf(d, ¢))
if d is a sequence of length [such that for every i < [at least one of the
following conditions is satisfied:

62

10.

11.

12.

13.

14.

15.

16.

. d(7) is a universal closure of an axiom of PA.

. There exists a formula) such that d(¢) is a universal closure of the

formula ¢ — 1.

. There exist formulae v, 7 such that d(i) is a universal closure of the

formula ¢y — (n — v).

. There exist formula v, n, £ such that d(7) is a universal closure of the

formula ¢ — (n — &) — (v = 1) = (¥ = §)).

. There exist formulae v, { such that d(7) is a universal closure of the

formula (¢ — —¢) — (£ — V).

. There exist a formula v, a variable v, and a term ¢ such that d(7) is a

universal closure of the formula Vv (¢) — 9[t/v].

There exist formulae 1, 7, and a variable v such that d() is a universal
closure of the formula Vo(¢) — 1) — (Yu(y) — Yo(n)).

. There exist a formula ¢ and a variable v ¢ FV(¢) such that d(i) is a

universal closure of the formula ¢ — Yu(1)).

. There exists a variable v such that d(i) is a universal closure of the

formula v = v.

There exist a formula v and variables u, v, w such that d(¢) is a univer-
sal closure of the formula u = v — (Y [u/w] — PY[v/w]).

There exist formulae 1,7 such that d(¢) is a universal closure of the
formula (¢ V 1) — (=9 — 7).

There exist formulae 1,7 such that d(¢) is a universal closure of the
formula (—-¢ — n) — (Y V7).

There exist formulae v, 7 such that d(¢) is a universal closure of the
formula (¢ A1) — =(yp — —m).

There exist formulae 1, 7 such that d(¢) is a universal closure of the
formula =(¢p — —n) — (Y An).

There exist a formula ¢ and a variable v such that d(7) is a universal
closure of the formula Jv(¢) — =Vu(—1)).

There exist a formula ¢ and a variable v such that d() is a universal
closure of the formula —Vv(—%) — Jv(v).

63

17. There exist j, k < i such that for some formulae v, 1) d(j) is of the form
¥ —n,d(k) =1 and d(i) = 7.

Notes that the above definition says in effect that proof is a sequence of
formulae in which every formula is either an axiom of PA, an axiom of the
first-order logic or results from the previous steps in the proof by applying
modus ponens.

Definition 105 (PA). Let ¢ be a formula. We say that it is provable if there
exists a proof d of ¢. Then we write Pr(¢).

Now, we can proceed to Godel’s Theorem.

Sketch of the proof[98} Let y be a sentence such that:
PAF ~v=-Pr("y7).

That such a sentence exists is guaranteed by Theorem [99) We claim that PA
proves neither ~ nor its negation.

Suppose PA proves . Then there exists a proof 1, . . . , 9; of the sentence
~ from the axioms of PA. Let

d= <r¢177 SRR r¢lj>~

One can check by induction on [that in such case PA + Prf(d, ;). This
means that PA - Pr("v7), so PA F —. This means that PA is inconsistent.
Suppose that PA - —v. Then PA + 3dPrf(d,” gamma™). Notice that N
with standard operations is a model of PA, therefore there exists d € N such
that Prf(d,"™). We can check by induction on d’ that if Prf(d’,"¢™) holds in
N, then there actually exists a proof of ¢ in PA (d is in N, so it makes sense
to reason by induction). This means that there exists a proof of in PA. But

this again means that PA is inconsistent.
O

Now, we will discuss a bunch of results related to Godel’s Theorem. We
will begin with Godel’s second theorem which states that PA does not prove
its own consistency. We will try, however, to state result with the right gen-
erality. On the other hand, we will be somewhat sloppy until the end of this
section.

Definition 106. Let Th be a theory in a language with finitely many symbols
containing the arithmetical symbols. We say that a formula P(x) satisfies
provability conditions if:

64

1. Th ¢ implies Th = P("¢7).
2. Th=P("¢") = P("P("¢")7).

3fmkV@w(H¢%¢QAP@yﬁPw0.

The last condition may be rewritten more (and still not fully) accurately
%fm%VL%z«z:xﬂwEJWAyAP@WU%@%%P@D.

Note that we haven’t yet defined what the expression "¢ ' means at all
when ¢ is not a string of characters from the arithmetical language. How-
ever, for languages extending the language of PA with finitely many new

symbols we can define coding of its syntax in a fairly straightforward man-
ner.

Theorem 107. Suppose that Th is a theory extending Robinson Arithmetic () in a
language which extends the language of arithmetic with finitely many symbols and
that Th proves provability conditions for a formula P(x). Then

Th¥ -P("=0 = 07).

Note that P satisfying provability conditions should be thought of as
some form of a truth predicate. Then G6édel’s second theorem states that no
such theory can possibly prove its own consistency.

Proof. Let ~y be such that
Tht~y=-P(Ty7).

(Note that to prove Diagonal Lemma we really did not use any induction
whatsoever. It was a matter of finite computation on actual codes.) Then

Tht P(Ty=-P("y™)7).

So
Th P("™y") = P(T=P(Ty)7).

Now, by provability conditions we have:
ThEP("y7) — P("P("y)7).
On the other, we already know that:

Tht P(T77) = P(T~P(Ty7) 7).

