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ON EXT AND HYPEREXT GROUPS IN THE CATEGORY OF
FUNCTORS

STANIS LAW BETLEY1∗

Abstract. Let R be a commutative noetherian ring with unit and let F de-
note the category of functors from the category of finitely generated R-modules
to R-modules. Let I ∈ F denote the inclusion functor. We study homological
algebra of I in the category F (Ext-groups) and its generalization when we
allow coefficients to be chain complexes in F (Hyperext-groups). We compare
the Ext-groups of I with coefficients in arbitrary F ∈ F with Ext-groups of I
with coefficients in stable derived functors of F . The latter groups are rela-
tively easily calculable because the stable derived functors are linear. On the
other hand, known calculations of Ext-groups of I with coefficients in F can
shed light on the stable derived functors of F which are hard to approach.
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1. Introduction

Let R be a commutative noetherian ring with unit and let F denote the cate-
gory of functors from the category of finitely generated R-modules to R-modules.
The category F is abelian with enough projective and injective objects so we can
talk about homological algebra in F . For a given F ∈ F let Ls

iF (Rs
iF ) denote

ith left (right) stable derived functor of F in the sense of Dold and Puppe (see [3]
or [11], Chapter 6). Let I ∈ F denote the inclusion functor. In section 3 we estab-
lish some relations between Ext∗F(F, I) and ⊕iExt∗F(L

s
iF, I) where both sides are

considered as right Ext∗F(I, I)-modules. Similarly, for a special R, we get a rela-
tion between left Ext∗F(I, I)-modules Ext∗F(I, F ) and ⊕iExt∗F(I, R

s
iF ). Section

4 is devoted to studying the dual situation of Ext∗F(I, F ) and ⊕iExt∗F(I, L
s
iF ).

The stable derived functors are additive and our results show that we can treat
them as additive coefficients needed for calculating Ext∗F(I, F ) and Ext∗F(F, I).
Note that in calculable cases (for example when R is a finite field) the Ext∗F(I, I)-
modules Ext∗F(I, F ) and Ext∗F(F, I) are fully understood for any additive F .
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The possibility of reducing an arbitrary functor to its stable satellites in or-
der to perform ExtF -calculations came as an effect of studying Mac Lane’s Q-
construction QF related to F , defined and developed in [[5], Sections 6 and 7].
By definition QF is a nonnegative chain complex in F . The homology functors of
QF are isomorphic to the left stable derived functors of F . We have (QF )0 = F
and hence QF comes with the map of chain complexes F → QF where, as usual,
F is treated as a chain complex concentrated in dimension 0. This map induces
for any i a homomorphism of hyperext groups

ExtiF(QF, I)→ ExtiF(F, I) (1.1)

ExtiF(I, F )→ ExtiF(I,QF ) (1.2)

The map from 1.1 is easily seen to be an isomorphism by the spectral sequence
argument for the hyperext groups. We would like to analyse the possibility of
1.2 being an isomorphism via comparing both sides with ⊕iExt∗F(I, L

s
iF ). The

present paper is the first step towards this. In Section 3 we obtain formulas
relating Ext∗F(F, I) and ⊕iExt∗F(L

s
iF, I). The dual case is not so easy to handle

and the reason is known. In this case the spectral sequence mentioned above with
a chain complex as covariant variable does not have to converge. In [[10], 11.3]
Stefan Schwede gives an example of a functor of infinite degree in F , where R
is a finite field and for which Ext0(I, F ) and Ext0(I,QF ) really differ. Hence
our general theorem 4.1 is not fully satisfactory and cannot be stronger in full
generality. We finish Section 4 with presenting some special situations when we
get fully satisfactory answers also in this case.

The noetherianity assumption is not necessary for theorems 3.1 and 4.1 which
should be true for any commutative ring R and functors from R-modules to
R-modules, as stable derived functors are defined for functors between abelian
categories. On the other hand at all places where we assume that our ring is
a finite field we use machinery developed for functors from finite dimensional
vector spaces to vector spaces. Because of these reasons we decided to restrict
our attention to the case when finitely generated modules over R form an abelian
category.

