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1. Introduction.

We would like to adopt the concept of Borger from [B] to study the
Riemann ζ-function of integers. Borger claims, that the category of rings
over F1 should consist of λ-rings and the restriction of scalars from Z to
F1 takes any commutative ring R to its ring of Witt vectors W (R) with its
canonical λ structure. In this approach the mythical field F1 is equal to the
ring of integers Z with the canonical λ-structure:

λn(m) =

(
m

n

)
We will denote it as F1 in the rest of the paper. This definition does de-

scribe this object almost like a field. If λ-operations are part of the structure
then the ideals in our rings should be preserved by them. It is easy to check
that in F1 there are no proper ideals preserved by λ-operations.

Recall that for any commutative ring R its ζ function ζR is defined via the
following procedure. For an R-module X let N(X) denote the cardinality
of the set EndR(X). We say that a module X is finite if N(X) is finite.
We denote by P (R) the isomorphism classes of all non zero finite simple
modules over R. Then we define:

Formula 1.1.

ζR(s) =
∏

X∈P (R)

(1−N(X)−s)−1

The above formula generalizes to any category with zero object, see [K]. If
R = Z we recover the classical ζ-function of integers. For any R the simple
module over R is equal to R/I where I is a maximal ideal in R. In our
world of λ-rings we are going to take into account only λ-ideals in R. So for
a λ-ring R its finite simple modules are the same as quotients R/I where
I is a maximal λ-ideal in R. In such case the quotient R/I inherits a λ
structure and this will be taken into account while calculating the numbers
N(X).

In Section 3 we classify all maximal λ-ideals in W (Z). This leads to the
observation that the categorical ζ-function of a λ-ring W (Z) is the same as
the classical ζ-function of Z. In Section 4 we place the Riemann hypothesis
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within the framework of Weil conjectures. We prove that the classical ζ-
function of Z can be calculated via counting the numbers of points of the
affine line over F1 with coefficients in correctly defined extensions of F1.

2. Preliminaries on λ-rings.

Our rings are always commutative with units. Following [Y, Definition
1.10] we have:

Definition 2.1. A λ-ring is a ring R together with functions

λn : R→ R (n ≥ 0)

satisfying for any x, y ∈ R:
(1) λ0(x) = 1,
(2) λ1(x) = x,
(3) λn(1) = 0 for n ≥ 2,
(4)λn(x+ y) =

∑
i+j=n λ

i(x)λj(y),

(5) λn(xy) = Pn(λ
1(x), ..., λn(x);λ1(y), ..., λn(y)),

(6) λn(λm(x)) = Pn,m(λ
1(x), ..., λnm(x)).

Above Pn and Pn,m are certain universal polynomials with integer coef-
ficients obtained via symmetric functions theory (see [Y, Example 1.7 and
1.9]). By a homomorphism of λ-rings we mean a ring homomorphism which
commutes with λ-operations. We say that x ∈ R is of degree k, if k is the
largest integer for which λk(x) ̸= 0. If such finite k does not exist we say
that x is of infinite degree. Observe that (by formula 4) the map

R ∋ x 7→ Σ
i≥0

λi(x)ti

is a homomorphism from the additive group of R to the multiplicative group
of power series over R with constant term 1. We will denote this map as
λt(x). Observe also that λt(0) = 1 and hence λt(−r) = λt(r)

−1. Usually
in the literature the set of power series over R with constant term 1, with
addition defined by the power series multiplication and with properly defined
multiplication is called the universal λ-ring of R and denoted Λ(R) (see [Y,
Chapter 2] for the full discussion on this concept). The universal Λ-ring of
R can be defined for any commutative ring R but when R is a λ-ring then
λt : R → Λ(R) is a λ-ring homomorphism. We will talk more about the
universal construction in the next section.