65

Obviously:
ThE~y A=y — =(0=0).

So applying provability conditions we obtain:
Tht=P("P("y ")) AP(T=P("y ")) — P(T0#07).

So:
Tht P("y") — P("T0#07).

So suppose that Th = =P("0 # 07). Then we obtain:

Th F =P("y7)
Th F ~
Th + P(™y7).

Thus we have shown that Th is inconsistent.
]

Note that the above proof looks very much like formalised proof of Godels
first theorem. The conclusion of the latter proof was that PA ¥ ~. Here it
has been formalised within Th as:

ThF —P("y7).

However, now we have one extra “level” to our disposal and we can just say
that Th I~ «. This allows us to draw the conclusion of the theorem.

Proposition 108. The formula Pr(x) satisfies provability conditions in PA.

Sketch of the proof. 1. Suppose that PA I ¢. Then there existsa proof ¢1, ..., ¢,
of . Letd = ("¢1,...,"¢,"). Then we check by induction on d that
PA + Prf(d,"¢™) (we have to check by induction all kinds of auxiliary facts,
e.g. thatif ¢ is a formula with "¢ < d, then PA - Form("+™)). 2. Since the
argument in 1. used only some finite operations on syntactic symbols and
induction, we can formalise it inside PA to conclude Pr("Pr("¢ ")) from the
assumption that Pr("¢™).

3. We reason inside PA. If Prf(d;, ¢ —) and Prf(ds, ¢), then Prf(d; —~
da —~ 1,1) which we can check by definition of Prf. O

After Godel’s theorem was published, a question has been raised whether
we can prove another seemingly “paradoxical” sentence “This sentence is
provable in PA.” It turned out however, that this latter sentence in fact is
provable in PA and actually a much more general result holds.

66

Theorem 109 (Lob’s Theorem). Take any ¢ be such that PA + Pr("¢™)
Then PA + ¢.

Proof. Using theorem [99] fix any 3 such that
PAE = (Pr("p7) = ¢).

Then
PA = Pr("87) = (Pr("Pr("87)7) — Pro).

By provability conditions,
PA = Pr(8) — Pr("Pr("87)7).
Soif PAF Pr("¢™) — ¢, then
PA + Pr("87) = ¢.
But by the equivalence satisfied by 3, this implies:
PA + .
By provability conditions,

PA F Pr("87).

— ¢.

But since PA proves both 3 and Pr("37), this implies by the property of 3:

PA - 6.

In the proof of First Godel’s Theorem, we have used the fact that the set
of natural numbers forms a model for PA. This may possibly make Godel’s
Theorem less philosophically interesting. In order to prove that PA is in-
complete, we have to assume that it is true about natural numbers. Let us
now present a theorem which gets rid of this assumption. We will prove
the theorem in case of PA which may seem strange but this only due to the

O

fact that at this point we do not want to state the result in proper generality.

Theorem 110 (Rosser’s Theorem). Suppose that PA is consistent. Then there

exists a sentence p such that PA neither proves p nor refutes it.

67

Proof. Let Rprf(d, ¢) be defined as
Prf(d, ¢) AVd' < d =Rprf(d’, —¢).

Let RPr(¢) be defined as 3d Rprf(d, ¢). We call the formula RPr Rosser’s
provability predicate.
Let p be a formula such that

PA + p = —RPr("p7).

Now, if PA I p, then there existsa proof ¢y, ..., ¢, 0f p. Letd = ("1 ,..., ").
Then we can check by induction on d that

PA F Prf(d," ¢, 7).
Moreover,

PA - Vx (xgd—>(x:0\/x:1\/...\/x:d)>.

But since PA is consistent none of the 0, ..., d can be a code of actual proof
of —p. Therefore,
PA + VRPr("p7).

But then
PAF —p

which shows that PA is inconsistent.
Suppose now that

ie.
PA - Rprf("p™).

Let d be code of the proof of —p. Since PA is consistent, noneof 0,1...,d—1
is a code of an actual proof of p. Thus PA proves that the least proof of
a sentence from the pair p, —p is actually a proof of —p, which contradicts
Rprf("p") and yields PA inconsistent. O

Rosser’s theorem really should be proved in greater generality, since this
is it were it becomes most interesting. Occasionally, one is interested in the-
ories in the arithmetical language which are not true in N. Then Rosser’s
theorem shows us that those theories still have undecidable sentences. Ar-
guments in the vein of Rosser’s theorem generally play a prominent role in
the study of metamathematics, so by no means is it an isolated trick.

68

	Propositional modal logic
	Classical Propositional Logic: a Brief Remainder
	The syntax of the propositional modal logic
	Kripke models
	Proof system and the most important theories
	Kripke Frames and connections with basic systems of Modal Logic
	Tableaux for propositional modal logic

	First-Order Modal Logic
	First-Order Logic
	The standard translation

	Quantified modal logic
	Models for the quantified modal logic

	Intuitionistic logic
	Propositional intuitionistic logic
	Hilbert-style proof system for IPL and the Disjunction Property

	Intuitionistic First-Order Logic

	Incompleteness
	Peano Arithmetic
	Arithmetic as set theory
	Arithmetisation of syntax

	Self-reference and Gödel's Theorem

