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Introduction

In the present article we investigate Hom and Ext groups between compo-
sitions of functors (called in representation theory plethysms) in the category
P of strict polynomial functors over a field of positive characteristic p. This
topic was heavily studied in the case of composition with the Frobenius twist
functor I(1) (see [FS], [FFSS], [T1], [C3], [C4]). This particular case is im-

portant, because precompositions of the form F ◦I(1) appear in the classical
Franjou-Friedlander-Scorichenco-Suslin theorem [FFSS] comparing P with
the category of k[GLn(k)]-mod, and at the time being is quite well under-

stood. However the case of I(1) is very special, since we precompose with
an additive functor, which greatly simplifies computations. On the other
hand, the case of non-additive functor is largely unexplored (we can only
point out for [Tr], where some computations of the groups Ext∗(I, F ◦G) in
the category F of ordinary functors are obtained).

In our paper we start a systematic investigation of Ext and Hom groups
of the form

Ext∗P(G ◦ F,H ◦ F ).

Our focus is homological algebra, hence we work over a field k of positive
characteristic p. However, the reader should be aware of the complexity of
the situation even in characteristic zero. Namely, for example the celebrated
Foulkes conjecture [F] predicts the existence of embedding:

Sb ◦ Sa ⊂ Sa ◦ Sb

for a > b. Since we are now in characteristic zero, it would suffice to show
that any irreducible character appearing in the LHS also appears in the
RHS, but still the conjecture is open for b > 3. Hence it is unrealistic to
expect simple closed formulas for, say, Hom-groups between compositions
of symmetric powers. But still the possibility of applications to the prob-
lems like the Foulkes conjecture was one of the main motivation for the
current work. Namely, we hope that, like in many instances in algebraic
geometry, the positive characteristic case can help understanding the situ-
ation in characteristic zero. More concretely, as we will see in our article,
the technology utilizing the de Rham complex and the Cartier theorem pro-
vides link between Hom and Ext groups for larger and smaller symmetric
powers allowing inductive arguments of all sorts. Also some rich combinato-
rial/simplicial structures we encountered in Section 1 seem to us to be quite
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universal and characteristic free. We find them very promising as a subject
of a further research. Having said this, we do not claim any applications of
the results of our paper to the classical problems in characteristic zero. We
rather think of our article as the one which besides establishing some non-
trivial yet quite particular results, sets the framework for further research,
identifies the structures governing computations, tests the limits of known
methods (Koszul and de Rham complexes...) and merges them with the
ideas specific to our situation like modular Hecke algebras.

Now, let us discuss the contents of our article. The results and methods
used in the paper are quite diverse and can be sorted out in two ways. The
first part of the paper (Sections 1 and 2) concerns what we call “additive
structures”, ie. we compute ranks of the Hom and Ext groups between
plethysms in P. In the second part (Sections 3 and 4) we investigate extra
structures existing on Hom/Ext groups: we determine the Yoneda multipli-
cation for some plethysms in Section 3 and we describe the behavior of the
adjunction generated by the operation of precomposing with S2. However,
inside each part there is a stark contrast between the methods and results
concerning Hom groups, which are largely combinatorial and characteris-
tic free and those concerning higher Exts, where a heavy use of spectral
sequences and the de Rham/Koszul complexes is mandatory. This is the
reason why we relegated the Hom computations to separate Section 1, and
also we divided Sections 3 and 4 into subsections. We also point out that
in the course of paper we impose more and more restrictions and special-
izations on our results. While results of Section 1.1 hold for a large class of
plethysms and are valid over any field, starting from Section 1.2 we assume
the ground field k has a positive characteristic p and we specialize to the
plethysms of the form Sp ◦ F for F ∈ Pi for i < p. Then the multiplicative
results of Section 3 concern plethysms Sp ◦ S2 and also the main result of
Section 4 describes the unit of adjunction generated by the (derived) functor

CS2 : DP p −→ DP 2p

of precomposing with S2. Thus the strongest results of our article concern
the plethysms with S2, which is the simplest possible nonadditive functor.
This situation, as we will see is already quite rich and interesting which shows
again how complex and challenging may be the understanding plethysms
with general nonadditive functors.

Now we shall guide the reader through the main results of the paper. As
we have mentioned we study Hom-groups in Section 1. Many important
objects of Pd are obtained from the tensor power functor Id by applying an
operation (functor) using the action of the symmetric group Σd on it. Thus
we start by investigating an interplay between strict polynomial functors
and finite group action in Section 1.1. We show in Theorem 1.1 when one
can “ go with a group action inside the Hom-groups”, which gives some
general formula (Corollary 1.2) for Hom-groups in P. We would like turn
the reader attention to the fact that Corollary 1.2 is the source and precursor
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of the connection between Hom-groups in P and the Hecke algebras which
will be vital in the further parts of article. In Section 1.2 we specialize
to the main subject of the paper ie. the compositions of functors of the
form Sd ◦ F , where F ∈ Pi for i < p. We again start with some general
(Corollary 1.7), but it becomes really interesting for F = Si, where it can
be interpreted in terms of graphs and simplicial sets. The main result is
Theorem 1.10 which interprets (the k-basis of) HomP(S

d ◦ S2, Sd ◦ S2) in
terms of bipartite graphs and thus computes its rank. The rest of Section
1 is devoted to the study of the groups HomP(S

d ◦ Si, Sd ◦ Si) for i > 2.
In Proposition 1.12 we refine its combinatorial description by introducing
certain combinatorial object Polyh(d, i) consisting of multisets, which can
be nicely interpreted as some simplicial sets. We find this interpretation
interesting and promising, yet the classification problem which should be
solved in order to obtain the generalization of Theorem 1.10 for i > 2 seems
to be very challenging in general. We hope to tackle it in a future work.

In Section 2 we fix k to be a field of characteristic p and study the entire
graded group Ext∗P(S

p ◦ F, Sp ◦ F ) for F ∈ Pi with i < p. The main
result, Theorem 2.9 describes this group in terms of the graded space F ∗ =
Ext∗Ppi

(F (1), F (1)) (we point out that the graded group F ∗ can be effectively

computed thanks to the Collapsing Conjecture [C3]).
In Section 3 we describe the Yoneda multiplication in Ext∗P(S

p ◦ S2, Sp ◦
S2). As we have already mentioned, the descriptions of Hom and Ext>0 are
quite different. We describe the multiplication in higher Exts in Theorem
3.1, which requires a careful study of the relevant spectral sequences, while
we interpret HomP(S

p ◦ S2, Sp ◦ S2) as a certain modular Hecke algebra in
Proposition 3.7 (which is again a characteristic free result). Then, which
is the most challenging part of Section 3, we describe in Theorem 3.8 the
multiplication between Hom and Ext>0. The answer is given in terms of the
representation of Hecke algebra called index (the necessary background on
Hecke algebra is provided in Section 4.2).

Then in Section 4 we analyze the unit RU of the adjunction:

CS2 : DP p −→ DP 2p,

KS2 : DP 2p −→ DP p,

(CS2 possesses the right adjoint by the Special Adjoint Functor theorem, and
adjunction carries over to the derived categories). It was shown in [C3] that

the analogous unit for the precomposition with I(1) has an explicit and quite
simple description. It had strong computational applications (the so called
Collapsing conjecture) and also allowed in [C4] to produce some interesting
subcategories of DP d. Now it appears that this phenomenon is not bound
to the case of I(1). Namely we explicitly describe in Theorem 4.10 the unit
of the adjunction in DP p for the precomposition with S2 (we also provide
the description of the unit in the semisimple case in all degrees (Theorem
4.3), which may be interesting for its own). This result, apart from possible
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computational applications, also sheds some light onto the dichotomy be-
tween Homs and higher Exts empirically observed in the previous sections.
Namely, we see that RU decomposes into a large characteristic free part and
a small derived component, for which the extremely simple p-local structure
of the symmetric group Σp accounts. This explains why in the computations
we usually have much larger Hom-groups than higher Ext-groups.

1. Hom between plethysms

In this section we describe the additive structure of Hom-groups for a large
class of functors, which includes some plethysms. In Section 1.1 we study an
interplay between Pd and group actions and produce certain general formula
for Hom-groups. In Section 1.2 we specialize to the case of plethysms, where
some nice combinatorial descriptions can be obtained.

1.1. Hom-groups and group actions. For a finite group Σ we say that
F ∈ Pd is Σ-equivariant when for any V , F (V ) is equipped with a Σ-
action and for any map f : V −→ W the induced map F (f) : F (V ) −→
F (W ) is Σ-equivariant. Thus when α is a k-linear functor from the category
of finite dimensional k[Σ]-modules to the category of finite dimensional k-
modules, the assignment V 7→ α(F (V )) defines a new functor α(F ) ∈ Pd.
Also, for any G ∈ Pd, α acts on HomPd

(G,F ). Our goal is to compare
HomPd

(G,α(F )) and α(HomPd
(G,F )).

Theorem 1.1. Let F,G, α be as above. Then there exists a natural map
HomPd

(G,α(F )) −→ α(HomPd
(G,F )) which is an isomorphism if one of

the assumptions is satisfied:

• G is projective.
• α is left exact.

Dually, there exists a natural map α#(HomPd
(F,G)) −→ HomPd

(α(F ), G),
where α# is the Kuhn dual of α, ie. α#(M) := (α(M∗))∗. The above map
is an isomorphism if one of the following assumptions is satisfied:

• G is injective.
• α is right exact.

Proof: Assume first that G = Γd,U (we will use frequently in our article
functors with parameters (see eg. [C3, Section 2]) following the conventions:
FU (V ) := F (U∗⊗V ) and FU (V ) := F (U⊗V )). Then by the Yoneda lemma
we have α(HomPd

(G,F )) = α(F (U) = α(F )(U) = HomPd
(G,α(F )). Now,

let G be any projective object. Then we have a split exact sequence:

Γd,U ′ −→ Γd,U −→ G −→ 0.

Then by applying HomPd
(−, α(F )) we obtain the exact sequence:

0 −→ HomPd
(G,α(F )) −→ HomPd

(Γd,U , α(F )) −→ HomPd
(Γd,U ′

, α(F )).

Similarly, by applying HomPd
(−, F ) we obtain the exact sequence:

0 −→ HomPd
(G,F ) −→ HomPd

(Γd,U , F ) −→ HomPd
(Γd,U ′

, F ).
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Since the resulting sequence is split exact, it remains exact after applying
α, hence we get the exact sequence:

0 −→ α(HomPd
(G,F )) −→ α(HomPd

(Γd,U , F )) −→ α(HomPd
(Γd,U ′

, F )).

Thus, using the functoriality of isomorphisms established for representable
G we get a commutative diagram with exact rows:

0 −→ α(HomPd
(G,F )) −→ α(HomPd

(Γd,U , F )) −→ α(HomPd
(Γd,U ′

, F ))
| ≀ | ≀

0 −→ HomPd
(G,α(F )) −→ HomPd

(Γd,U , α(F )) −→ HomPd
(Γd,U ′

, α(F )).

Hence, by diagram chasing we obtain an isomorphism α(HomPd
(G,F )) ≃

HomPd
(G,α(F )).

Now, consider an arbitrary G ∈ Pd. Then by repeating the above construc-
tions we arrive at the commutative diagram with the bottom row exact:

0 −→ α(HomPd
(G,F )) −→ α(HomPd

(Γd,U , F )) −→ α(HomPd
(Γd,U ′

, F ))
| ≀ | ≀

0 −→ HomPd
(G,α(F )) −→ HomPd

(Γd,U , α(F )) −→ HomPd
(Γd,U ′

, α(F )).

This time by a diagram chasing we only obtain a map: α(HomPd
(G,F )) −→

HomPd
(G,α(F )). However, when α is left exact, also the top row is exact,

hence the above map is an isomorphism.
The proof of the dual statement is analogous. □

Let us now discuss some examples. The source of many examples is a
certain observation used empirically in [C1] and conceptualized and related
to the Auslander theory in [FP]. Namely, one can see that many important
objects in Pd can be obtained from the Σd-invariant object I

d by applying
certain functors from the category of finite dimensional k[Σd]-modules to the
category of finite dimensional k-modules. The most obvious examples are:
the symmetric power functor Sd is obtained from Id by applying the functor
of Σd-coinvariants, or the divided power functor Γd is obtained from Id by
applying the functor of Σd-invariants. Less trivially, for a Young diagram λ,
the Schur functor Sλ can be obtained from Id by applying certain functor
sλ (see [C1]). On the other hand, it was shown in [C1] that the Specht
module Spλ is sλ(k[Σd]. Since Id is projective, by applying Theorem 1.1 to
F = G = Id and α = sλ and obtain:

HomPd
(Id, Sλ) ≃ HomPd

(Id, sλ(I
d)) ≃ sλ(HomPd

(Id, Id)) ≃ sλ(k[Σd]) ≃ Spλ

hence we obtain the well known description of the Specht modules in terms
of ”the Schur functor” (see [M, Chapter 4]).