Ring of integers Z carries the unique, canonical λ-ring structure described
by the formula λn(m) =

(
m
n

)
. Similarly all integral monoid rings Z[M] will

be considered with the λ structure defined for any m ∈M by formulas

λ1(m) = m

λi(m) = 0 for i > 1.
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We will always consider integral monoid rings with such λ-structure, because
this structure is uniquely forced by the monoidal point of view on the field
with one element (compare Proposition 2.3 below and the discussion which
follows it). In most of our monoids the cancellation law will hold. It means
that typically if x, y, z ∈M and xy = xz then y = z. We have:

Lemma 2.2. Let R be equal to the monoidal λ-ring Z[M ] with the λ-
structure defined above. Assume that cancellation law holds in M . Then
in R only generators m ∈M ⊂ Z[M ] are of degree 1.

Proof. We know that the elements of M are of degree 1. By separating
positive and negative coefficients we get Z[M ] ∋ r = Σki=1 aimi−Σlj=1 bjmj ,
where all ais and bjs belong to Z and are greater than 0. Observe that the
assumption that r is of degree 1 implies that λt(r) = 1 + bt for a certain
b ∈ Z[M ]. We can easily calculate λt-functions in the case of monoidal rings.
Let m ∈M and a be a positive integer. Then

λt(am) = λt(m)a = (1 +mt)a

Hence we easily get

λt(
k
Σ
i=1

aimi −
l
Σ
j=1

bjmj) =
k∏
i=1

(1 +mit)
ai/

l∏
j=1

(1 +mjt)
bj

If r is of degree 1 we have equality

(∗)
k∏
i=1

(1 +mit)
ai = (1 + bt)

l∏
j=1

(1 +mjt)
bj

From this, by comparing coefficients at the highest degree of t we get

b =
k∏
i=1

(mi)
ai/

l∏
j=1

(mj)
bj

and hence b ∈ M . On the other hand, when we calculate the coefficient at
the first degree in the equality (*) we get

k
Σ
i=1

aimi = b+
l
Σ
j=1

bjmj

But by the definition of ais and bjs this is possible only when r = b ∈
M . □

Recall that Mab denotes the category of commutative monoids with unit.
LetRingλ stand for the category of commutative unital rings with λ-structure.
We have:
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Proposition 2.3. The functor Mab → Ringλ, which takes a monoid M
to the λ-ring Z[M ] with the λ-structure defined above has a right adjoint
Ringλ →Mab which takes a λ-ring R to the multiplicative monoid R1 of its
elements of degree not exceeding 1.

Proof. By [Y, Proposition 1.13] we know that in any λ-ring the product
of 1-dimensional elements is again 1-dimensional (or equal to 0). Hence
R1 is a well defined multiplicative submonoid of R considered here as the
multiplicative monoid. If f ∈ MorRingλ(R,S) then f carries 1 dimensional
elements of R to 1 dimensional elements of S or to 0 by the definition of a
λ-homomorphism. Hence our right adjoint is well defined. The rest of the
proof is obvious.

The λ-operations on a ring R define on it the sequence of Adams oper-
ations ψk : R → R which are natural ring homomorphisms. They can be
defined by the Newton formula:

ψk(x)− λ1(x)ψk−1(x) + ...+ (−1)k−1λk−1(x)ψ1(x) = (−1)k−1kλk(x)

For their properties see [Y, chapter 3]. It is straightforward to check that
the canonical λ-structure on Z defines trivial Adams operations (ψk = id
for any k) and the formula m 7→ mk for m ∈M determines the kth Adams
operation on the monoidal ring Z[M]. Adams operations can be viewed
always as an action on a considered structure by the multiplicative monoid
N∗ of natural numbers. Every object M of Mab has naturally one such a
structure given by identifying k ∈ N∗ with ψk :M →M where ψk(m) = mk.
This structure is obvious inMab and adds very little while studying monoids,
but should be reflected always, when we want to induce structures fromMab

to other (abelian) categories. This action will be addressed as an action of
Adams operations on M . Proposition 2.3 can be viewed as a statement
about adjoint functors between categories with objects carrying the action
of N∗. It is easy to check that the N∗ action on Z[M ] given by k(m) = mk

while treated as the action of Adams operations forces to have λ-structure
on Z[M ] satisfying λi(m) = 0 for i > 1.

Recall that N+ denotes the monoid of natural numbers with addition.
Using it we can define for any ring R the polynomial ring over R via the
formula

R[x] = R[N+] = R⊗ Z[N+].