Conventions: We write Ext for the hyperext groups. Functors F ∈ F are
treated as chain complexes with one nonzero object in dimension 0 which is equal
to F . Hence functors can appear as variables in both ExtF and ExtF groups.
When we restrict our considerations to R being a finite field of characteristic p
we write Fp instead of F . Throughout the paper we assume that our functors
are reduced (F (0) = 0).

2. Preliminaries

The Yoneda multiplication induces a ring structure on Ext∗F(I, I) and, corre-
spondingly, left and right module structures over this ring on Ext∗F(I, F ) and
Ext∗F(F, I) for any F . Because we are going to use the module structures of
Ext∗F(I, F ) and Ext∗F(F, I) over Ext∗F(I, I) we need, as a tool, the following well
known lemma from homological algebra (see [[9], Theorem 5.3]).
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Lemma 2.1. Let 0 → A → B → C → 0 be an exact sequence in an abelian
category A which contains enough projective and injective objects, D be a chosen
object in A and D∗ = Ext∗A(D,D) be a graded ring with Yoneda multiplication.
Then all maps in the long exact sequences

...→ ExtiA(C,D)→ ExtiA(B,D)→ ExtiA(A,D)→ Exti+1
A (C,D)→ ...

and

...→ ExtiA(D,A)→ ExtiA(D,B)→ Exti(D,C)A → Exti+1
A (D,A)→ ...

are equivariant with respect to the action of D∗ (right or left).

As a second tool for studying the Ext-groups of interest we are going to use the
stable derived functors of functors between abelian categories. The left version of
them was first defined by Dold and Puppe in [3], the right version was introduced
in [11] which is a good reference for both notions. As an outcome, to any functor
F ∈ F one associates two sequences {Ls

iF}∞i=0 and {Rs
iF}∞i=0 of left and right

stable derived functors of F . They are additive and for us the crucial properties
of these are contained in the following lemma (for the proof see [3, 11]).

Lemma 2.2. (i). Let 0→ F1 → F2 → F3 → 0 be an exact sequence in F . Then
there are two long exact sequences of stable derived satellites

...→ Ls
1F3 → Ls

0F1 → Ls
0F2 → Ls

0F3 → 0

0→ Rs
0F1 → Rs

0F2 → Rs
0F3 → Rs

1F1 → ...

(ii). For F ∈ F there is a natural epimorphism F → Ls
0(F ) and a natural

monomorphism Rs
0F → F which induce isomorphisms

HomF(L
s
0F,G)→ HomF(F,G)

HomF(G,Rs
0F )→ HomF(G,F )

for any additive G ∈ F .

In the future, we will need some well known calculations of general nature.
Recall that F ∈ F is called diagonalizable if it is a composition of the diagonal
embedding ModR → (ModR)

d for some d > 1 with a functor F ′ : (ModR)
d →

ModR which satisfies F ′(M1, ...,Md) = 0 whenever there is an i such that Mi = 0.
In the Appendix to [1] one can find the proof (by the second author) of:

Lemma 2.3. If F ∈ F is diagonalizable then Ext∗F(I, F ) = Ext∗F(F, I) = 0.

One can also state the version of 2.3 for stable derived functors.

Lemma 2.4. If F ∈ F is diagonalizable then Ls
iF = Rs

iF = 0 for i ≥ 0.

Proof. For Ls
iF it follows immediately from [[3], Theorem 6.10]. The proof for

Rs
iF follows by the same method. □
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3. Generators for Ext∗F(F, I)

Let ...
d2−→ QF2

d1−→ QF1
d0−→ F → 0 be the cubical construction on F as stud-

ied in [[5], Sections 6 and 7]. It is a chain complex in F consisting of diagonalizable
functors in degrees above 0 with homology functors isomorphic to the left stable
derived functors of F . Lemma 2.3 implies that for any i the group ExtiF(F, I)
is isomorphic to ExtiF(QF, I) by the obvious spectral sequence argument. Below
we describe a filtration of Ext∗F(F, I) consisting of Ext∗F(I, I)-submodules which
gives a relation between Ext∗F(F, I) and the sum over i of Ext∗F(L

s
iF, I). We

obtain this filtration by truncating QF∗.