Let H,K be subgroups of Σd. We consider the right exact functors (−)H ,
(−)K of coinvariants with respect to H and K, and their Kuhn duals which
are the functors (−)H , (−)K of invariants. By applying the both parts of
Theorem 1.1 we get:

Corollary 1.2. For any H,K ≤ Σd we have:

HomPd
((Id)H , (Id)K) ≃ H(k[Σd]K).
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Let us formalize the construction appearing in Cor. 1.2.

Definition 1.3. Let M be a H-K-bimodule. We call the k-module H(MK)
the Hecke space associated to M .

We will discuss multiplicative properties of the above construction and
explain terminology in Section 3.2. Now we only provide its k-basis.

Proposition 1.4. Assume that there exists X, a k-basis of M preserved
by the both actions of H and K. Then there is an isomorphism of vector
spaces:

H(MK) ≃ k[H\X/K],

where H \ X/K is the set of H − K double cosets on X ie. we factorize
X through the relation: x ∼ y when there exist h ∈ H, k ∈ K such that
y = h · x · k.

Proof: Since M as H −K-bimodule is isomorphic to the direct sum of
the sub-bimodules generated by the elements of X belonging to the same
double coset, it suffices to show that when X has a single double coset, the
Hecke space is one-dimensional. So, assume that H \ X/K is one-element
and let {x1, . . . , xn} be the set of representatives for the right K-action on
X. Then it may be thought of as a basis for MK , and since they all belong
to the same double coset, we see that MK is a transitive permutative left
H-module. Hence its space of invariants is one-dimensional □

1.2. The case of plethysms. In this subsection we investigate plethysms
of the form Sd ◦F , for F ∈ Pi for i < p. First we recall the well known fact:

Proposition 1.5. Any F ∈ Pi for i < p is of the form f(Id) for some exact
functor f : k[Σd]−mod −→ k−mod.

Proof: This fact follows from the machinery of [FP], hence essentially
from the Auslander theory, but we can also give a simple elementary argu-
ment. Namely, for i < p, Pi is semisimple (see eg. [G], in fact the proof
in characteristic zero going back to Schur still works here). Thus it suffices
to provide f for a simple functor F . But the simple functors in Pi are just
Schur functors Sλ for which we have sλ. But sλ is a composite of invariant
and coinvariant functors in the category of k[Σi] modules, which are clearly
exact. □

Now we would like to describe a plethysm Sd ◦ F as αF (I
di). For this we

need some elementary facts on prolonging functors.

Lemma 1.6. Let f : k[Σ]−mod −→ k−mod be a functor. Then:

(1) For any finite group Σ′ the composite functor

k[Σ× Σ′]−mod
res−→ k[Σ]−mod

f−→ k−mod

naturally lifts to the functor k[Σ× Σ′]−mod −→ k[Σ′]−mod, which
will be denoted by f × id.
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(2) f extends to the functor

f×d : k[Σ×d]−mod −→ k−mod

such that f×d restricted to any copy of k[Σ]−mod is f .
Moreover, let for a k[Σ×d]-module M and a permutation σ ∈ Σd,
Mσ stands for the k[Σ×d]-module with the Σ×d-action twisted by σ.
Then there is a natural isomorphism f×d(M) ≃ f×d(Mσ).

(3) Let Σ ≀ Σd be the wreath product. Then f extends to the functor

f ≀ id : k[Σ ≀ Σd]−mod −→ k[Σd]−mod

such that f ≀ id restricted to k[Σ×d]−mod is f×d.

Proof: The first assertion follows from the fact that Σ′ acts on a k[Σ×
Σ′]-module M via Σ-endomorphisms, hence f acts on them, thus yielding
the Σ-action on f(M).
For the second assertion we start with picking the first copy of Σ from Σ×d

and applying part (1) to the product Σ×Σ×(d−1), thus obtaining the functor

f × id : k[Σ× (Σ×(d−1))]−mod −→ k[Σ×(d−1)]−mod.

Then we pick another copy of Σ from Σ×(d−1) and repeat the procedure.
Finally we arrive at the desired functor f×d. We also observe that the re-
sulting functor does not depend (up to isomorphism) on the order of picking
the factors from the product Σ×d. This also shows the invariance of f× with
respect to the action of the symmetric group Σd.
For the third part we first construct f×d by using (2). Then we observe that
for a k[Σ ≀Σd]-module M , the multiplication by a permutation σ ∈ Σd yields
the Σ×d-homomorphism:

Lσ : M −→ Mσ.

Hence by applying f×d and using the second part of (2) we obtain the map:

f×d(M)
f×d(Lσ)−→ f×d(Mσ) ≃ f×d(M),

which equips f×d(M) with the Σd-action. □
Therefore for F of the form f(Ii), the plethysm Sd◦F can be described as

αF (I
di) for the functor αF : k[Σdi]−mod −→ k−mod given as the composite:

k[Σdi]−mod
res−→ k[Σi ≀ Σd]−mod

f ≀id−→ k[Σd]−mod
⊗Σd

k
−→ k−mod.

Since αF is left exact, we get:

Corollary 1.7. For any F ∈ Pi for i < p, we have:

HomPdi
(Sd ◦ F, Sd ◦ F ) = α#(α(Id)).

Now, let us look more closely at the special case of F = Si. Then we
can apply Cor. 1.6, but in order to obtain a more explicit description we
shall divide the process into two steps, ie. we firstly factorize Idi through
the action of Σ×d

i to obtain (Si)⊗d, and then we factorize (Si)⊗d through
the action of Σd. Let Grbip(d, i; d, i) stand for the set of 2-regular bipartite
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graphs with the set of vertices being the disjoint union of two copies of
[d] = {1, . . . , d}. This means that we impose on our graphs the following
conditions: there are exactly i edges attached to any vertex (multiple edges
allowed) and there are no edges between vertices belonging to the same
copy of [d]. Grbip(d, i; d, i) is equipped with the Σd×Σd action coming from
renumbering vertices inside the copies of [d]. Then we have:

Proposition 1.8. There are isomorphisms of k[Σd]-bimodules:

HomPdi
((Si)⊗d, Si)⊗d) ≃ k[Σ×d

i \Σdi/Σ
×d
i ] ≃ k[Grbip(d, i; d, i)].

Proof: By the Exponential Formula (see [FFSS]), we know that HomPdi
((Si)⊗d, (Si)⊗d)

has a basis consisting of d×d matrices with entries from the set {0, 1, . . . , i}
such that all the row and column sums are equal to i. Then for a ma-
trix A = [ast] we form our graph by putting ast edges between vertices s
and t. The action of Σd on, respectively the source and target of endo-
morphisms corresponds to permuting respectively columns and rows of the
matrix, hence after taking graphs we obtain the described above action on
Grbip(d, i; d, i). □

Then we can apply again Theorem 1.1 for F = G = (Si)⊗d), and Prop.
1.4, 1.8 in order to describe HomPdi

(Sd◦Si, Sd◦Si) in terms of HomPdi
((Si)⊗d, (Si)⊗d).

Thus we clearly get:

Corollary 1.9. We have an isomorphism:

HomPdi
(Sd ◦ Si, Sd ◦ Si) ≃ Σd(HomPdi

((Si)⊗d, (Si)⊗d)Σd
) ≃

Σd(k[Grbip(d, i; d, i)]Σd
) ≃ k[Σd \Grbip(d, i; d, i)/Σd].

Therefore our task is to describe the set of Σd-double cosets onGrbip(d, i; d, i),
or equivalently the set of isomorphism classes of such graphs. We start with
the case i = 2.

Theorem 1.10. Two graphs in Grbip(d, 2; d, 2) are isomorphic if and only
if they have the same lengths of connected components.
Therefore the dimension of HomP2d

(Sd ◦ S2, Sd ◦ S2) is equal to |Λ(d)|, the
number of Young diagrams of weight d.

Proof: This is an elementary exercise in combinatorics, but we shall
divide the proof into two parts, since a similar approach sheds light onto the
case i > 2. Namely, first we analyze the right action:

Lemma 1.11. There is an isomorphism of Σd-sets:

Grbip(d, 2; d, 2)/Σd ≃ Gr(d, 2),

where Gr(d, 2) stands for the set of graphs with the set of vertices [d], with
each vertex of degree 2.

Proof of the Lemma: We construct the map Ψ : Grbip(d, 2; d, 2) −→
Gr(d, 2) by the following rule: we restrict ourselves to a one copy of [d] and
we connect two vertices by the edge if and only if they are connected by
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the path of length 2 in the original graph. Then it is obvious that Ψ is
Σd-invariant, onto and Ψ(X) = Ψ(Y ) if and only if X and Y belong to the
same orbit of the right Σd-action on Grbip(d, 2; d, 2). □

Lemma reduces our task to the analysis of the isomorphism classes of
graphs in Gr(d, 2). However, any such a graph is a disjoint sum of cycles
and its isomorphism class is determined by the lengths of its cycles. □

Let us now discuss the general case. Let Polyh′(d, i) denote the set of d
subsets with multiplicities of [d] each consisting of i elements with multiplici-
ties. When we additionally impose the condition that each number (counted
with multiplicities) occurs i times, we denote the resulting set by Polyh(d, i).
Thus, eg. Polyh(2, 3) = {{{1, 1, 1}, {2, 2, 2}}, {{1, 1, 2}, {1, 2, 2}}}. We
equip Polyh(d, i) with the Σd-action by permuting numbers and we have:

Proposition 1.12. There is an isomorphism of Σd-sets:

(Grbip(d, i; d, i))Σd
≃ Polyh(d, i).

Proof: This is an analog of Lemma 1.11, but the underlying combina-
torics is much more complicated. For this reason, instead of giving a purely
combinatorial proof, we will provide the one relying on Theorem 1.1 and the
Exponential Formula. Namely, on the one hand we have:

k[(Grbip(d, i; d, i))/Σd] ≃ (HomPdi
((Si)⊗d, (Si)⊗d)Σd

≃ HomPdi
((Si)⊗d, Sd◦Si).

On the other hand one can compute the last group directly. Since i < p,
(Si)⊗d ≃, (Γi)⊗d, while by the Yoneda lemma, for any G ∈ Pdi we have

HomPdi
((Γi)⊗d, G) ≃ Gi,...,i(V1 ⊕ . . .⊕ Vd),

for one-dimensional spaces Vi, and the superscript means the weight space
for the weight (i, . . . , i), ie. the subfunctor of the functor in d variables:

(V1, . . . , Vd) 7→ G(V1 ⊕ . . .⊕ Vd)

of degree i with respect to all Vl’s. Now let us describe Sd ◦ Si(V1 ⊕ . . . ⊕
Vd). For this we need some notation. For γ ∈ Polyh′(d, i) we write γ =
{γa11 , . . . , γakk }, where γj is a subset (with multiplicities) of [d] and aj is its
multiplicity (ie.

∑
j aj = d). Then for each individual γj we put γj(l) to be

the multiplicity of l in γj . Then we have:

Sd ◦ Si(V1 ⊕ . . . Vd)) ≃⊕
γ∈Polyh′(d,i)

Sa1(Sγ1(1)(V1)⊗. . .⊗Sγ1(d)(Vd))⊗. . .⊗Sak(Sγk(1)(V1)⊗. . .⊗Sγk(d)(Vd)).

Now we see that for Vl’s one-dimensional each summand is one-dimensional
and that its degree with respect to Vl equals the number of occurrences of l in
γ. This shows that the dimension of HomPdi

((Si)⊗d, Sd◦Si) equals the cardi-
nality of Polyh(d, i). Moreover, since the Σd-action on Hom corresponds via
the Yoneda lemma to renumbering Vl’s, this bijection is Σd-equivariant. □

Thus in order to compute the dimension of HomPdi
((Sd ◦ Si, Sd ◦ Si)

we need to count the orbits of the Σd-action on Polyh(d, i). To feel the
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complexity of the problem we shall interpret Polyh(d, i) geometrically. For
i = 2, it is natural to associate to γ ∈ Polyh′(d, 2) a graph with vertices
from [d], namely we connect two numbers by an edge when they occur in
some γj . Then it is easy to see that this construction gives a Σd-invariant
bijection:

(1.1) Polyh(d, 2) ≃ Gr(d, 2)

hence we recover Lemma 1.11. Then, analogously, for i > 2 one can as-
sociate to γ ∈ Polyh′(d, i) a simplicial set generated by 0-simplices from
[d] and d-simplices γj . We emphasize the use of simplicial sets and not just
polyhedra here, since if in γj there are higher multiplicities, then the simplex
is degenerated. The condition defining Polyh(d, i) geometrically means that
any vertex belongs to exactly d d-dimensional simplices. Then our problem
is related to that of classifying of isomorphism classes of such simplicial sets,
which in general seems to be difficult. In fact if we would like to reflect the
entire combinatorial structure in this framework, then we should also take
into account the external multiplicities aj . Thus the fully adequate language
would be that of simplicial “sets with multiplicities” or bisimplicial sets with
external structure degenerated, which would make the classification problem
even harder.