We will consider Z[N+] as polynomial ring over F1 in the rest of the paper,
with λ-structure defined like for any other monoidal ring. Moreover, for any
λ-ring R we have well defined λ-structure on R[x] because tensor product
of rings inherits it from the λ-structures of the factors.

Remark 2.4. As we said before the λ-structure on Z is unique. This is not
the case with monoidal rings Z[M]. We want to view the results of [Be] and
our Proposition 2.3 as strong indication, that the restriction of considered λ
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structures on our monoidal rings to the ones defined by Adams operations
on monoids is well justified. This restriction is crucial for the whole of the
paper and more generally for the whole of our approach to studying the
Riemann ζ-function of integers.

Definition 2.5. Let R be a λ-ring and I is an ideal in R. We will call it a
λ-ideal if it is preserved under the action of λk, for any k > 0.

It is straightforward to check that if we divide a λ-ring by a λ-ideal then
R/I carries the induced λ-structure and the quotient homomorphism R →
R/I is a homomorphism of λ-rings. Of course the opposite is also true:
a kernel of the λ-rings homomorphism is a λ-ideal. It is important for
computations that an ideal I in a λ-ring R with Z-torsion free quotient is
a λ-ideal if and only if it is preserved by the Adams operations (see [Y,
Corollary 3.16]).

3. Categorical zeta function for Witt vectors

We start from recalling the definition of the universal λ-ring of a commu-
tative ring R.

Definition 3.1. For any ring R we define its universal λ-ring Λ(R) in the
following way:

• As a set Λ(R) is equal to the set of formal power series over R with
leading term equal to 1.
• Ring operations +λ and ×λ are defined via the formulas

(1 +
∞
Σ
i=1

ait
i) +λ (1 +

∞
Σ
i=1

bit
i) = (1 +

∞
Σ
i=1

ait
i)(1 +

∞
Σ
i=1

bit
i)

(1 +
∞
Σ
i=1

ait
i)×λ (1 +

∞
Σ
i=1

bit
i) = (1 +

∞
Σ
i=1

Pi(a1, ..., ai; b1, ..., bi)t
i

• For x = 1 + Σ∞
i=1 ait

i the λ-operations are defined via the formulas:

λm(x) =
∞
Σ
i=1

Pi,m(a1, ..., aim)t
i.

It is proved in [Y, Theorems 2.5 and 2.6] that the above structure defines a
λ-ring. As we said before, the ring of integers Z carries the unique, canonical
λ-ring structure described by the formula λn(m) =

(
m
n

)
. Clearly Z has no

proper λ-ideals because
(
n
n

)
= 1. When I is a λ-ideal in R then the quotient

ring carries the natural λ-ring structure. Moreover when φ : R → S is a
λ-ring homomorphism then ker(φ) is a λ-ideal.
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Lemma 3.2. Let Ik(R) = {1+Σ∞
i=1 ait

i | a1 = ... = ak−1 = 0}. Then Ik(R)
is an ideal in Λ(R).

Proof. It is obvious that Ik(R) is preserved by +λ. It follows from the def-
inition of the polynomials Pi that Pi(a1, ..., ai; b1, ..., bi) contains only terms
which are multiples of some ap and some bq for 1 ≤ p, q ≤ i.

Lemma 3.3. Assume that I is a proper λ-ideal in Λ(R). Then I contains
an element 1 + Σ∞

i=1 ait
i with a1 ̸= 0.

Proof. See calculations in [Y, Example 1.7]. It follows that

P1,m(a1, ..., am) = am

Hence for x = 1+Σ∞
i=1 ait

i with am ̸= 0 we have λm(x) = 1+Σ∞
i=1 bit

i with
b1 = am.

Lemma 3.4. For a finite field Fp its universal λ-ring Λ(Fp) contains no
proper λ-ideals.

Proof. The universal λ-ring Λ(Fp) is isomorphic to a ring of p-adic integers

Ẑp. To see this observe that Λ(Fp) is isomorphic to a ring of Witt vectors
W (Fp) via the Artin-Hasse exponential, see [Y, Theorem 4.16]. For the

isomorphism between W (Fp) and Ẑp see [E, Chapter I.5].