Theorem 3.1. Let Ls
iF denote the ith stable derived functor of F ∈ F . Then

Ext∗F(F, I) as a module over Ext∗F(I, I) has an increasing filtration of graded
submodules 0 = A∗

−1 ⊂ A∗
0 ⊂ A∗

1 ⊂ A∗
2 ⊂ ... such that for any natural n ≥ 0 the

quotient A∗
n/A

∗
n−1 is a subquotient of Ext∗F(L

s
nF, I) and

Ext∗F(F, I) =
∞⋃
n=0

A∗
n.

Moreover, for any integer n, the quotient map gives an isomorphism in degree n
between a subgroup of HomF(L

s
nF, I) and (An

n/A
n
n−1).

Proof. Let Qn
∗ denote the homological truncation of the cubical complex QF∗ at

the level n. It means Qn
∗ agrees with QF∗ up to dimension n, Qn

n+1 = im(dn+1)
and Qn

i = 0 for i > n + 1. There is an obvious epimorphism qn : Qn
∗ → Qn−1

∗
induced by identities up to dimension n − 1 and dn in dimension n. For every
n there exists a morphism in : F → Qn

∗ defined as identity in dimension 0. The
morphisms qn are compatible with in’s (qn◦in = in−1) and for every n they induce
a short exact sequences of chain complexes

0→ Kn
∗ −→ Qn

∗
qn−→ Qn−1

∗ → 0 (3.1.1)

The complex Kn
∗ is nontrivial only in dimensions n and n + 1. The definition

of qn implies that Kn
n = ker(dn) and Kn

n+1 = im(dn+1). Hence by the obvious
spectral sequence argument the hyperext groups with Kn

∗ coefficients satisfy

Exti(Kn
∗ , I) = Exti(Ls

nF [n], I)

Now we can define our filtration. Let Ext∗(in, I) : Ext∗F(Q
n
∗ , I) → Ext∗F(F, I)

be the map induced by in. We put

A∗
n = im(Ext∗(in, I))

The formula qn ◦ in = in−1 implies that A∗
n−1 ⊂ A∗

n. Observe that the kernel
Ln
∗ of the projection pn : QF∗ → Qn

∗ is trivial below dimension n + 1 and hence
ExtiF(L

n
∗ , I) = 0 for i ≤ n. This implies by the long exact sequence of hyper-

ext groups that Extk(in, I) : ExtkF(Q
n
∗ , I) → ExtkF(F, I) ≃ ExtkF(QF, I) is an

isomorphism for k ≤ n. In conclusion we get that our filtration stabilizes

Ak
k = Ak

k+1 = Ak
k+2 = .... = ExtkF(F, I)
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and then of course

Ext∗F(F, I) =
∞⋃
n=0

A∗
n.

Let now Cn
k = coker(Extk(qn, I) : ExtkF(Q

n−1
∗ , I) → ExtkF(Q

n
∗ , I)). Immedi-

ately from the definition of our filtration we see that in a commuting diagram

ExtkF(Q
n−1
∗ , I) → ExtkF(Q

n, I) → Ck
n → 0

↓ ↓ ↓
Ak

n−1 → Ak
n → Ak

n/A
k
n−1 → 0

all vertical maps are epimorphisms. On the other hand the long exact sequence
of hyperext groups induced by the short exact sequence of complexes (3.1.1)
implies that the group Ck

n is a subgroup of ExtkF(L
s
nF [n], I). Observe that

ExtkF(L
s
nF [n], I) = Extk−n

F (Ls
nF, I). Hence for k = n we get that the cokernel Cn

n

is a subgroup of HomF(L
s
nF, I). The final statement of the theorem comes from

considering the spectral sequences for hyperext groups. Then it is obvious that
An

n/A
n
n−1 is equal to the kernel of all differentials starting fromHomF(L

s
nF, I). □

Corollary 3.2. Assume that for a given F ∈ F , Ls
iF = 0 for any i. Then

Ext∗F(F, I) = 0.

Proof. The assumption that all Ls
iF = 0 implies that all quotients in the filtration

A∗(F ) are trivial. But then the filtration is trivial so Ext∗F(F, I) = 0. □

Remark 3.3. If R is a field then the conditions Ls
iF = 0 and Ext∗F(F, I) = 0

are equivalent. This comes from the fact that vanishing of Ext∗F(F, I) implies
triviality of the layers of the filtration A∗(F ). This observation easily implies
that for any i, HomF(L

s
iF, I) = 0. But this latter condition in our case implies

Ls
iF = 0 because the Hom-set between nontrivial additive functors is never

trivial.