2. Ext between plethysms

In this section we describe the additive structure of groups ExtPpi(S
p ◦

F, Sp ◦F ), where F is a functor of degree i and i < p. As main tools for our
calculations we use Koszul and de Rham sequences. This technique forces us
to get Ext - calculations between other plethysms also. In the whole section
our ground field is any field k of characteristic p.

2.1. Kuhn’s theorem revisited. Let E, F and G be functors in P. Pre-
composition with E yields an exact functor P −→ P. The goal of this
section is to show that this functor induces a monomorphism on Ext-groups
in P. The analogous result was proved in the category F by Kuhn in [K].
We show that his approach works also in P. Our argument is based on
Touze’s classification of additive functors in P obtained in [T1] and ”twist
injectivity” of Ext, see [FFSS, Corollary 1.3].

Theorem 2.1. Let E, F and G be as above. Assume that E is a nonconstant
functor. The precomposition with E induces an injective map

Ext∗P(F,G) −→ Ext∗P(F ◦ E,G ◦ E).

Moreover this map splits naturally in F and G.

Proof: We will follow closely [K, proof of Theorem 4.8]. Let I denote the
identity functor and let I ⊕ k denote the strict polynomial functor, which
takes V ∈ V to V ⊕ k, where k is our ground field and V denotes here the
category of finite dimensional vector spaces over k. For a given E ∈ P let
∆E denote the cokernel of the split injection E → E◦(I⊕k). We can iterate
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this construction. As E ∈ P we know that E has finite Eilenberg-Mac Lane
degree. If this degree is equal to d then ∆d−1E is a functor of Eilenberg-Mac
Lane degree 1. By [T, Section 3] we know that ∆d−1E = ka ⊕H for certain
natural a and H satisfying

0 ̸= H =
⊕
j∈J

I(nj)

where for any natural n, I(n) is the identity functor twisted n times by the
Frobenius homomorphism. Obviously ∆d−1E is a direct summand in E◦(I⊕
kd−1). Then for a certain natural n we have the sequence of homomorphisms
of Ext-groups:

Ext∗P(F,G) −→ Ext∗P(F◦E,G◦E) −→ Ext∗P(F◦E◦(I⊕kd−1), G◦E◦(I⊕kd−1))

... −→ Ext∗P(F ◦ I(n), G ◦ I(n))

where the last map is induced by a projection and embedding of a direct
summand and the composition of all arrows is just the precomposition with
n-fold twist by Frobenius homomorphism. Now we can use ”twist injectiv-
ity” to complete the proof.

□

2.2. Preliminary calculations. Recall that for any natural d the symbols
Id, Λd, Sd and Γd denote correspondingly the kth tensor, exterior, sym-
metric and divided power functors. Let us recall also de Rham and Koszul
sequences which relate exterior and symmetric power functors and which
served as a main tool in the paper [FLS] for performing ExtF (I, .) calcula-
tions with coefficients in these functors. But as it was demonstrated in, [FS]
de Rham and Koszul sequences can be used equally well in the category P
for calculating ExtP(I

(t), .) with coefficients in functors of degree pt.
Koszul sequence Kk is a sequence of functors of the form

0 → Λk → Λk−1 ⊗ S1 → Λk−2 ⊗ S2 → ... → Sk → 0

This sequence is exact for any natural k. De Rham sequence Rk is defined
as:

0 → Sk → Λ1 ⊗ Sk−1 → Λ2 ⊗ Sk−2 → ... → Λk → 0

It is exact for k not being divisible by p and H∗(Rpt) = Rpt−1 in the

category F and H∗(Rpt) = R
(1)
pt−1 in P. The usefulness of these sequences

for our purposes comes from the fact that all functors in them but the first
and the last are diagonalizable and hence give trivial groups after applying
to them ExtF (I, .) and ExtP(I

(t), .) functors. Using this observation we see
that the Koszul sequence gives us a direct shift isomorphism of ExtF (I,Λ

k)
and ExtF (I, S

k) by the hyperext spectral sequence. The same is true in the

category P for the functors ExtP(I
(t), .). Below we show that these results

remain true after precomposing with functors of small degree.
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Theorem 2.2. Assume that F ∈ Pi, 1 < i < p , j ≥ 0 and 0 < k < p.
Then

ExtjP(F
(1), (Λk ⊗ Sp−k) ◦ F ) = 0.

Proof: Assume first that F = Ii. By our assumption on k both functors
Λk and Sp−k are direct summands in Ik and Ip−k correspondingly. Hence
our theorem follows directly from the obvious fact that

(2.2.1)

Ext∗P(I
i(1), Ip ◦ Ii) = 0.

Our assumption on i implies that the category Pi is semi-simple and
equivalent to the category of Fp[Σi]-modules. This implies that every functor
F is a sum of simple functors and every simple functor is a direct summand
in Ii. Using our assumption on k as previously, for the proof of our theorem
it is enough to show that

ExtjP(F
(1), G1 ⊗ ...⊗Gp) = 0

for simple functors F,G1, ..., Gp ∈ Pi. But this follows directly from 2.2.1
because F is a direct summand in Ii and G1 ⊗ ...⊗Gp is a direct summand
in Ip ◦ Ii.

□

2.3. The groups Ext∗P(F
(1), Sp ◦ F ) and Ext∗P(F

(1),Λp ◦ F ).

Using Koszul and de Rham sequences we give full calculations of the Ext-
groups of interest if F ∈ Pi and i < p. In the future we will write R for the
de Rham sequence Rp and K for Kp. We know that having a complex of
functors C∗ we have two spectral sequences for calculating hyperext groups
Ext∗P(F,C

∗). We will use always cohomological notation and our spectral
sequences will have rth differential of bidegree (r, 1 − r). We will call as
the first spectral sequence this one, in which we first calculate cohomology
in the direction of C∗. We will denote it 1E

m,n
∗ while the second will be

denoted 2E
m,n
∗ . If necessary we will decorate these spectral sequences with

coefficients.
Let us start from recalling how the sequences R and K and the knowledge

of Ext∗P(I
(1), I(1)) give the calculation of Ext∗P(I

(1),Λp) and the full under-

standing of differentials in 1E
m,n
∗ (I(1), R), 2E

m,n
∗ (I(1), R) and 2E

m,n
∗ (I(1),K).

Note that 1E
m,n
∗ (I(1), R) has only two nontrivial rows for n = 0, 1 and they

are equal to the graded group Ext∗P(I
(1), I(1)) = Fp[y]/y

p, usually denoted as
A∗. The generator y is placed in degree 2 and the identification is compati-
ble with ring structures of both sides. Because Sp is injective we know that
Ext∗P(I

(1), Sp) consists of one copy of Fp in degree 0. From 2E
m,n
∗ (I(1),K),

which converges to 0, we know that Ext∗P(I
(1),Λp) is nontrivial in degree

p− 1 and Extp−1
P (I(1),Λp) = Fp. From this we know that all differentials in

2E
m,n
∗ (I(1), R) are trivial and

d2 :1 E0,1
∗ (I(1), R) = Fp → Fp =1 E2,0

∗ (I(1), R)
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is an isomorphism. Moreover the differentials in our spectral sequences are
homomorphisms of A∗-modules. This gives us full understanding of the
differentials in 1E

m,n
∗ (I(1), R).

Now we can move towards new calculations. Let F ∈ Pi for i < p and
let F ∗ denote the graded ring Ext∗P(F

(1), F (1)). As previously the spectral

sequence 1E
m,n
∗ (F (1), R◦F ) has only two nontrivial rows for n = 0, 1 and this

rows are isomorphic to F ∗ = Ext∗P(F
(1), F (1)). Moreover the differentials are

module maps over F ∗.

Proposition 2.3. There exists a nontrivial element s ∈ F 2 such that the
only nontrivial differential d2 : 1E

p,1
2 (F (1), R ◦ F ) →1 Ep+2,0

2 (F (1), R ◦ F ) is
the same as the map F ∗ → F ∗ induced by multiplication with s.

Proof: Precomposition with F induces a map of hyperext groups

Ext∗P(I
(1), R) → Ext∗P(F

(1), R ◦ F )

and a map of spectral sequences

(∗) 1E
m,n
∗ (I(1), R) → 1E

m,n
∗ (F (1), R ◦ F )

which commutes with differentials. By Theorem 2.1 this map is injective on
the second table.

The map

d2 : Hom(F (1), F (1)) =1 E0,1
2 (F (1), R ◦ F ) →1 E2,0

2 (F (1), R ◦ F ) = F 2

sends identity to a certain element s ∈ F 2. By the multiplicativity of the
differential, d2 is the same as multiplication by s. The element s ̸= 0 because
by (*) above and injectivity of the map of spectral sequences we know that
it is equal to the nontrivial element coming from y ∈ A2. □

Observe that in the case when F = Si we can be more specific. By [FFSS]

we know that Ext∗P(S
i(1), Si(1)) = Γi(A). The second grade of Γi(A) is equal

to Fp spanned by s1 - the first symmetric function. Hence the map

d2 : 1E
0,1
2 (Si(1), R ◦ Si) = Fp → Fp = 1E

2,0
2 (Si(1), R ◦ Si)

is an isomorphism and sends 1 ∈ Fp to the nontrivial multiple of s1.

All higher differentials in 1E
m,n
∗ (F (1), R ◦F ) are trivial by degree reason.

Hence the third table gives us the calculation of the hyperext groups
Ext∗P(F

(1), R ◦ F ). Let us write for shortness d : F ∗ → F ∗ instead of

d2 : 1E
m,1
2 (F (1), R ◦F ) → 1E

m+2,0
2 (F (1), R ◦F ). We know that d(z) = s · z.

This implies that im(d) = s · F ∗. The following proposition is a crucial
technical step towards final calculations.

Proposition 2.4. For i < p the groups Ext∗P(I
i(1), Sp ◦ Ii) are nontrivial

only in even degrees.
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Proof: The calculation is based on the Cauchy formula, proved in [ABW,
Section III]. It implies that Sp(V ⊗W ) has filtration with quotients Sλ(V )⊗
Sλ(W ), where λ runs through all diagrams of degree p. Recall (following [J])
that Schur functors related to hooks {Hi}i=0,1,...,p fit into exact sequences
2.4.1

0 → SHj → Sj ⊗ Λp−j → SHj+1 → 0

where Hp = Sp.
We write Ii = I ⊗ Ii−1. It is enough to show that for all diagrams λ of

degree p the groups Ext∗P(I
i(1), Sλ ◦ I ⊗ Sλ ◦ Ii−1) are concentrated in even

degrees only.
Let π denote the functor taking two vector spaces to its sum. By adjoint-

ness of π and the diagonal embedding we know that

Ext∗P(I
i(1), Sλ ◦ I ⊗ Sλ ◦ Ii−1) = Ext∗bi−P(I

i(1) ◦ π, Sλ ◦ I ⊠ Sλ ◦ Ii−1).

The right-hand side decomposes into a sum of terms

Ext∗P(I
k(1), Sλ ◦ I)⊗ Ext∗P((I

(i−k)(1), Sλ ◦ Ii−1)

By degree reasons such term can be nontrivial only when k = 1. The
group Ext∗P(I

(1), Sλ) is non trivial only for λ representing a hook. Hence we
will assume for the rest of the proof of 2.4 that we are working only with
hooks of degree p.

For i = 2 we get two copies of

Ext∗P(I
(1), Sλ)⊗ Ext∗P(I

(1), Sλ)

The functor Sp is injective, Ext∗P(I
(1), Sp) = Fp in dimension 0. From this

and 2.4.1 we get that for any j, Ext∗P(I
(1), SHj ) is non zero in degree p− j

only and hence

Ext∗P(I
(1), SHj )⊗ Ext∗P(I

(1), SHj )

is in even degree 2(p− j).
Now we can proceed by induction with respect to i. The groups

Ext∗P(I
(i−1)(1), (Sj ⊗ Λp−j) ◦ I(i−1))

are trivial for j ̸= 0, p by Theorem 2.2. The exact sequences 2.4.1 remain
exact after precomposition with I(i−1). From this we get immediately that
for any j the parity of

Ext∗P(I
(1), SHj )

is the same as of Ext∗P(I
(i−1)(1), SHj ◦ Ii−1). This finishes the proof. □

Proposition 2.4 implies that for any i < p and F ∈ Pi the groups
Ext∗P(F

i(1), Sp ◦ F ) are nontrivial in even degrees only. From Theorem

2.2 we know that 1E
m,n
∞ (F (1), R ◦ F ) has only two non-zero rows, the 0th

and the first. Moreover we know that 1E
∗,0
∞ (F (1), R ◦ F ) = F ∗/s · F ∗ and

1E
∗,1
∞ (F (1), R ◦ F ) have the same dimension.
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Theorem 2.5. We have the following formulas in the category of F ∗-
modules:

• Ext∗P(F
(1), Sp ◦ F ) = F ∗/s · F ∗.