The ring Ẑp is a principal ideal domain witch is local with the maximal
ideal generated by p · 1. Hence the same is true about Λ(Fp). The unit in
the latter ring is equal to 1+ t so the generator of the maximal ideal is equal
to 1 + tp. Combining this with lemmas 3.2 and 3.3 gives us the proof. □

Now we want to understand maximal λ-ideals in Λ(Z). For a given prime
number p let Ip ⊂ Λ(Z) consists of these power series which have all coef-
ficients divisible by p. It follows directly from the definitions that Ip is an
λ-ideal in Λ(Z). It follows from lemma 3.1 that it is the maximal λ-ideal
because the quotient Λ(Z)/Ip is isomorphic to Λ(Fp).

Theorem 3.5. Let I be a maximal λ-ideal in Λ(Z). Then I = Ip for a
certain prime number p.

Proof. Assume that I is a maximal λ-ideal in Λ(Z) which is different
than Ip for any prime number p. Then for any p the image of I under the
quotient homomorphism Λ(Z) → Λ(Fp) has to be the whole Λ(Fp). We
want to show that I = Λ(Z).

Let Wk = Λ(Z)/Ik(Z). We have the equality Λ(Z) = limkWk where the
structure map

Wk →Wk−1
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is defined as a quotient map where we divide Wk by the image of Ik−1(Z).
Let Vk = I/I ∩ Ik(Z). Then I = limkVk. The embedding ι : I ↪→ Λ(Z)
is a map of inverse limits and it restricts to maps ιk : Vk → Wk which
commute with the structure maps. It is enough for our purposes to show
that these maps are isomorphisms. By construction we know that these
maps are injective.

The ideal I is a λ-ideal. Lemma 2.5 tells us that I maps onto Λ(Fp)/I2(Fp) =
Fp for any prime number p. This implies that I maps onto Λ(Z)/I2(Z) = Z
as well. Now we can finish the proof by induction. First of all observe that
for any k both Wk and Vk are additively the free abelian groups of rank
k − 1. This is easily follows from induction and the short exact sequences:

0→ Z →Wk →Wk−1 → 0

0→ Z → Vk → Vk−1 → 0

Assume that ιk is an isomorphism for k < n. For any prime number p we
have a commuting diagram:

Vn−1 ← Vn
↓ ↓

Wn−1 ← Wn

↓ ↓
Wn−1(Fp) ← Wn−1(Fp)

which on the level of abelian groups shows up as follows:

Zn−2 ← Zn−1

↓ ↓
Zn−2 ← Zn−1

↓ ↓
Fn−2
p ← Fn−1

p

The right upper vertical map is injective. We know that both composi-
tions of vertical maps are epimorphisms. This holds for any prime number
p so the cokernel of the right upper vertical map has to be trivial. □

The ring of integers with scalars restricted from Z to F1 is equal to the
ring of Witt vectors W (Z). As a model of W (Z) we will use Λ(Z). Classi-
cally the ring of Witt vectors was defined via Witt polynomials. Theorem
[Y, 4.16] tells us that both descriptions give us isomorphic λ-rings with an
isomorphism ER : Λ(R) → W (R) given by the so-called Artin-Hasse expo-
nential. We know what are the maximal λ-ideals in Λ(Z) and we know the
quotients Λ(Z)/Ip = Λ(Fp). In order to calculate the categorical ζ function
of Z we have to compute the order of N(Λ(Fp)).

Proposition 3.6. For any prime p the order of N(Λ(Fp)) is equal to p.
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Proof. We want to count only these homomorphism (Λ(Fp) → (Λ(Fp)
which preserve λ-structure and are module homomorphisms over Λ(Z). Hence
they are fully determined by their image of the unit of Λ(Fp) equal to 1+ t.
The image of an element of degree 1 must be of degree less or equal to
1. There are no other restrictions so we get p different homomorphisms
fi : (Λ(Fp) → (Λ(Fp) defined by the formula fi(1 + t) = 1 + it, where
i = 0, 1, ..., p− 1.

Corollary 3.7. The categorical ζ-function of the λ-ring W (Z) is equal to
the classical ζ-function of Z.