For the rest of this section we assume that R is a finite field of characteristic p.
To emphasize that we work under this assumption we will write Fp instead of F .
Observe that now the domain of our functors consists of finite dimensional vector
spaces over R. Our goal is to get an analogous observation as in Theorem 3.1 for
Ext∗Fp

(I, F ) in this case. The answer will use the right stable derived functors

of F , Rs
∗F . Recall after [6] that in the case R is a finite field to any F ∈ Fp we

can associate its Kuhn dual functor F# ∈ Fp defined for any finite dimensional
vector space V by the formula

F#(V ) = (F (V •))•,

where upper • denotes the ordinary linear dual. We will call a functor finite if
it is of finite degree and has values in finite dimensional vector spaces. We have
the following lemma (compare [[6], Proposition 4.4]):

Lemma 3.4. For any i and finite F and G we have:

ExtiFp
(F,G) = ExtiFp

(G#, F#).
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The functor I is self dual and the lemma above gives us a useful identification
of groups ExtiFp

(I, F ) and ExtiFp
(F#, I) for any finite F . This identification

agrees with the Yoneda multiplication and hence Ext∗Fp
(I, F ) and Ext∗Fp

(F#, I)

are isomorphic as Ext∗Fp
(I, I)-modules. This observation and Theorem 3.1 give

the following:

Corollary 3.5. For any finite F ∈ F the graded group Ext∗Fp
(I, F ) as a module

over Ext∗F(I, I) has an increasing filtration 0 = A∗
−1 ⊂ A∗

0 ⊂ A∗
1 ⊂ A∗

2 ⊂ ... such
that for n ≥ 0 the quotient A∗

n/A
∗
n−1 is a subquotient of Ext∗Fp

(Ls
n(F

#), I) and

Ext∗Fp
(I, F ) =

∞⋃
n=0

A∗
n.

Moreover the quotient map gives an isomorphism in degree n from (An
n/A

n
n−1) to

a subgroup of HomFp(L
s
n(F

#), I).

We can translate statement of the corollary above using the following lemma:

Lemma 3.6. For any finite F ∈ Fp and any natural i we have a natural isomor-
phism

Ls
i (F

#) ≃ (Rs
iF )#

Proof. The isomorphism comes directly from the definition of stable derived func-
tors. Shortly: let A be a finite dimensional vector space. We know that for any
F ∈ Fp and i < 2n we have

Ls
iF (A) = πn+i(F (A∗(n))),

where A∗(n) is a simplicial (projective) resolution of A of degree n. Typically
we construct A∗(n) using spheres. Let Sn denote the reduced simplicial model
of the n-dimensional sphere with no simplices below n. We can take A∗(n) to be
the A-free simplicial vector space A[Sn]. In order to get Rs

iF (A) we should take
a cosimplicial (injective) resolution of A of degree n, apply to it functor F and
calculate cohomology groups of the corresponding cochain complex. But observe
that for any finite set X, (A[X])• is naturally isomorphic to A•[X] and hence for
the set Sn

i of i dimensional simplices of a sphere

(A[Sn
i ])

• = A•[Sn
i ]

This implies that (A[Sn])• is a cosimplicial resolution of A• of degree n. We can
now calculate:

Ls
i (F

#)(A) = πn+iF
#(A[Sn]) = πn+i(F (A[Sn]•)• =

πn+i(F (A•[Sn])• = (Hn+i(F (A•[Sn]))• = (Rs
iF )#(A)

□

Remark 3.7. When F has values in finite dimensional vector spaces then Rs
iF

is self dual and we get the filtration of Ext∗Fp
(I, F ) governed by the groups

Ext∗Fp
(I, Rs

iF ). We suspect that this statement is true in greater generality but

for the proof we need a nonnegative cochain complex Q̄F ∗ in F with Q̄F 0 = F ,
diagonalizable Q̄F i for i > 0 and cohomology functors isomorphic to Rs

∗F . Of
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course, in the case of finite fields and finite functors, it is easy to check that the
cochain complex (QF#

∗ )# has the desired properties.

4. Generators for Ext∗(I, F ) via Ls
∗F

We start the present section from proving some general version of theorem
3.1 for Ext∗F(I, F ). The new problem arises when one wants to show that the
constructed filtration is exhausting.