• Ext∗P(F
(1),Λp ◦ F ) = ker(s : F ∗ → F ∗)[−p+ 1].

Proof: Observe that even dimensional classes in the hyperext graded
group Ext∗P(F

(1), R◦F ) are contained in the 0 row of the ∞-table of the first
spectral sequence and the odd classes are in the first row. By 2.3 we know
that this 0-row is a cyclic F ∗-module isomorphic to F ∗/s·F ∗. It is generated

by an element α of degree 0 coming from the id ∈ HomP(F
(1), F (1)) mapped

to Ext0P(F
(1), R ◦ F ) by the Frobenius morphism F (1) → Sp ◦ F . Similarly

the first row is isomorphic to ker(s : F ∗ → F ∗). Both rows have the same
total dimension over k.

By 2.2 we know that in the second spectral sequence 2E
m,n
∗ (F (1), R ◦ F )

we have only two non zero columns for m = 0, p. The zero column consists
of Ext∗P(F

(1), Sp ◦ F ) while the pth is equal to Ext∗P(F
(1),Λp ◦ F ). Both

spectral sequences converge to the same groups. From the Koszul spectral
sequence we know that total dimension over k of Ext∗P(F

(1), Sp ◦ F ) is the

same as the dimension of Ext∗P(F
(1),Λp◦F ). The only nontrivial differential

in the Koszul spectral sequence is an isomorphism of F ∗-modules. From this
it follows that Ext∗P(F

(1),Λp ◦F ) contains a cyclic submodule generated by

some class β ∈ Extp−1
P (F (1),Λp ◦F ). This class β is taken by the differential

in the Koszul spectral sequence to the class α described above.
Proposition 2.4 shows that the zero row

1E
∞
∗,0(F

(1), R ◦ F ) = F ∗/s · F ∗

gives classes in Ext∗P(F
(1), Sp ◦F ) and the first row of this spectral sequence

is contained in Ext∗P(F
(1),Λp◦F ). It means that Ext∗P(F

(1), Sp◦F ) contains
a cyclic F ∗-module F ∗/s · F ∗ while ker(s : F ∗ → F ∗)[−p + 1] is contained

in Ext∗P(F
(1),Λp ◦ F ).

We have only to show that this way we get all classes in Ext∗P(F
(1), Sp◦F )

and Ext∗P(F
(1),Λp ◦ F ).

Assume that γ ∈2 Em,n
2 (F (1), R ◦F ) is an additional class of highest total

degree j. It has to be killed by the only one possibly nontrivial differential.
We can assume that j is finite because the cohomological dimension of the
category Ppi is finite. We have two possibilities:

1. - j is even. Then it appears in the 0-column of 2E
m,n
∗ (F (1), R ◦ F ). It

cannot survive to infinity hence the only possibly nontrivial differential has
to map it to some class γ′ in the pth column. But then the total degree of
γ′ is j + 1 which contradicts the definition of j.

2. - j is odd. This implies that γ ∈ Extj−p+1
P (F (1),Λp ◦ F ). This implies

that above the grade j − p + 1 all classes in Ext∗P(F
(1),Λp ◦ F ) belong to

the submodule generated by β. From the Koszul spectral sequence we get
immediately that for k > j − 2p + 2 all classes in ExtkP(F

(1), Sp ◦ F ) are
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contained in the submodule generated by α. These classes have to survive
to ∞. On the other hand the class which possibly kills γ is contained in

ExtjP(F
(1), Sp ◦ F ) and this is impossible. □

Let us finish this subsection with two observations:

1. By construction, the first isomorphism from 2.5 is induced by the
Frobenius morphism f : F (1) → Sp ◦ F .

2. For F = Si the class β from the proof of 2.5 presents a shifted down
by p − 1 version of sp−1

1 . This implies that ker(s1 : Γi(A) → Γi(A)) is a

cyclic submodule of Γi(A) generated by sp−1
1 .

2.4. On Ext∗P(S
p◦F, Sp◦F ) for F ∈ Pi, 1 < i < p. We start our calculations

from the very special case F = S2. The theorem below should be treated as
a baby version of the main computation.

Theorem 2.6. The groups ExtiP(S
p ◦ S2, Sp ◦ S2) are 1-dimensional over

k in dimensions 4k and 4k − 1 for 0 < i ≤ (2p− 2) and are trivial in other
degrees.

Proof: As a tool we will use again the spectral sequences related to
hyperext groups with coefficients in R ◦S2 and K ◦S2. But now we will use
complexes of functors as covariant coefficients. At the beginning consider
the two spectral sequences related to de Rham sequence precomposed with
S2. The first one 1E

m,n
∞ (R◦S2, Sp◦S2) has only two nonzero rows, the (p−1)

and the pth. They are equal to Ext∗P(S
2(1), Sp ◦ S2) = Γ2(A)/s1 · Γ2(A) by

2.5. By the Newton formulas we easily get that in positive degrees they are
spanned by the powers si2 for i ≤ (p−1)/2 of the second symmetric function
s2, which lies in degree 4. This implies that all differentials di in considered
spectral sequence are trivial for 1 < i by degree reasons. Of course we know
that Ext0P(S

2(1), Sp ◦ S2) = k. Hence we completely know the hyperext
groups Ext∗P(Rp ◦ S2, Sp ◦ S2). They are equal to k in dimensions p + 4k
and p+ 4k − 1 for k = 0, 1, ..., (p− 1)/2.

In the second spectral sequence 2E
m,n
∞ (R◦S2, Sp◦S2) we have two nonzero

columns, the 0 and the pth. For 0 < j < p the functors (Sj ⊗ Λ(p−j)) ◦ S2

are direct summands of (S1)⊗2p and hence are both projective and injective.
This implies that other columns in 2E

m,n
∞ (R ◦ S2, Sp ◦ S2) are trivial above

dimension 0.
Assume that a certain class of degree q higher than p − 1 survives to ∞

in the 0 column

2E
0,q
∞ (R ◦ S2, Sp ◦ S2) = ExtqP(Λ

p ◦ S2, Sp ◦ S2)

This implies that in Ext∗P(S
p ◦ S2, Sp ◦ S2) we have a nontrivial element

in degree q + p − 1 (which is higher than 2p − 2) by the standard spectral
sequence argument for hyperexts, using Koszul complex instead of de Rham
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one. But this implies that there is a nontrivial class in 2E
q+p−1,p
∞ (Rp ◦

S2, Sp ◦ S2) which cannot survive to ∞ and has to be killed by an element

from Extq+2p−2
P (Λp ◦ S2, Sp ◦ S2). This observation leads immediately to

the contradiction with the finite cohomological dimension of the category
P2p. □

It is worth to underline that our computations show that the groups
Ext∗P(Λ

p ◦ S2, Sp ◦ S2) are trivial in dimensions greater than p − 1. In
dimensions below p − 1 they are closely related to the cohomology of the
complex HomP(R ◦ S2, Sp ◦ S2).

Let L be the cokernel of the natural map f : I(1) → Sp. Equally well we
can define it as a kernel of the dual map f∗ : Γp → I(1). Remember that the
natural number i satisfies 2 < i < p and F ∈ Pi. The following theorem is
crucial for our computations:

Theorem 2.7. The maps induced on cohomology by the Frobenius morphism
have the following properties:

• The map f induces an epimorphism Ext∗P(S
p◦F, Sp◦F ) → Ext∗P(I

(1)◦
F, Sp ◦ F ).

• The map f∗ induces a zero map ExttP(I
(1) ◦F, Sp ◦F ) → ExttP(Γ

p ◦
F, Sp ◦ F ) for any t > 0. In dimension 0, f∗ induces an embedding

Ext0P(I
(1) ◦ F, Sp ◦ F ) ↪→ Ext0P(Γ

p ◦ F, Sp ◦ F ).

Proof: As a tool we will use the double complex Am,n which vertically
consists of pieces of the de Rham sequence and horizontally pieces of the
Koszul sequence:

Sp

↓
Sp−1 ⊗ S1 → Sp → 0

↓ ↓
...

...
...

...
↓ ↓

S2 ⊗ Λp−2 → S3 ⊗ Λp−3 → . . . → Sp → 0
↓ ↓ ↓

S1 ⊗ Λp−1 → S2 ⊗ Λp−2 → . . . → Sp−1 ⊗ S1 → Sp → 0

By [J, section 3] we know that the complex obtained from the above

double complex gives us an injective resolution of I(1). After precomposing
it with F we get a cohomological resolution J∗ of F (1), which of course in
not injective any more. We have J0 = Sp ◦ F and generally

Jk =
∞⊕
j=0

(Sp−k+2j ⊗ Λk−2j) ◦ F
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Now we apply the functor HomP(−, Sp◦F ) to it and calculate two spectral
sequences coming from the double complex structure. One is simple (J∗ has
cohomology only in dimension 0) and tells us that both spectral sequences

converge to Ext∗P(F
(1), Sp ◦ F ). Observe that for 0 < k < p all functors

(Sk⊗Λp−k)◦F are direct summands in (S1)⊗pi and hence are projective and
injective. It means that in the second spectral sequence we have nontrivial
0-row and p columns consisting of Ext∗P(S

p◦F, Sp◦F ) separated by columns
with zeros above dimension 0. Let Em,n

2 be the second table of our second
spectral sequence. Then the table has 2p− 1 nontrivial columns (numbered

from 0 to 2p− 2), d2 : Em,n
2 → Em+2,n−1

2 and we have:

Em,n
2 = ExttP(S

p ◦ F, Sp ◦ F ) for even m

and

Em,n
2 = 0 for odd m and n > 0.

By [J, section 1] we know that there is an exact sequence:

0 → I(1) → S0 → S1 → · · · → Sp−1 → 0

where S0, . . . , Sp−1 are Schur functors (S0 = Sp). We will denote as Z∗

the above complex without I(1) after precomposing it with F (1). The Schur
functors are defined as the kernels of the Koszul differential

Sk = ker(Sp−k ⊗ Λk → Sp−k+1 ⊗ Λk−1)

It means that we have a map of exact sequences

0 → F (1) → Z∗

id ↓ ↓
0 → F (1) → J∗

which starts of course from the diagram

0 → F (1) → Sp ◦ F
id ↓ id ↓

0 → F (1) → Sp ◦ F

The map Z∗ → J∗ is an equivalence of complexes because it extends the
id : F (1) → F (1). Hence it should give us the isomorphism on the hyperext
groups

Ext∗P(J
∗, Sp ◦ F ) → Ext∗P(Z

∗, Sp ◦ F ).

On the other hand, on the level of spectral sequences of the second type
this map is induced on every column, except the zero one, by the embeddings

Sk ◦ F → (Sp−k ⊗ Λk) ◦ F
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and has to be trivial in degrees higher than 0 by obvious reasons. But this
implies, that the isomorphism

Ext∗P(J
∗, Sp ◦ F ) → Ext∗P(Z

∗, Sp ◦ F )

has to be realized by the identity map of the last columns (indexed 2p− 1).
This implies the first statement of our theorem.

For the second we have to proceed in a dual manner. Recall that for finite
functors G and H the Kuhn’s duality satisfies

D(G ◦H) = DG ◦DH.

Moreover we know that DSp = Γp and D(Sk ⊗ Λp−k) = Sk ⊗ Λp−k =
Γk ⊗ Λp−k for 0 < k < p. From this we get that

DJk =

∞⊕
j=0

(Γp−k+2j ⊗ Λk−2j) ◦ F

and DJ∗ is a resolution of F (1) because F and DF are isomorphic. The
last statement follows from the fact that F is a direct sum of simple ob-
jects, compare [K1, Theorem 9.1]. As previously we apply the functor
HomP(−, Sp ◦ F ) to it and study two spectral sequences coming from dou-
ble complex structure. One of them tells us that both of them converge to
Ext∗P(F

(1), Sp ◦ F ). The second one DEm,n
∗ has 2p − 1 nontrivial columns

numbered from 0 to 2p− 2, d2 : DEm,n
2 → DEm+2,n−1

2 and we have:

DEm,n
2 = ExtnP(Γ

p ◦ F, Sp ◦ F ) for even m

and

DEm,n
2 = 0 for odd m and n > 0.

But for the proof of the second statement of the theorem we need some
additional feature of the bicomplex A∗,∗. Observe that the diagonal iden-
tities id : Sk ⊗ Λp−k → Sk ⊗ Λp−k commute with vertical and horizontal
differentials and give us degree 2 map of complexes x : J∗ → J∗+2 and
Dx : DJ∗ → DJ∗−2. Of course x acts also on spectral sequences, commut-
ing with all differentials. We will denote this action by the same letter x in
the future. The map

x : DEm,n
2 → DEm+2,n

2

is equal to the identity on even columns because it is induced by id : Γp◦F →
Γp ◦ F .