4. Zeta of integers via F1[x].

As was written in the Introduction, we can perform the calculation of
the Riemann ζ-function for any commutative ring R using the category of
R-modules. The finite simple objects in the category of R-modules corre-
spond to the maximal ideals I ⊂ R with finite quotient. For any ring R let
Rings/R denote the category of rings over R. One checks immediately that
the cardinality of HomRings/R(R[x], R ▷ R/I) is the same as the cardinality
of HomR−mod(R/I,R/I). Hence instead of calculating cardinality of the
set of endomorphisms we can calculate the number of R ▷R/I points of the
affine line over R .

There are good analogues of the category of modules over an object X of
an abstract category C which has 0 and all finite limits. Beck in [Bec] defined
them as abelian group objects in the category of objects over X (see also [H,
chapter 2] ). It is shown in [H] that the category of abelian group objects
in the category of rings over a given ring R is equivalent to the category of
R-modules, where an R-module X defines the square zero extension of R
with X as a square-zero ideal. In the case of R = Z we get, as expected, the
category of abelian groups. An abelian group X corresponds to the square
zero extension Z▷X. The finite simple abelian group objects in the category
of rings over Z are easily seen to come from the simple abelian groups (finite
cyclic groups Cp of prime order p). For a given p we see that N(Cp) is equal
to the cardinality of the set HomRings/Z(Z[x],Z ▷Cp). The polynomial ring

Z[x] = Z[N+] is treated as a ring over Z via the map which takes x to 0.
This is not our choice but it is forced by our monoidal approach and the
fact that the one point unital monoid 1 is a zero object in the category
Mab. All this means that we have the geometrical method for calculating
the categorical ζ of integers. We just have to count the Z ▷ Cp-points of the
affine line over Z.

Observe that we can perform the same calculations in the category Mab,
where the role of integers is played by the field of one element in the sense
of [D]. But this gives us no new insight because in the world of monoids the
field of one element is represented by one point monoid 1 consisting of 1
only, so we have equality of categories Mab/1 = Mab. But of course, in the
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spirit of our previous statements, the calculation from [Be] can be presented
as counting the 1 ▷ M points of the affine line N+ over 1.

Below we show that we get the Riemann ζ-function of the integers via
counting the number of F1 ▷ M -points of F1[x] in the category of rings
over F1 where M runs through finite simple objects in the category of F1-
modules. We have to start from describing the latter category in some
accessible way. We will follow closely [H] because in [H, chapter 2] this is
done in full details for any λ-ring. The constructions uses the functor W
from unital commutative rings to λ-rings which takes any ring R to its ring
of Witt vectors W (R). Originally the functor W was defined for rings with
multiplicative unit. But the universal polynomials which define addition,
multiplication and opposite in W (R) do not use multiplicative unit so using
the same formulas one can define the value of W on non-unital rings.

Recall that if R is a λ-ring then it comes with the λ-ring map λR : R →
W (R) which is defined by lambda operations on R. As was explained in
3.4, if Λ(R) denote the ring of invertible formal power series over R then
λR = E ◦ λt where E is the Artin-Hasse exponential isomorphism of Λ(R)
and W (R) (see [Y, chapter 4]) and

λt(r) =
∞
Σ
i=0

λi(r)ti

As it is proved in [H], the category of modules over a λ-ring R, which is
equal to the category (Ringλ/R)+ of abelian group objects in Ringλ/R, is
equivalent to the category R−modλ of λ-modules over R. A λ-module over
R is an R module M with a map λM : M → W (M) which is equivariant
with respect to the λ-structure of R. Here W (M) denotes the Witt ring
construction applied to the non-unital ring M with trivial multiplication. It
is easy to check that in this case W (M) has also trivial multiplication and
additively is equal to the infinite product of M . It is shown in [H, Lemma
2.2] that we have an isomorphism of rings

i :W (R) ▷ W (M)→W (R ▷M)

which is induced by the canonical inclusions of R and M into R ▷ M . A
λ-module M corresponds in the equivalence of (Ringλ/R)+ and R −modλ
to the λ-ring R ▷M with the λ-ring structure defined by the composition

R ▷M
λR⊕λM−→ W (R) ▷ W (M)

i−→W (R ▷M)