Theorem 4.1. Let F ∈ F . The graded group Ext∗F(I, F ) as a module over
Ext∗F(I, I) has a decreasing filtration Ext∗F(I, F ) = B∗

−1 ⊃ B∗
0 ⊃ B∗

1 ⊃ B∗
2 ⊃ ...

such that for −1 ≤ n the quotient B∗
n/B

∗
n+1 is a subquotient of Ext∗F(I, L

s
n+1F ).

Proof. We will use notation from the proof of 3.1. We put B∗
−1 = Ext∗F(I, F )

and B∗
n = ker(Ext∗(I, in) : Ext∗F(I, F ) −→ Ext∗F(I,Q

n
∗ )). From the equality

qn ◦ in = in−1 one gets that B∗
n ⊂ B∗

n−1. Let Dk
n denote the cokernel of the

embedding Bk
n ↪→ ExtkF(I, F ). Then for any k we have a commuting diagram

with exact rows

0 → Bk
n → ExtkF(I, F ) → Dk

n → 0
↓ ∥ ↓

0 → Bk
n−1 → ExtkF(I, F ) → Dk

n−1 → 0

By the Snake Lemma we get an isomorphism between Bk
n−1/B

k
n and the kernel Xk

n

of Dk
n → Dk

n−1. It follows immediately from the definition of D∗
n that Xk

n embeds

into the kernel of Extk(I, qn). From the the long exact sequence of hyperext
groups induced by the exact sequence 3.1.1 we read that ExtkF(I, L

s
nF [n]) maps

onto the kernel of Extk(I, qn). This finishes the proof of the theorem. □

For computational purposes we would like to have an exhausting filtration. It
means here that we would like to have the formula:⋂

n≥0

B∗
n = 0. (4.1.1)

Unfortunately we cannot claim this. We know that this formula is not true in
general. Schwede’s example ([[10], Example 11.3]), mentioned in the introduction,
gives a counterexample to it. His functor F has the property that all of its left
stable derived functors are trivial but HomF(I, F ) is nontrivial. We suspect that
4.1.1 holds for finite degree functors. Below we discuss the special case, when we
can prove that the filtration described above is exhausting. For this we have to
assume (as at the end of Section 3) that our ring R is a finite field of characteristic
p. We send the interested reader to [4] for the definition and properties of the
category P of strict polynomial functors. It comes with the forgetful functor
ι : P → Fp. We will use in the future the same letter for denoting F ∈ P and its
image ι(F ) ∈ Fp. Our goal now is to prove the following theorem:

Theorem 4.2. Let F ∈ Fp be in the image of ι. Then the filtration described in
Theorem 4.1 on Ext∗Fp

(I, F ) is exhausting.
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Before the proof, be would like to make some general comments and observa-
tions. Every functor F ∈ P decomposes into a sum of its homogeneous pieces.
The forgetful functor ι carries sums to sums. Moreover Ext groups are addi-
tive with respect to both variables and the decomposition Ext∗Fp

(I, F1 ⊕ F2) =

Ext∗Fp
(I, F1)⊕Ext∗Fp

(I, F2) is valid in the category of Ext∗Fp
(I, I)-modules. The

Q-construction is additive with respect to the functor and so are the stable left
derived functors. All this means that we can assume that our functor F comes
from a homogeneous functor of degree t. The crucial observation for proving
4.2 is contained in the proposition below. It should potentially be interesting
and fruitful on its own because it shows that the duality phenomenon relating
Ext∗Fp

(I, St) and Ext∗Fp
(I,Dt) (symmetric and divided power functors), which we

trivially prove using Koszul and de Rham sequences, applies to all finite degree
homogeneous functors F and their Kuhn duals F#.

Proposition 4.3. Let F ∈ im(ι) be a functor of homogeneous degree t and
assume that |R| ≥ t. Then for any given i there exists s such that ExtiFp

(I, F )

and Exti+s
Fp

(F, I)• are naturally isomorphic.