Assume that the second statement of the theorem is not true. In such case
there should be an element α ∈ DE0,n

2 for some n > 0, which is nontrivial
and survives to infinity. But then x · α also survives to infinity because x
commutes with differentials and hence sends cocycles to cocycles. It means
that x acts non trivially on DEm,n

∞ and hence is nontrivial on the limit
Ext∗P(F

(1), Sp ◦ F ) . But this is impossible by the lemma 2.8 below. The
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calculation in dimension 0 easily follows from the long exact sequence related
to f∗.

Lemma 2.8. The operator x : DEm,n
∞ → DEm+2,n

∞ is trivial for n > 0.

Proof. Let IEm,n
∗ be the spectral sequence obtained from DJ∗ after ap-

plying to it HomP(−, F (1)). Then IEs,t
∗ converges to Ext∗P(F

(1), F (1)) , the

map f : F (1) → Sp ◦ F , applied to the second variable, induces a map of
spectral sequences f̄ : IEm,n

∗ → DEm,n
∗ . Operator x acts also on IEm,n

∗
and f̄ is equivariant with respect to this action. On the limit of spectral
sequences f̄ is equal to the natural quotient map

F ∗ = Ext∗P(F
(1), F (1)) → Ext∗P(F

(1), Sp ◦ F ) = F ∗/s · F ∗.

The operator x : F ∗ → F ∗ is of degree 2 and its action commutes with left
multiplication. By [J, Lemma 3.4] the operator x acts on Ext∗P(I

(1), I(1)) =
Fp[y]/y

p as multiplication by y. This implies that x acts on F ∗ as multipli-
cation by s and hence acts trivially on F ∗/s · F ∗.

Theorem 2.9. Let F ∈ Pi for 0 < i < p and X = Ext∗P(F
(1), Sp ◦ F ).

Additively the graded Fp-vector space Ext∗P(S
p ◦ F, Sp ◦ F ) in degrees above

0 is isomorphic to the positively graded part of the graded vector space X ⊗
Λ(a)⊗S(b) where the exterior generator a has degree −1 and the polynomial
generator b has degree 2− 2p.

Proof: We will construct a finite filtration Ext∗P(S
p ◦ F, Sp ◦ F ) = A0 ⊃

A1 ⊃ A2 ⊃ ... with quotients isomorphic to the quotients of the filtration of
X ⊗ Λ(a) ⊗ S(b) defined by the powers of the polynomial generator b. We
have two main tools. The first is Theorem 2.7 above. The second comes
from the exact sequence

0 → Γp ◦ F → (Γp−1 ⊗ Λ1) ◦ F → · · · → (Sp−1 ⊗ Λ1) ◦ F → Sp ◦ F → 0

which is obtained by gluing at Λp the Koszul exact sequence with its dual
and precomposing all terms with F . We apply HomP(−, Sp ◦ F ) to it and
obtain a spectral sequence converging to 0, which has 2p nontrivial columns
numbered from 0 to 2p− 1. The 0-column is equal to Ext∗P(S

p ◦ F, Sp ◦ F ),
the 2p− 1 column is equal to Ext∗P(Γ

p ◦F, Sp ◦F ) and all other columns are
trivial above dimension 0. The differential d2p−1 gives us an isomorphism

d2p−1 : Ext∗+2p−2
P (Sp ◦ F, Sp ◦ F )−̃→Ext∗P(Γ

p ◦ F, Sp ◦ F ).

Theorem 2.7 gives us two families of short exact sequences:

0 → Ext∗P(L ◦ F, Sp ◦ F ) → Ext∗P(S
p ◦ F, Sp ◦ F ) →

→ Ext∗P(F
(1), Sp ◦ F ) = X∗ → 0
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0 → Ext∗P(Γ
p ◦ F, Sp ◦ F ) → Ext∗P(L ◦ F, Sp ◦ F ) →

→ Ext∗+1
P (F (1), Sp ◦ F ) = X∗+1 → 0

which of course split over k.
Denote A1 = Ext∗P(Γ

p ◦ F, Sp ◦ F ) and A0 = Ext∗P(S
p ◦ F, Sp ◦ F ). Then

A1 embeds into A0 by composing first arrows in described exact sequences.
Moreover it is obvious that A0/A1 = X ⊗ Λ(a).

WARNING: Below, when we talk about graded objects, we always think
only about their non-negative parts.

The differential d2p−1 gives us embedding of A2 = A1[2p− 2] into A1 and
hence also into A0. Observe that

A1/A2 ≃ (X ⊗ Λ(a))[2p− 2]

Denote A3 = A2[2p − 2] = A1[4p − 4]. Then differential d2p−1 embeds it
into A2 and hence into A0 as previously. Again we see that

A2/A3 ≃ (X ⊗ Λ(a))[4p− 4]

.
Now the proof of 2.9 is clear by induction. We define Ak as Ak−1[2p− 2]

and calculate that

Ak−1/Ak ≃ (X ⊗ Λ(a))[(k − 1)(2p− 2)].

This way we obtain the promised finite filtration A1 ⊃ A2 ⊃ . . . of A0 with
quotients isomorphic to the quotients of the natural filtration of X⊗Λ(a)⊗
S(b) defined by the powers of b. The lengths of the filtration depends on p
and i. □

Observe that the calculations from 2.9 are valid also in degree 0 if we
divide Ext0P(Γ

p ◦ F, Sp ◦ F ) by the image of the last map in the zero row

Ext0P((Γ
p−1 ⊗ Λ1) ◦ F, Sp ◦ F ) → Ext0P(Γ

p ◦ F, Sp ◦ F ).

Question: Is it true that the formula Ext∗P(S
p ◦F, Sp ◦F ) ≃ X⊗Λ(a)⊗

S(b) holds also multiplicatively? We consider here X as a ring with the
quotient ring structure F ∗ → X = F ∗/s · F ∗. This is true for F = S2, see
the next section.

3. Multiplicative structures

In this section we calculate the Yoneda ring structure on Ext∗P(S
p◦S2, Sp◦

S2|). The situation in higher Ext degrees and that in the Hom groups is
quite different and requires different methods. We study the former one in
Subsection 3.1 and the latter one and their interplay in Subsection 3.3. We
provide in Subsection 3.2 a brief exposition of the relevant material on Hecke
algebras, which will be used in Subsection 3.3
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3.1. On Ext>0
P (Sp ◦ S2, Sp ◦ S2).

Let B∗ be a graded k-algebra, which in positive degrees is equal to
ExtiP(S

p ◦ S2, Sp ◦ S2) and B0 is one dimensional, spanned by the iden-
tity on Sp ◦ S2. Let B2∗ be its even degree part. Theorem 2.6 tells us
(compare observations after Theorem 2.5) that the map f : S2(1) → Sp ◦ S2

obtained from the Frobenius morphism induces an isomorphism

f∗ : B2∗ → Ext2∗P (S2(1), Sp ◦ S2).

Theorem 3.1. The Yoneda multiplication in B∗ is commutative and defined
by:

a. The evenly graded algebra B2⋆ is isomorphic to k[t]/(t(p+1)/2), with
the generator t ∈ B4.

b. Multiplication by t from both sides induces an isomorphism B(4k−1) →
B(4(k+1)−1).

c. Multiplication of odd dimensional classes is trivial.

Proof: We will show that the multiplication in B∗ is obtained directly
from the multiplication in Ext∗P(S

2(1), S2(1)).

Proof of a. Let a, b ∈ B2∗. By the naturality of the Yoneda multiplica-
tion we know that f∗(a · b) = a ·f∗(b). Let b̄ is the unique element satisfying
f∗(b) = b̄, for any b ∈ B2∗. By the second observation after theorem 2.5 in
order to get multiplicative structure of B2∗ it is enough to consider products
of the type a · b̄. It means it is enough to consider Yoneda multiplication

Ext2∗P (Sp ◦ S2, Sp ◦ S2)⊗ Ext2∗P (S2(1), Sp ◦ S2) → Ext2∗P (S2(1), Sp ◦ S2).

Every class b̄ ∈ ExtjP(S
2(1), Sp ◦ S2) can be presented as f∗(z) for a certain

class z ∈ ExtjP(S
2(1), S2(1)) by theorem 2.5. Hence we have:

a · b̄ = a · f∗(z) = f∗(a) · z = ā · z

We know that ā = f∗(w) for a certain w ∈ Ext2∗P (S2(1), S2(1)) (not uniquely)

and as previously f∗(w)·z = f∗(w·z). The classes w, z ∈ Ext2∗P (S2(1), S2(1)) =
Γ2(A). Taking as w and z the correct powers of s2 ∈ Γ2(A) gives us the
desired result.

Proof of b. Let L be the cokernel of the Frobenius map I(1) → Sp. From
2.6 and the proof of a we know that the natural map induced by Frobenius

Ext∗P(S
p ◦ S2, Sp ◦ S2) → Ext∗P(S

2(1), Sp ◦ S2)

is an epimorphism of graded rings. From the long exact sequence of Ext-
groups we know that its kernel is Ext∗P(L ◦S2, Sp ◦S2). This kernel consists
of all odd dimensional classes in B∗.
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Let Γp be the Kuhn dual of Sp. Let K be an exact sequence obtained as
the composition of the Koszul exact sequence Kp with its Kuhn dual. We
get this way an exact sequence of length 2p − 2 which starts from Γp and
ends with Sp. Using spectral sequence for the hyperext groups Ext∗P(K ◦
S2, Sp ◦ S2) we immediately get that the groups Ext∗P(Γ

p ◦ S2, Sp ◦ S2) are
trivial in positive degrees.

We have an exact sequence of functors

0 → L → Γp → I(1) → 0.

The previous observation implies that the boundary map

Ext∗P(L ◦ S2, Sp ◦ S2) → Ext∗+1
P (S2(1), Sp ◦ S2)

is an isomorphism of left Ext∗P(S
p ◦ S2, Sp ◦ S2)-modules. From the proof

of a. we know what is this module structure on Ext∗P(S
2(1), Sp ◦ S2). This

implies b. for the left multiplication.
For the right multiplication we will use several times the complex K

described above and hyperext spectral sequences obtained from it. Using
them we get immediately that in gradation j bigger than 2p− 2 we have:

• Extj−2p+2
P (Sp◦S2, Sp◦S2) is isomorphic to ExtjP(S

p◦S2,Γp◦S2) and
this is an isomorphism of corresponding right Ext∗P(S

p ◦S2, Sp ◦S2)-
modules.

• Extj−2p+2
P (Sp◦S2, S2(1)) = ExtjP(S

2(1),Γp◦S2) and hence Extj−2p+2
P (Sp◦

S2, S2(1)) are nontrivial only for even j.

From the exact sequence 0 → S2(1) → Sp ◦ S2 → L ◦ S2 → 0 and the
calculation of Ext∗P(S

p ◦ S2, Sp ◦ S2) we have a boundary isomorphism

ExtjP(S
p ◦S2, Lp ◦S2) → Extj+1

P (Sp ◦S2, S2(1)) for j > 2p− 2. This implies

that for j > 2p−2 the groups ExtjP(S
p◦S2,Γp◦S2) = ExtjP(S

p◦S2, S2(1)) for

even j and ExtjP(S
p◦S2,Γp◦S2) = ExtjP(S

p◦S2, L◦S2). Hence we can finish
the proof as it was done for the left multiplication using Ext∗P(S

p◦S2,Γp◦S2)
instead of Ext∗P(S

p ◦ S2, Sp ◦ S2).

Proof of c. The odd dimensional classes appear only in degrees 4k − 1
hence the result of multiplying two of them has degree 4l − 2 for a certain
l. By theorem 2.6 it is equal to 0.

3.2. On Hecke algebras and index.
Hecke algebras appear in many contexts in algebra and allow various equiv-
alent descriptions. The most common definition is the following. Given a
pair of groups H ⊂ G, the Hecke algebra He(G,H) as a vector space over
k is spanned by the set of H double cosets in G, and the multiplication
is given by the intricate combinatorial formula referred to as “convolution
product”. This is related to our situation via Proposition 1.4. The aim of
this subsection is to clarify this connection and to gather some facts con-
cerning Hecke algebras needed for description of Yoneda multiplication of
plethysms. We do not claim any originality here, we just want to make our
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paper more self-contained, while the relevant material is scattered in liter-
ature often with unnecessary restrictions on the characteristic of a ground
ring.

We start with recalling various definitions of Hecke algebra, beginning
with the most elementary one, which we mentioned earlier (we refer the
reader for details eg. to [CR, Section 11D]). For a pair of finite groups
H ⊂ G, let A := Z[ 1

|H| ][G] stand for the group algebra of G with coefficients

in Z[ 1
|H| ]. For a H −H double coset x in G we put:

ex :=
1

|H|
∑

y∈HxH

y

and we put He(G,H) to be the Z-algebra generated by all ex in A. Then
one can show that He(G,H) is a free Z-module with basis {ex}x∈H\G/H and
the multiplication is given by the formula:

ex · ey =
∑

z∈H\G/H

µxyzez,

where the structure constants are given by the formula:

µxyz =
|HxH ∩ zHyH|

|H|
,

(see [CR, Prop. 11.34]). From this description one can immediately obtain
an important Z-character of He(G,H) called index.