We have another description of the category R −modλ (see [H, Remark
2.6]). IfM is an object of this category and λM :M →W (M) is a structural
map then it has components λM,n : M → M because as sets W (M) =∏
N M . Easy calculation shows that λM,n is ψR,n equivariant, where ψR,n

is the nth Adams operation of R. This gives us description of the category
R−modλ as a category of left modules over a twisted monoid algebra Rψ[N∗]
where the multiplicative monoid N∗ acts on any objectM through the maps
λM,n.
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With the understanding of the category R−modλ presented above we can
come back to our situation and analyse the category F1−modλ. Observe that
the Newton formula which relates Adams and λ-operations gives ψF1,n = id
for any natural n. This implies that λM,1 = id and for n > 1, λM,n :M →M
is any (additive) group homomorphism.

Lemma 4.1. Every object (M,λM ) in F1 − modλ consists of an abelian
group M and a sequence of group homomorphisms λM,n :M →M satisfying
λM,n ◦ λM,m = λM,mn and λM,1 = id. Morphisms (M,λM ) → (P, λP ) are
given as group homomorphisms f :M → P which satisfy f ◦λM,n = λP,n ◦f
for any natural n.

The description of F1 −modλ was achieved before the statement of the
lemma. But let us make here one comment. Our category of F1-modules is
the same as the category of modules over Z[N∗] which is almost the same as
the monoid algebra over Z of the multiplicative monoid of integers. Hence
we did not leave the old approach to the field of one element, presented for
example in [D], but it seems that we are getting more subtle methods of
approaching the Riemann ζ-function.

Lemma 4.2. Assume M is a finite simple object in F1 −modλ. If the set

HomRings/F1
(Z[x],Z ▷ M)

has finite cardinality different from 0 then M is of the form (Cp, λCp), where
Cp is the cyclic group of prime order p and λCp,n = 0 for n ≥ 1.

Proof. Assume

1 < n(Z ▷ M) = |HomRings/F1
(Z[x],Z ▷ M)| <∞.

Assume that φ ∈ HomRings/F1
(Z[x],Z ▷ M). The structure of the semi-

direct product implies that φ(x) = (0,m) for a certain m ∈ M . Because
φ is a λ-ring homomorphism it has to commute with λ-operations on the
source and the target. Recall that in Z[x], λn(x) = 0 for n > 1. Hence for
n > 1 we calculate

0 = φ(λn(x)) = λn(φ(x)) = λn((0,m)).

It means that we are looking for such objects (M,λM ) and m ∈ M which
give us vanishing of higher λ-operations on elements (0,m) ∈ Z ▷ M . Now
we can use the general formula for the Artin-Hasse isomorphism [Y, Section
4.2]. For any ring R if f(t) = 1+Σait

i ∈ Λ(R) then we write f(t) =
∏
(1−

(−1)ibiti) and the Artin-Hasse isomorphism E : Λ(R) → W (R) takes f to
the sequence (b1, b2, b3, ...). This implies immediately that if λ-operations
act trivially on r ∈ R then this element has trivial (above the first) Witt
coordinates in W (R).
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Now we come back to our considerations. The map λM : M → W (M)
takes m ∈M to (λM,1(m), λM,2(m)), λM,3(m), ...). Assume that

λZ▷M ((0,m)) = ((a1, y1), (a2, y2), ...).

It is obvious that an = 0 for any positive n. Artin-Hasse isomorphism
described above tells us that y1 = m and yn = 0 for n > 1. On the other
hand calculations from Addendum 2.3 of [H] tell us that

λM,n(m) = yn = 0.

Hence λM,n(m) = 0 as we wanted to show.

Our assumption is that M is a finite simple object in F1 − modλ. The
λ-operations act trivially on M so M has to be simple as an abelian group.
This observation implies our lemma.

Corollary 4.3. Recall that ζZ denotes the Riemann ζ-function of integers.
Let C = F1 −modλ and n(M) = |HomRings/F1

(Z[x],Z ▷ M)|. We have

ζZ(s) =
∏

M∈P ′(C)

(1− n(M)−s)−1

where P ′(C) denote those classes M from P (C) for which n(M) ̸= 1.
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