Proof. The functor F comes from the category P so it has in P a finite injective
resolution F → Q0 → Q1 → ... in which every Qi is a sum of tensor products of
symmetric powers:

Qi =
⊕

Sj1 ⊗ ...⊗ Sjk

where j1 + ... + jk = t. This resolution remains exact when considered in F . If
k > 1 then Sj1 ⊗ ... ⊗ Sjk is obviously diagonalizable. If k = 1 and j1 is not
a power of p then Sj1 is a direct summand in a diagonalizable functor (see [4],
Proposition 6.1]). Hence by a hyper-cohomology spectral sequence argument and
Lemma 2.3 we know that Ext∗Fp

(I, F ) is non trivial only when t is a power of p.

We will assume that t = pd for the rest of the proof.
If |R| > t then there is nothing to prove because both sides of the equation

are 0 by [[7], Section 5.2]. So for the rest of the proof we assume that |R| = t.
When this is the case then I = I(d) and we will use this equality in the future.
By [[2], Theorem 3.2] we know that ExtiP(I

(d), F ) = Exti+s
P (I(d), F#)• where

s depends only on the degree of F . Here (.)(d) denotes traditionally the pre-
composition of a functor with the d-fold composition of the Frobenius twist. For
any F,G ∈ P the canonical homomorphism ExtiP(F,G)→ ExtiFp

(F,G) induced

by ι is a monomorphism ([[4], Corollary 3.7]). Assume now that R→ K is a finite
field extension. We will write F(K) (P(K)) for the corresponding categories of
functors over K. Let FK ∈ P(K) be the functor obtained from F by the change
of the base field (see [[4], Proposition 1.1]). We have formulas

K ⊗ Ext∗Fp
(I, F ) = Ext∗F(K)(I

(d), FK)

K ⊗ Ext∗P(I
(d), F ) = Ext∗P(K)(I

(d), FK)

The second equation is stated in [[4], Proposition 1.1] while the first one follows
from [[4], Theorem 3.9] and equality I = I(d), which holds over R. Of course the
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same formulas hold for the groups Ext(., I). Theorem 3.10 of [4] plus Corollary
2.8 in the same paper tell us that when K is large enough and i is given then
there exists m0 such that for all m ≥ m0 we have an isomorphism:

ExtiP(K)(I
(m+d), F

(m)
K ) ≃ ExtiF(K)(I, FK)

We can assume that for m ≥ m0 holds also:

ExtiP(K)(F
(m)
K , I(m+d)) ≃ ExtiF(K)(FK , I)

From these we deduce that for a certain sufficiently large K we have:

K ⊗ ExtiFp
(I, F ) ≃ ExtiF(K)(I

(d), FK) ≃ ExtiP(K)(I
(m+d), F

(m)
K ) ≃

≃ K ⊗ ExtiP(I
(m+d), F (m)) ≃ K ⊗ Exti+s

P (I(m+d), F (m)#)• ←−

←− K ⊗ Exti+s
Fp

(I, F#)•.

where the last arrow is an epimorphism. The first five isomorphisms follow from
our discussion proceeding the statement and the number s is determined by the
degree of F (m). But in order to get the isomorphisms on the last step we might
have to twist functors again. The last arrow is dual to the arrow

Exti+s
P (I(m+d), F (m)#)→ Exti+s

P (I(m+d+e), F (m+e)#)→ K ⊗ Exti+s
Fp

(I, F#).

for a certain number e where the first map is a monomorphism and the second is
an isomorphism. From this we get that Exti+s

Fp
(I, F#)• maps onto ExtiFp

(I, F ).

But now we can argue the same way but starting from F# instead of F . This way
we show that our epimorphism is also a monomorphism. Finally, the naturality
statement follows from [[4], Proposition 1.4]. □

Corollary 4.4. Let F ∈ im(ι) be a functor of homogeneous degree t. Then for
any given i there exists s such that ExtiFp

(I, F ) and Exti+s
Fp

(F, I)• are isomorphic.

Proof. We have to show our statement only for t = pd and |R| < pd. We will
write the argument only for the based field R = Fp leaving the case of the general
R like above for the reader. Let K be a degree d extension of Fp. Let τ be a
functor of restriction of scalars from K to Fp and ρ denotes the scalar extension.
By [[4], Remark 3.4.1] we know that

K ⊗ Ext∗Fp
(I, F ) ≃ Ext∗F(K)(I ◦ (ρ ◦ τ), FK)

By [[7], Section 5.2] we know that the latter group is isomorphic to

Ext∗F(K)(I, FK).