Definition/Proposition 3.2. Let a : A −→ Z[ 1
|H| ] be the standard aug-

mentation on the group algebra (ie. a(g) = 1 for all g ∈ G). Then the
image of composite:

ind : He(G,H) ⊂ A
a−→ Z[

1

|H|
]

is contained in Z. Explicitly, we have: ind(ex) =
|HxH|
|H| .

The proof of both assertions follows from the fact that a double coset is
a disjoint sum of single cosets. □

Let us also remark that the construction of He(G,H) and ind can be
repeated by taking scalars in any commutative ring k instead of Z. We
denote such a variant by He(G,H)k. In fac,t since He(G,H) is a free Z-
module, we just have He(G,H)k ≃ He(G,H) ⊗Z k. Of course in this case
the index takes values in the image of Z in k, although we will still denote
it just by ind.

Now we shall discuss an alternative description of He(G,H)k, which is
perhaps better motivated, yet somewhat less explicit.

Proposition 3.3. There is an isomorphism of k-algebras:

ϕ : HomG−mod(k[G/H],k[G/H]) −→ He(G,H)k

given by the formula ϕ(f) := f(1G).
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Proof follows from the fact that the map f : k[G/H] −→ k[G/H] is
G-equivariant if and only if it is constant on the double cosets. □

Now let us express ind by using this description.

Proposition 3.4. Any G-endomorphism f : k[G/H] −→ k[G/H] preserves
the kernel of the augmentation ak : k[G/H] −→ k, hence it induces the map
f̄ : k −→ k. Thus we constructed the k-algebra homomorphism:

ind′ : HomG−mod(k[G/H],k[G/H]) −→ Homk−mod(k,k) ≃ k,

which satisfies: ind ◦ ϕ = ind′.

Proof immediately follows from the description of ϕ given in Proposition
3.3. □

In order to make the formulas describing Yoneda multiplications given in
Section 3.3 explicit, we will compute directly ind for G = Σ2d, H = Σ2 ≀Σd.
We begin with a graph-like description of the elements of Σ2d from which
the bi-action of Σ2 ≀Σd can be easily read off. Namely, let Grbip(d, 2; d, 2,±)
denote the set of bipartite graphs (see Section 1.2) with the ends of edges
decorated by a sign in such a way that to any vertex there is attached a one
edge having plus and other having minus near our vertex. We emphasize
that multiple edges are indistinguishable ie. Grbip(1, 2; 1, 2,±) consists of
the two (not four) decorated graphs. Now we shall establish bijection ∆
between Σ2d and Grbip(d, 2; d, 2,±). For σ ∈ Σ2d we construct the graph
∆(σ) by the following procedure. For i, j ∈ [d] we draw edge between i
from the first copy of [d] and j from the second copy of [d] in the four
cases: σ(i) = j, σ(i) = d + j, σ(d + i) = j, σ(d + i) = d + j and we put
accordingly the decorations: (+,+), (+,−), (−,+), (−,−). Now we can very

conveniently record the bi-action of Σ2≀Σd. For the right action: Σ
×d
2 changes

decorations near vertices from the first copy of [d] and Σd re-numerates the
edges. Similarly, the left action changes decorations and remunerates edges
in the second copy of [d]. Now, for example we can recover the graph-like
descriptions from Section 1.2. Namely: taking double cosets with respect to
Σ×d

2 forgets decorations, hence we get:

(3.1) Σ×d
2 \ Σ2d/Σ

×d
2 ≃ Σ×d

2 \Grbip(d, 2; d, 2,±)/Σ×d
2 ≃ Grbip(d, 2; d, 2).

In order to compute ind we shall describe the single cosets in graph-like
terms. Analogously to Section 1.2 we have:

Grbip(d, 2; d, 2,±)/Σ2 ≀ Σd ≃ Gr(d, 2,±),

where Gr(d, 2,±) stands for the set of decorated graphs with the set of
vertices [d], with each vertex of degree 2. We recall that since double edges in
Gr(d, 2; d, 2,±) are indistinguishable, Gr(1, 2,±) consists of a single element
and Gr(2, 2,±) consists of two elements. The action of Σ2 ≀Σd on Gr(d, 2,±)

is the following: Σd re-numerates edges and Σ×d
2 changes decorations. We

need to compute the cardinality of the set Σ2 ≀Σd σ Σ2 ≀Σd for σ ∈ Σ2d. By
(3.1) it equals the index of the isotropy group of the Σ2 ≀ Σd-action on the
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graph ∆(σ) in Σ2 ≀Σd. So, let determine these groups. Similarly to Section
1.2 again, the set of Σ2 ≀ Σd-orbits of graphs in Gr(d, 2,±) is in bijection
with the set of Young diagrams of weight d, Λ(d). So, let us λ be a Young
diagram of weight d. We encode λ as (λa1

1 , . . . , λak
k ) for λ1 > . . . > λk and∑

i aiλi = d, ie. we record how many repetitions occur in λ. We define the
graph Gλ ∈ Gr(d, 2,±) as having the cycles: (1, . . . , λ1), . . . , ((a1 − 1)λ1 +
1, . . . , a1λ1), . . . , (d−λm+1, . . . , d), with decorations (+,−) along the edges
(j, j+1), with the standard cyclic convention. Let us first consider the case
λ = (d). Then the isotropy group is generated by the cycle (1, . . . , d) ∈ Σd

and symmetry σ×dτ ∈ Σ2 ≀ Σd, where σ ∈ Σ2 is the nontrivial element and
τ ∈ Σd is given by τ(j) = d + 1 − j. We shall denote this group by Dd,
since for d > 2 it is isomorphic to the group of isometries of the regular
d-polygon. In particular we have |Dd| = 2d (also for d ≤ 2). For a general
λ we encounter an additional phenomenon: if ai > 1 for some i, then Gλ

has ai > 1 cycles of length i, and permuting them produces a copy of Σai

inside the isotropy group. Therefore, the isotropy group of Gλ, which we
shall denote by Dλ is the semidirect product:

Dλ := ((Dλ1)
×a1 × . . .× (Dλk

)×ak)⋊ (Σa1 × . . .× Σak).

Therefore, denoting by eλ the basis element of He(Σ2dΣ2 ≀Σd) corresponding
to the graph Gλ, we have:

ind(eλ) =
|Σ2 ≀ Σd|
|Dλ|

=
2dd!

2a1λa1
1 a1! . . . 2akλ

a1
k ak!

.

In particular, in the Hecke algebra He(Σ2p,Σ2 ≀ Σp)k, where k is a field
of characteristic p > 2, thanks to the Waring and Fermat theorems, the
formula massively simplifies to:

ind(eλ) =

{
−1 for λ = (p)
0 otherwise.

Let us finally relate these constructions to the setup of Section 1.1. We start
with generalizing Proposition 1.4 to take into account the multiplicative
structures. So, we consider k-algebra M which is also an H-bimodule such
that the multiplication factorizes to theH-biequivariant mapM⊗k[H]M −→
M .

Definition/Proposition 3.5. Let M be as above. Then the k-space H(MH)
has a natural structure of k-algebra. We call this algebra the generalized
Hecke algebra and denote by GHe(M,H). If additionally there exists an
H-biinvariant, multiplicative k-basis X of M , then the multiplication in
GHe(M,H) is given by the following formula. For x, y ∈ H\X/H we have:

xy =
∑

z∈H\G/H

µxyzz,

where the integer coefficients µxyz are computed in the following manner.

xyz = 0 unless there exist representatives x′, y′, z′ ∈ X of x, y, z and g ∈ H
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such that x′gy′ = z′. In that case:

µxyz = |(H ×Hop)x′ |/|Hx′ | · |x′H|,

where (H × Gop)x′ , Hx′ , x′H are stabilizers of x′ for respectively: the two-
sided, right and left actions.

Proof: In order to show that the multiplication is well defined on GHe(M,H)
we need to show two things: that the multiplication preserves invariants and
that its result does not depend on the choice of representative in the coin-
variants. In the computations to follow we denote the multiplication in M
by a central dot, while the H-actions by lower dots. So, let x, y ∈ M repre-
sent two elements of He(M,H) and g ∈ H. The crucial property of x (and y)
following from the fact that they belong to the i invariants of coinvariants is
that there exists h ∈ H such that g.x = x.h (and the analogous fact holds
for y. Now using these and the invariance of the multiplication we obtain:

g.(x · y) = (g.x) · y = (x.h) · y = x · (h.y) = x · (y.k) = (x · y).k

which shows the first property. To see that the result of multiplication does
not depend on representative x we compute:

(x.g) · y = x · (g.y) = x · (y.h) = (x · y).h

The independence on the representative y is shown similarly (even simpler).
The formula for µxyz follows from the counting of the orbits for the left
action on MH . □

The most important instance of the above construction is that for a pair
of finite groups H ⊂ G and M = k[G]. Then we have an observation which
justifies our terminology and connects the Hecke algebras and the Yoneda
algebras for plethysms.

Proposition 3.6. Let H ⊂ G be a pair of finite groups and k be any com-
mutative ring. Then there is an isomorphism of k-algebras:

He(G,H)k ≃ GHe(k[G], H).

Proof: Observe that Homk[G]−mod(k[G],k[G]) ≃ k[G] as H-bimodules
and k-algebras. Thus we have:

He(G,H)k ≃ Homk[G]−mod(k[G/H],k[G/H]) ≃

H(Homk[G]−mod(k[G],k[G])H) ≃ GHe(k[G], H).

□

3.3. On HomP(S
p ◦ S2, Sp ◦ S2).

In this subsection we apply the machinery of Hecke algebras to the descrip-
tion of multiplicative structure on endomorphisms of plethysms. Firstly, by
Corollary 1.2 and Proposition 3.6 we have:
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Proposition 3.7. Let k be any field. For any d, i > 0 there is an isomor-
phism of k-algebras:

HomP(S
d ◦ Si, Sd ◦ Si) ≃ He(Σdi,Σi ≀ Σd)k.

In particular, the algebra HomP(S
d ◦ S2, Sd ◦ S2) is commutative.

Proof: The first assertion follows from Corollary 1.6 and Proposition
3.6. The fact that the Hecke algebra He(Σ2d,Σ2 ≀ Σd) is commutative (in
such case we say that (Σ2d,Σ2 ≀Σd) is a Gelfand pair) is well known (see eg.
[S, Ex. 2.3]. □

The main results of this section concern the case i = 2 and d = p, however
some preliminary results hold in greater generality. Our main computation
completes the description of the Yoneda algebra on Ext>0

P2p
(Sp ◦S2, Sp ◦S2)

given in Section 3.1. Namely, we have:

Theorem 3.8. For any x ∈ HomP(S
p ◦ S2, Sp ◦ S2) and y ∈ ExtqP(S

p ◦
S2, Sp ◦ S2) for q > 0, we have:

(3.2) xy = yx = ind(x)y.

In particular, the algebra Ext∗P(S
p ◦ S2, Sp ◦ S2) is commutative.

Proof: In view of Theorem 3.1 and Proposition 3.7 we only need to
establish the formula (3.2). We start with expressing ind in terms of endo-
morphisms of plethysms:

Proposition 3.9. For any d > 2, restricting endomorphisms to the one-
dimensional space yields the algebra homomorphism:

He(Σ2d,Σ2≀Σd)k ≃ HomP2d
(Sd◦S2, Sd◦S2) −→ Homk−mod(S

d◦S2(k), Sd◦S2(k)) ≃ k

which is ind.

Proof: We start with showing a similar but simpler fact:

Lemma 3.10. For any d > 2, restricting endomorphisms to the one-dimensional
space yields the algebra homomorphism:

k[Σ2d]
s≃ HomP2d

(I2d, I2d) −→ Homk−mod(I
2d(k), I2d(k)) ≃ k

which is ak.

Proof of the lemma: The isomorphism s is given by the Σd-action on
the tensor power by permuting factors, but any permutation σ ∈ Σ2d when
evaluated on the one-dimensional space is the identity map. This means
that our algebra homomorphism sends σ ∈ Σ2d to 1 ∈ k, hence it is the
augmentation. □

Proposition 3.9. follows from Lemma 3.10 and the commutative diagram:

Hek(Σ2d,Σ2 ≀ Σd]) ≃ HomP2d
(Sd ◦ S2, Sd ◦ S2) −→

↓ ↓
k[ 1

2dd!
][Σ2d] ≃ HomP2d

(I2d, I2d)⊗ k[ 1
2dd!

] −→
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−→ Homk−mod(S
d ◦ S2(k), Sd ◦ S2(k)) ≃ k

↓ ↓
−→ Homk−mod(I

2d(k), I2d(k))⊗ k[ 1
2dd!

] ≃ k[ 1
2dd!

]

□
Now we are ready for computing some Yoneda multiplications. In the

sequel we will also denote by ind the one dimensional space k with the struc-
ture ofHe(G,H)k induced by the algebra homomorphism ind : He(G,H)k −→
k.