Hence we finish our proof using the diagram

K ⊗ ExtiFp
(I, F ) ≃ ExtiF(K)(I, FK)

↓
K ⊗ Exti+s

Fp
(F, I)• ≃ Exti+s

F(K)(FK , I)
•

where the right vertical arrow is an isomorphism from 4.3. □
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Before proving 4.2 we need one more observation. If F is a homogeneous functor
in P of degree t = pd then for every n the functor QFn is strict polynomial of
degree t and the complex QF∗ is a complex of objects in P . From this point of
view the stable derived functors (homology of QF∗) are additive strict polynomial
functors of degree t. The theorems 3.1, 4.1 and 4.2 are valid in P and their proofs
are the same, of course with I(d) at the place of I. Moreover in P we do not
have problems with proving equality between Ext∗P(I

(d), F ) and Ext∗P(I
(d), F ).

Let Pt denote the category of strict polynomial functors of degree t. Then Pt has
finite cohomological dimension and hence the hyperext spectral sequence strongly
converges. On the other hand we know that the groups Ext∗P(I

(d), F ) are the same
as Ext∗Pt

(I(d), F ).

Proof of Theorem 4.2. Let F be as in the theorem. We can assume that F is
homogeneous of degree t = pd. Moreover assume that |R| = t. This implies
that we have the full naturality of the isomorphism from Proposition 4.3. Our
functor takes finite dimensional vector spaces to finite dimensional vector spaces
and hence the linear duality operation is contravariant exact. Moreover for such
functors all Ext-groups between them are finite dimensional vector spaces.

We have to show that if α ∈ ExtiF(I, F ) then there exists j such that α ∈ Bi
j

and α /∈ Bi
j+1. By 4.3 we know that there exists s such that we have the following

isomorphism of Ext-groups:

ExtiFp
(I, F ) ≃ Exti+s

Fp
(I, F#)• ≃ Exti+s

Fp
(F, I)•

Assume that the isomorphisms above maps α to ᾱ• for some ᾱ ∈ Exti+s
Fp

(F, I). To
illustrate our approach assume first that ᾱ ∈ A∗

0, where A
∗
0 is as in the theorem 3.1.

Recall that by the definition of our truncations Ext∗Fp
(Q0

∗ , I) = Ext∗Fp
(Ls

0F, I).
We can extend the sequence of isomorphisms described above to the commuting
diagram

Exti(I, F ) ≃ Exti+s(I, F#)• ≃ Exti+s(F, I)•

↓ ↓ ↓
Exti(I, Ls

0F ) ≃ Exti+s(I, (Ls
0F )#)• ≃ Exti+s(Ls

0F, I)
•

(4.1.2)

in which the image of α in right lower corner is nontrivial. This means that α
is not in the kernel of the left vertical map and hence is not in B∗

0 .
In the general case we proceed similarly using notation from the proof of 3.1.

Let 0 ̸= ᾱ ∈ A∗
n \ A∗

n−1. From the exact sequence

0→ F → Qn−1 → Qn−1/F → 0

we know that ᾱ determines a nontrivial element in

Exti+s+1
Fp

(Qn−1/F, I) = Exti+s+1
Fp

(Kn−1
n [n], I) = Exti+s+1−n

Fp
(Kn−1

n , I)

by the boundary homomorphism. Finally, by the short exact sequence of functors

0→ Kn
n → Qn

n → Kn−1
n → 0

and diagonalizability of Qn
n we get a nontrivial element

α̃ ∈ Exti+s
Fp

(Kn
n [n], I) = Exti+s−n

Fp
(Kn

n , I).
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On the other hand ᾱ is in the image of Ext(in, I) so in the long exact sequence
of Ext-groups related to the short exact sequence

0→ Kn
n [n]→ Kn

∗ → Kn
n+1[n+ 1]→ 0

α̃ determines a nontrivial element in Exti+s
Fp

(Kn
∗ , I) = Exti+s

Fp
(Ls

nF [n], I). By our

knowledge about stable derived functors we see that Ls
0(K

n
n) = Ls

nF and the map
Kn

n [n]→ Kn
∗ induces the same map on the Ext-groups (with corresponding shift)

as Kn
n → Ls

0(K
n
n).

Assume that α ∈ B∗
n−1 and ᾱ ∈ A∗

n \ A∗
n−1. By the same reasoning as above

(but covariant) we see that α determines an element α ∈ ExtiFp
(I,Kn

n [n]). By
the naturality of 4.3 we know that we can make choices in such a way that α is
mapped to (α̃)• in the isomorphism from 4.3. Now we can use the commuting
diagram

Exti(I,Kn
n) ≃ Exti+s(Kn

n , I)
•

↓ ↓
Exti(I, Ls

nF ) ≃ Exti+s((Ls
nF ), I)•

to show that α /∈ B∗
n. Note that the diagram above is the same as the diagram

4.4.1 with Kn
n instead of F . Of course we identify Ls

0(K
n
n) = Ls

nF .
For the general R we use Corollary 4.4. As in 4.4 we write our argument only

for Fp. Assume that we extend our field of scalars Fp → K with |K| = pd.
Obviously Q(FK)∗ = (QF∗)K and for any natural n the map in and qn commute
with the extension of scalars. It means that extension of scalars commutes with
filtrations. We get commuting diagrams

K ⊗ A∗
n(F ) ↪→ K ⊗ Ext∗Fp

(F, I)
↓ ↓

A∗
n(FK) ↪→ Ext∗FK

(FK , I)

and
K ⊗B∗

n(F ) ↪→ K ⊗ Ext∗Fp
(I, F )

↓ ↓
B∗

n(FK) ↪→ Ext∗FK
(I, FK)

The right vertical arrows are isomorphisms hence the left vertical maps are
monomorphisms. The filtration B∗

n(FK) is exhausting. This implies that the
filtration B∗

n(F ) is also exhausting. □
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2. M. Chalupnik. Poincaré duality for Ext-groups between strict polynomial functors. Proc.
Amer. Math. Soc. 144 (2016) 963-970. https://doi.org/10.1090/proc12782

3. A. Dold, D. Puppe. Homologie nicht-additiver Funktoren. Anwendungen. Ann. Inst. Fourier
(Grenoble) 11 (1961) 201-312.

4. V. Franjou, E. Friedlander, A. Scorichenko, A. Suslin. General linear and functor coho-
mology over finite fields. Annals of Math. 150 (1999) 663-728. https://doi.org/10.2307/
121092

https://doi.org/10.1090/proc12782
https://doi.org/10.2307/121092
https://doi.org/10.2307/121092


12 S. BETLEY

5. B. Johnson, R. MacCarthy. Linearization, Dold-Puppe stabilization and Mac
Lane’s Q-construction. TAMS 350 (1998) 1555-1593. https://doi.org/10.1090/

S0002-9947-98-02067-4

6. N. Kuhn. Generic representations of the finite general linear groups and the Steenrod
algebra: I. American Journal of Mathematics 116 (1994) 327-360. https://doi.org/10.
2307/2374932

7. N. Kuhn. Generic representations of the finite general linear groups and the Steenrod
algebra: II. K-Theory 8 (1994), 395-428. DOI: 10.1007/BF00961409

8. N. Kuhn. Generic representations of the finite general linear groups and the Steenrod
algebra: III. K-theory 9 (1995) 273-303. DOI: 10.1007/BF00961666

9. S. Mac Lane. Homology. Springer 1975.
10. S. Schwede. Formal groups and stable homotopy of commutative rings. Geom. Topol. 8

(2004), 335-412. http://dx.doi.org/10.2140/gt.2004.8.335
11. D. Simson, A. Tyc. Connected sequences of stable derived functors and their applications.

Dissertationes Math. 111, 1974.

1 Institute of Mathematics, University of Warsaw, Warsaw, Poland.
Email address: betley@mimuw.edu.pl

https://doi.org/10.1090/S0002-9947-98-02067-4
https://doi.org/10.1090/S0002-9947-98-02067-4
https://doi.org/10.2307/2374932
https://doi.org/10.2307/2374932
10.1007/BF00961409
10.1007/BF00961666
http://dx.doi.org/10.2140/gt.2004.8.335

	1.  Introduction
	2. Preliminaries
	3.  Generators for Ext*F(F,I)
	4.  Generators for Ext*(I,F) via Ls*F
	References