Lemma 3.11. HomP(S
2(1), Sp◦S2) as a left HomP(S

p◦S2, Sp◦S2)-module
is isomorphic to ind.

Proof: HomP(S
2(1), Sp ◦ S2) is one-dimensional and is spanned by i

given as the Frobenius twist i′ : I(1) −→ Sp precomposed with S2. Now we
would like to compute the composite eλ ◦ i. Let us evaluate our functors on
the one-dimensional space L spanned by a vector v. Let vI and vS stand
for the corresponding vectors spanning respectively S2(1)(L) and Sp ◦S2(L).
Then, obviously i(vI) = vS and, by Proposition 3.9, eλ(vS) = ind(eλ) · vS .
Therefore:

eλ ◦ i(vI) = ind(eλ) · vS
which, since HomP(S

2(1), Sp ◦S2) is one-dimensional, finishes the proof. □

Lemma 3.12. For any j > 0 such that ExtjP(S
p ◦ S2, Sp ◦ S2) is non-zero,

it is isomorphic to ind as a left HomP(S
p ◦ S2, Sp ◦ S2)-module.

Proof: By Theorem 3.1, the module structure is the same for all j’s.
Hence it suffices to show our statement for j = 4. Let us look at the spectral
sequences converging to HExt∗P(R

p ◦ S2, Sp ◦ S2). Since the zeroth column
survives in the both sequences, we have an isomorphism of left HomP(S

p ◦
S2, Sp ◦ S2)-modules:

Ext4P(S
p ◦ S2, Sp ◦ S2) ≃ Ext4P(S

2(1), Sp ◦ S2).

Since Ext∗P(S
2(1), Sp ◦ S2) is generated by HomP(S

2(1), Sp ◦ S2) as a right

Ext∗P(S
2(1), S2(1))-module, we have an isomorphism of left HomP(S

p◦S2, Sp◦
S2)-modules:

Ext4P(S
2(1), Sp ◦ S2). ≃ HomP(S

2(1), Sp ◦ S2),

which finishes the proof. □
Now let us look at the right structures. We have an analogous fact:

Lemma 3.13. For any j > 0 such that ExtjP(S
p ◦ S2, Sp ◦ S2) is non-zero,

it is isomorphic to ind as a right HomP(S
p ◦ S2, Sp ◦ S2)-module.

Proof: Analogously to Lemma 3.12 we reduce our task to showing that
Ext2p−2

P (Sp ◦ S2, S2(1)) is isomorphic to ind as a right HomP(S
p ◦ S2, Sp ◦

S2)-module. Let α ∈ Ext2p−2
P (Sp ◦ S2, S2(1)) be a non-zero element. Take

eλ ∈ HomP(S
p ◦ S2, Sp ◦ S2), then α ◦ eλ = c · α and our task is to show
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that c = ind(eλ). We recall from the proof of Lemma 3.11 the element

i ∈ HomP(S
2(1), Sp ◦ S2). By Lemma 3.11 we obtain:

c · α ◦ i = α ◦ eλ ◦ i = α ◦ ind(eλ) · i,
which finishes the proof. □

Lemmas 3.12 and 3.13 give us formula (3.2). □

4. On the unit of the adjunction

In this section we look at the precomposition with S2 as a functor. Our
goal is to describe the unit of the adjunction which it generates. It may be
used to obtain further Ext-computations for plethysms and also to categorify
the precomposition with S2 in the spirit of [C4]. We plan to develop these
points in a further work.

We consider the functor

CS2 : Pd −→ P2d

given as CS2(F ) := F ◦ S2. Obviously, by the Special Adjoint Functor
theorem, CS2 has the right adjoint functor:

KS2 : P2d −→ Pd

which by the Yoneda lemma is explicitly given by:

KS2(F )(V ) = HomP2d
(Γd,V ◦ S2, F ),

where Γd,V (W ) := Γd(W ⊗V ∗) is a projective generator of Pd. Since CS2 is
exact, it prolongs degreewise to the functor, which we shall also denote by
CS2 , between the bounded derived categories. Then KS2 as a right exact
functor has the right derived functor RKS2 given by:

RKS2(F )(V ) = RHomP2d
(Γd,V ◦ S2, F ).

and CS2 and RKS2 as functors between bounded derived categories are still
adjoint.

Now it seems to be a general phenomenon concerning precomposition in P
that the unit of the adjunction at the level of abelian categories ie. the com-
posite KF ◦CF and at the level of triangulated categories ie. the composite
RKF ◦ CF admit quite explicit descriptions. The case of precomposition
with F = I(1) was studied in [C3], [C4]. The situation there is quite inter-
esting. In the abelian case KI(1) ◦CI(1 is isomorphic to the identity, since
CI(1) is a full embedding. In the triangulated case it is not, but it is not far
from it. Namely RKI(1) ◦CI(1) is isomorphic to the functor of pretensoring
with the graded space A (this space also appears in our Section 2.3 where
it is denoted by A∗). This result had numerous applications (see [C3]) and
also allowed categorification in [C4], which is potentially beneficial. Now,
we shall observe a somewhat similar picture for the precomposition with S2.
Our main result, Theorem 4.10, explicitly describes RKS2 ◦CS2 for d = p.
However for F = S2 already the case of k of characteristic zero, where there
is no homological algebra at all is interesting. We give in Theorem.4.3 a
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full description of KS2 ◦CS2 in that case. We recommend even the reader
interested only in Theorem 4.10 to look also at Section 4.1, since the proof
of Theorem 4.10, while much more intricate and subtle, does heavily use the
ideas behind Theorem 4.3. Also comparing Theorems 4.3 and 4.10 explains
to some extent the impression prevalent in all computations in Sections 2
and 3: that we have a large part of characteristic free structure reflected
in the Hom-groups, and there is some homological addition emerging in the
modular case, which at least for d = p is controllable.

4.1. Semisimple case. In this subsection we assume that d! is invertible
in the ground field k. Let

CS2 : Pd −→ P2d

be the functor of precomposing with S2 and KS2 its right adjoint. We recall
that explicitly:

KS2(F )(V ) = HomP2d
(Γd,V ◦ S2, F ).

Our task is to describe the unit of this adjunction:

U := KS2 ◦CS2 .

We would like to compute U(Sd
U ), where S

d
U (V ) := Sd(V ⊗U) is an injective

cogenerator of Pd. To this end we start with computing U(IdU ). We have:

U(IdU ) = HomP2d
(Γd,V ◦ S2, IdU ◦ S2) = HomP2d

(Γd,V ◦ S2, Id ◦ S2)⊗ U⊗d =

(4.1) =
⊕

γ∈Polyh(d,2)

Sγ ⊗ U⊗d,

where for γ = {γa11 , . . . γakk }, Sγ stands for Sa1 ⊗ . . .⊗Sak (compare Section

1.2. The Σd-action on IdU induces an action on U(IdU ), which is a diagonal
action on the both factors in the tensor product

(
⊕

γ∈Polyh(d,2)

Sγ)⊗ (U⊗d).

The action on U⊗d is just by permuting factors in the tensor power. In
order to describe the action on

⊕
γ∈Polyh(d,2) S

γ it will be more convenient

to replace Polyh(d, 2) with Gr(d, 2). We recall from Section 1.2 that we
form our graph by connecting the numbers k and l whenever they occur in
some γj . Then we can say that for the graph corresponding to γ we form
Sγ by assigning to each single edge a copy of I, assigning to each double
edge a copy of S2 and tensoring them all. Then our Σd-action re-labels the
copies of I and S2 according to the Σd-action on Gr(d, 2) by re-numbering
the vertices. In order to describe this action more explicitly we recall from
Section 1.2 that the set of isomorphism classes of Gr(d, 2) is labeled by
the set Λ(d) of Young diagrams of weight d. Moreover, we have chosen in
Section 3.2 for each λ ∈ Λ(d) the graph Gλ belonging to the Σd-orbit labeled
by λ. Our current situation is slightly different from that from Section 3.2,
since we are interested in Σd-action instead of Σ2 ≀Σd-action, hence we have
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undecorated graphs, but we can still use Gλ just forgetting about decoration.
So, in our situation the isotropy group of Gλ is the ordinary dihedral group
Dλ (or rather the semidirect product of dihedral groups). Then the action

of Dλ on Sγ(Gλ) is the following (we recall that the copies of V are indexed
by the edges of the graph). Let

Jλ := Σ×b2
2 ⋊ Σb2

where b2 is the number of cycles of length 2 in Gλ ie. the multiplicity of
2 in λ. Then obviously Jλ ◁ Dλ and the permutative action of Dλ on Id

factorize to the action of Dλ/Jλ on Sγ(Gλ) = (Id)Jλ . Then we pull back this

to Dλ. Then by using the described above action of Dλ on Sγ(Gλ) we obtain
the isomorphism of k[Σd]-modules:⊕

γ∈Polyh(d,2)

Sγ ≃
⊕

λ∈Λ(d)

Sγ(Gλ) ⊗k[Dλ] k[Σd].

Thus we can refine (4.1) to the form:

Proposition 4.1. There is a natural in U ∈ Vectk isomorphism:

U(IdU ) =
⊕

λ∈Λ(d)

(Sγ(Gλ) ⊗k[Dλ] k[Σd])⊗ U⊗d.

In particular:

U(Id) =
⊕

λ∈Λ(d)

Sγ(Gλ) ⊗k[Dλ] k[Σd].

Therefore by applying Theorem 1.1 we obtain:

Proposition 4.2. There is a natural in U ∈ Vectk isomorphism:

U(Sd
U ) ≃

⊕
λ∈Λ(d)

Vλ(U),

where

Vλ(U) = Sγ(Gλ) ⊗k[Dλ] U
⊗d.

In particular, if 2 /∈ λ then the description of Vλ(U) simplifies to:

Vλ(U) = (IdU )Dλ
.

Proof: Only the last formula requires some explanation. In that case we
have Sγ(Gλ) = Id, hence we get:

Uλ(S
d
U ) = Id ⊗k[Dλ] U

⊗d ≃ ((I ⊗ U)⊗d)Dλ
= (IdU )Dλ

.

□
Since Sd

U cogenerate P, Proposition 4.2 determines U. Namely we have:

Theorem 4.3. There is an isomorphism:

U ≃
⊕

λ∈Λ(d)

Uλ
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and

Uλ(F ) = Sγ(Gλ) ⊗k[Dλ] S(F ),

where S(F ) := HomP(I
d, F ) is “the Schur functor” in the sense of [M].

In particular, if 2 /∈ λ then:

Uλ(F ) = Id ⊗k[Dλ] S(F ).

Moreover:

U(1d) ≃ id.

Proof of Theorem: By the Eilenberg-Watts theorem (or directly by the
Yoneda lemma) U is representable, ie. there exists a bifunctor (V,W ) 7→
X(V,W ) contravariant in V such that:

U(F )(V ) = HomP(X(V,−), F ),

(see eg. [C3, Section 2] for a detailed discussion of strict polynomial bifunc-
tors and functors with parameters). Then on the one hand by Proposition
4.2 we have:

U(Sd
U )(V ) =

⊕
λ∈Λ(d)

Sγ(Gλ) ⊗k[Dλ] S(F ),

On the other hand by Yoneda lemma we get:

HomPd
(X(V,−), Sd

U ) ≃ (X(V,U∗))∗.

By comparing these two expressions we obtain:

X(V,U) ≃
⊕

λ∈Λ(d)

(Sλ(V ∗)⊗ U⊗p)Dλ

Hence, invoking again Theorem 1.1 we get:

Uλ(F )(V ) = HomP((S
λ(V )⊗Id)Dλ , F ) ≃ (HomP(S

γ(Gλ)(V ∗)⊗Id, F ))Dλ
≃

(Sγ(Gλ)(V )⊗HomP(I
d, F ))Dλ

,

which proves our main assertion. The simplification for 2 /∈ λ follows, like
in Proposition 4.2 from the fact that Sγ(Gλ) = Id in that case. The further
simplification for λ = (1d) is just the Yoneda lemma. □

4.2. Case of d = char(k).
Here we describe RU for 2 < d = p = char(k). We still have

RU(IpU ) = U(IpU ) =
⊕

λ∈Λ(p)

Uλ(I
p
U ) =

⊕
λ∈Λ(p)

Sγ(Gλ) ⊗k[Dλ] k[Σp]⊗ U⊗p,

since it follows directly from the Yoneda lemma. We shall computeRU(Sp
U ).

Let us first observe that Sp
U ◦S2 is a direct summand in Sp

U ◦I2 and the latter
by the Cauchy formula and the Littlewood-Richardson rule has a filtration
with quotients being Schur functors. Analogously Γp

U ◦ S2 has a filtration
with the quotients being Weyl functors. Therefore

(4.2) ExtjP(Γ
p,V ◦ S2, Sp

U ◦ S2) = 0 for j > 0,
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which means that
RU(Sp

U ) ≃ U(Sp
U ).

We shall compute U(Sp
U ) by comparing it with U(IpU ) by means of the maps:

m∗ : U(IpU )Σp −→ U(Sp
U ),

c∗ : U(Sp
U ) −→ U(IpU )

Σp ,

induced respectively by the multiplication and comultiplication map in the
symmetric algebra. Their composite is induced by the symmetrization map
Ip −→ Ip , thus it can be interpreted as the norm map N for the Σp-module

U(IdU ). Therefore we have:

Proposition 4.4. The composition c∗ ◦m∗ restricted to (Uλ(I
p
U ))Σp is an

isomorphism for λ ∈ Λ(p) \ {(1p), (p)}. In the special cases we have:

(1) For λ = (1p) the norm map

N : (U(1)p(I
p
U ))Σp ≃)Sp

U −→ (U(1p)(I
p
U ))

Σp ≃ Γp
U

has the kernel and cokernel isomorphic to I
(1)
U .

(2) λ = (p) the norm map

N : (U(p)(S
p
U ))Dp ≃ (IpU )Dp −→ (U(p)(S

p
U ))

Dp ≃ (IpU )
Dp

has the kernel and cokernel isomorphic to I
(1)
U .

Proof: The part about N being an isomorphisms follows from the fact
that in this case the group Dλ has rank prime to p. The description of the
kernel and cokernel of norm in the case of λ = (1p) is an elementary exercise.
Let us now look at the case λ = (p). Here we have:

Lemma 4.5. There are compatible with N decompositions:

(IpU )Dp ≃ Sp
U ⊕X, (IpU )

Dp ≃ Γp
U ⊕X ′,

and the norm N : X −→ X ′ is an isomorphism.

Proof of the Lemma: It follows from general properties of norms.
Namely, the inclusion Γp

U = (IpU )
Σp ⊂ (IpU )

Dp is just the inclusion of invari-
ants of a group into the invariants of subgroup. Since p ∤ [Σp : Dp], this
inclusion splits by another incarnation of the norm sometimes called the
transfer: m 7→

∑
g∈Σp/Dp

gm. We remark that all these constructions do

not require the normality of subgroup (Σp/Dp stands for some set of rep-
resentatives of the cosets etc.). We obtain the analogous decomposition for
invariants, and since all the maps are expressed in terms of Σp-action, they
commute with N . The fact that the norm restricted to X is an isomorphism
again follows from the fact that p ∤ [Σp : Dp]. □

Our assertion follows immediately from Lemma 4.5 and the part about
λ = (1p). □

Then we analyze the kernel and cokernel of m∗ and c∗. We start with
collecting some auxiliary higher-Ext computations:
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Lemma 4.6. We have natural in V,U ∈ Vectk isomorphisms:

(1)

ExtjP2p
(Γp,V ◦ S2, I

(1)
U ◦ S2) =

{
V (1) ⊗ U (1) for j ≤ 2p− 2, j = 4k

0 otherwise.

(2)

Extp−1
P2p

(Γp,V ◦ S2,Λp
U ◦ S2) = Extp−2

P2p
(Γp,V ◦ S2,Λp

U ◦ S2) = V (1) ⊗ U (1).

Proof: We first observe that by Theorem 2.5 for F = S2 (or rather the
explicit computation of the dimensions of Ext-groups given in the proof of
Theorem 2.6) we get:

ExtjP2p
(Γp ◦ S2, S2(1)) ≃ ExtjP2p

(S2(1), Sp ◦ S2) ≃{
k for j ≤ 2p− 2, j = 4k
0 otherwise,

which agrees numerically with the formula (1) for V = U = k. Now, since
the both sides of (1) are additive with respect to V and U , the formula holds

numerically for all V,U . Then observe that ExtjP2p
(Γp,V ◦ S2, I

(1)
U ◦ S2) as

functor in V,U is a strict polynomial bifunctor of degree p with respect to
the both variables. Thus it is of the form

⊕
V (1)⊗U (1), by [T2]. This shows

that (1) also holds functorially.
In order to get (2) we take the de Rham complex with parameter Rp,U and

consider the spectral sequences converging to HExt∗P(Γ
p,V ◦ S2, Rp,U ◦ S2).

By the Cartier theorem and (1) the second spectral sequence degenerates at
E2 and we get:

HExtjP(Γ
p,V ◦S2, Rp,U◦S2) =

{
V (1) ⊗ U (1) for j ≤ 2p− 1, j = 4k or j = 4k + 1

0 otherwise,

Now, we look at the first page of the first spectral sequence. Since

(Si
U ⊗ Λp−i

U ) ◦ S2 are injective for 0 < i < p and by (4, 2), we can have

nontrivial higher Exts in the pth column, which is Ext∗P2p
(Γp,V ◦ S2,Λp

U ◦
S2). Since by the dimension argument these higher Exts survive, we get:

Extp−1
P2p

(Γp,V ◦ S2,Λp
U ◦ S2) = HExt2p−1

P (Γp,V , Rp,U ◦ S2) = V (1) ⊗ U (1),

and

Extp−2
P2p

(Γp,V ◦ S2,Λp
U ◦ S2) = HExt2p−2

P (Γp,V , Rp,U ◦ S2) = V (1) ⊗ U (1),

which finishes the proof. □
Then we have:

Proposition 4.7. Both m∗ and c∗ have kernel and cokernel isomorphic to

I
(1)
U . The kernel of m∗ is located in (U(p)(I

p
U ))Σp = (IpU )Dp, the cokernel of

c∗ is located in (U(1p)(I
p
U ))

Σp = Γp
U ,
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Proof: We start with investigating m∗. Let us recall the bar complex
with parameter Bp,U (see eg. [Tot]). It is an exact sequence, which extends
the projection m′ : Ip −→ Sp:

0 −→ Λp
U −→ . . . −→

⊕
[2]⊂[p]

Λ2
U ⊗ Ip−2

U
d1−→ IpU

m′
−→ Sp

U −→ 0.

Let us describe explicitly the differential d1. Namely it sends x1 ∧ x2 ⊗
y1 ⊗ . . . yp−2 from the copy of Λ2 ⊗ Ip−2 labeled by the inclusion [2] ⊂ [p]
onto {i, j} to:

y1 ⊗ . . . yi−1 ⊗x1 ⊗ . . . yj−2 ⊗x2 ⊗ . . .−y1 ⊗ . . . yi−1 ⊗x2 ⊗ . . . yj−2 ⊗x1 ⊗ . . . ,

ie. we insert x1, x2 at places i, j and antysymmetrize them. Thus one sees
that coker(d1) = (IpU )Σd

, which will be important later.

Now, we consider the spectral sequence E converging to HExtP2p(Γ
p,V ◦

S2, Bp,U ◦S2). Observe that E0p
2 = coker(m∗) and E0,p−1

2 = ker(m∗). Since,
like in the proof of Lemma 4.6.(2) ,we have higher Exts only in the last
column, which is Ext∗P2p

(Γp,V ◦S2,Λp
U◦S2), our assertion follows from Lemma

4.6.(2).
The case of c∗ is slightly more involved computationally. This time we

start with B′
p,U , a parametrized version of another variant of bar complex

from [Tot]:

0 −→ Γp
U −→ . . . −→

⊕
[2]⊂[p]

Γ2
U ⊗ Ip−2

U −→ IpU −→ Λp
U −→ 0.

Then we apply to B′
p,U the functor HomP(Λ

p,(−),−). In order to analyze the

resulting complex we observe that B′
p,U may be interpreted as augmented

resolution of Γp
U admissible for HomP(Λ

p,(−),−). Luckily, the relevant Ext-

groups: Ext∗P(Λ
p,V ,Γp

U ) are known. Namely, they were computed in [A] for
U = V = k, in [C2] for U = k and an arbitrary V and it is an easy exercise
to extend the computation to the case of an arbitrary U (also the elementary
methods of [J] can be applied here). The result is:

ExtjP(Λ
p,V ,Γp

U ) =

 V (1) ⊗ U (1) for j = p− 1, j = p− 2,
Γp(V ⊗ U) for j = 0,

0 otherwise.

This allows one to describe explicitly the complex HomP(Λ
p,(−), B′

p,U ) and

its cohomology. Namely, also taking into account the known from [FFSS]
descriptions of Hom-maps between exponential functors we can rewrite
HomP(Λ

p,(−), B′
p,U ) as:

0 −→ Λp
U −→ . . . −→

⊕
[2]⊂[p]

Λ2
U ⊗ Ip−2

U −→ IpU −→ Γp
U −→ 0.
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Moreover, we have:

Hj(HomP(Λ
p,(−), B′

p,U )) =

{
I

(1)
U for j = 0, j = 1
0 otherwise.

Finally we apply to our complex the Kuhn duality and obtain the complex
Cp,U :

0 −→ Sp
U

c′−→ IpU
m2−→

⊕
[2]⊂[p]

Λ2 ⊗ Ip−2 −→ . . . −→ Λp
U −→ 0.

where c′ : Sp
U −→ IpU is the comultiplication map. Also this time we have:

ker(m2) = (IpU )
Σp . Its cohomology is still:

(4.3) Hj(Cp,U ) =

{
I

(1)
U for j = 0, j = 1,
0 otherwise.

Then we consider the first spectral sequence E converging to HExt∗P2p
(Γp,V ◦

S2, Cp,U ◦S2). We observe that E00
2 = ker(c∗) and E0,1

2 = coker(c∗) and they
survive. Hence in order to identify these groups we need to look at the second
spectral sequence F . By (4.3) F ∗∗

2 consists of the first two columns where we

have ExtjP2p
(Γp,(−) ◦ S2, I

(1)
U ◦ S2). These groups were computed in Lemma

4.6.(1). Since they are concentrated in even degrees, they survive, hence we
get:

ker(c∗) = E00
2 = HExt0P2p

(Γp,V ◦ S2, Cp,U ◦ S2) = F 00
2 = I(1),

and

coker(c∗) = E01
2 = HExt1P2p

(Γp,V ◦ S2, Cp,U ◦ S2) = F2
01 = I(1),

which finishes the proof. □
Now can conclude:

Proposition 4.8. There is a natural in U ∈ Vectk decomposition:

U(Sp
U ) =

⊕
λ∈Λ(p)

Vλ(U),

and the two overlapping isomorphisms:

Vλ(U) = m∗(Uλ(I
p
U )Σp = (Sλ ⊗ U⊗p)Dλ

, for λ ̸= (p)

and

Vλ(U) ≃ c∗(Vλ) = Uλ(I
p
U )

Σp = (Sλ ⊗ U⊗p)Dλ , for λ ̸= (1p).

Proof: Thanks to Prop. 4.7 we know that m∗ produces an embedding⊕
λ∈Λ(p)\{(p)}

(Sλ ⊗ U⊗p)Dλ
⊂ U(Sp

U ).

We need to find additionally Sp
U and (IdU )

Dp inside U(Sp
U ). We start with

Sp
U .
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Lemma 4.9. The unit map:

Sp
U −→ U(Sp

U )

is an embedding which splits naturally in U and its image is contained in
m∗(U(1p)(I

d
U )Σd

).

Proof: The unit map Sp
U −→ U(Sp

U ) can be interpreted as precomposing
on Hom-maps:

SP
U ≃ HomP(Γ

p,(−), Sp
U ) ⊂ HomP(Γ

p,(−) ◦ S2, Sp
U ◦ S2) = U(Sp

U ).

Therefore, by Theorem 2.1 it naturally splits. The second statement follows
from the fact that the image of of the unit map:

IpU −→ U(IpU )

is exactly U(1p)(I
p
U ), which immediately follows from the Exponential For-

mula. □
Thus we can decompose U(Sp

U ) as X ⊕ Sp
U with

X ⊃
⊕

λ∈Λ(p)\{(p)}

(Sλ ⊗ U⊗p)Dλ
.

Then let π : U(Sp
U ) −→ U(Sp

U ) be the projection onto X with the kernel

Sp
U . Then we find our copy of (IpU )

Dp by taking π(c−1
∗ ((IpU )

Dp)). □
Then, finally, we obtain the following description of the derived functor

of U:

Theorem 4.10. We have: RU =
⊕

λ∈Λ(p) RUλ and:

RUλ = Uλ(F ) = Sγ(Gλ) ⊗k[Dλ] S(F ), for λ /∈ {(p), (1p)}.

In particular, if 2 /∈ λ /∈ {(p), (1p)} :

Uλ(F ) = Id ⊗k[Dλ] S(F ).

Moreover:

RU(1d) ≃ id,

and

RU(p)(F ) = RHomP((I
p,(−))D

p
, F ).

Proof: We proceed along the lines of the proof of Theorem 4.3, with the
Eilenberg-Watts theorem replaced by the Neeman Representability theorem
[N]. The formula for λ /∈ {(p), (1p)} is exactly the same as in Theorem 4.3
because p ∤ |Dλ| in this case and (Ip,V )Dλ is projective. The formula for
U(1p) is just the Yoneda lemma. □
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